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Abstract 
This paper proposes a new method of gain 
scheduling control design for a nonlinear system 
which is described as linear parameter varying 
form. A performance measure based on Linear 
Matrix Inequality is introduced. To consider 
stability and performance measures in design 
process, the H∞ loop-shaping method is used to 
design the local controllers, which can be described 
as state feedback observer based structure. By 
introducing the stability and performance covering 
condition for the linear parameter varying system, 
a new interpolation law is proposed, and it is 
proofed that the resultant controller can preserve 
the performance measure for the observer based 
structure for all values of the scheduling 
parameter. Also the closed loop stability is 
guaranteed. The method is successfully applied on 
the control of a well-known benchmark system, 
namely, the autopilot for a pitch-axis model of an 
air vehicle. The performance and effectiveness is 
evaluated against disturbances and parameter 
uncertainties using computer simulation. 

 
Keywords: gain scheduling; linear parameter 
varying; observer based controller; stability; 
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1. Introduction 

Gain scheduling has been used successfully to 
control nonlinear systems for many years and in 
many different applications [1].Two approach for 
the synthesis of gain-scheduled controllers exist: 
the linear parameter varying (LPV) based one and 
the linearization-based one [1]. In the LPV-based 
method the controller is synthesized for the 
nonlinear plant via reformulating it as a linear 
time varying model. The linearization-based 
method uses linear time invariant (LTI) models 
based on Jacobian linearization of the nonlinear 
plant about a family of equilibrium points. This 

yields a parameterized family of linearized plants. 
Then, a linear controller is designed for each 
region which should guarantees robust stability 
and performance in the region. Finally, the 
controller coefficients are changed according to 
physical parameters which are measured in real 
time. Using the physical parameters or scheduling 
variables, the operating region is detected at each 
time. The controller may be updated via 
interpolation of certain parameters or switching 
[2].  It should be noted that in practice, switching 
among controllers may cause instability of the 
closed-loop system [3]. Unstable modes and 
degraded performance may come from the 
switching transition dynamics, which are not 
contained in the information provided by each 
linear model. Closed loop instability may be 
overcome by imposing a certain dwell time [4, 5]. 
However, this cannot prevent the undesirable 
transients. 
Guarantees of stability and performance in the 
whole operating envelope can be obtained using 
linear parameter varying (LPV) systems theory [6, 
7, 8] , but there is no guarantee that a gain 
scheduled controller which meets the demands be 
found moreover  computational efforts needed to 
obtain an LPV controller limits its use to low-
order and medium-order systems.  
In many fields, such as  aerospace, there is a 
strong interest in using the linearization-based  
gain-scheduling method [9] .For controllers 
designed independently for each operating point, 
previous results have been focused on stability 
[10, 11] or controller switching instead  [12, 13]. 
Particularly, in [14], Youla parameterization has 
been used, but a network of controllers has been 
produced which significantly increases the order 
of the resulting gain-scheduled controler. Some 
recent results consider the performance problems 
by establishing an adequate controller initial 
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condition when switching  [15] or by injecting 
stabilizing signals among the local controllers, 
based on bumpless and antiwindup transfer 
compensators [16]. Bianchi in [17] focuses on 
formulating a stability-preserving interpolation 
scheme with a performance level guarantee in the 
state-space framework, but this leads to high 
computational complexity and implementation 
problems.  
 Observer-based linear parameter-varying control 
with guaranteed  -gain and  -type 
performance objectives has been studied by 
Hakan Koroglu [6]. There are no results that have 
focused on both stability and  performance, 
based on the selection of the observer-based 
controller for interpolation. 
 Observer-based controllers are interesting for 
different practical reasons. The key advantage of 
these controllers structure comes from the ease of 
implementation of observer-based controllers. In 
addition to plant data, only two static gains define 
the entire controller dynamics. This facilitates the 
construction of gain-scheduled or interpolated 
controllers. Indeed, assuming the plants model is 
available in real-time, observer-based controllers 
will only require the storage of two static gains to 
update the controller dynamics at each sample 
data. Another well-appreciated advantage of these 
controller structures lie in the fact that the 
controller states are meaningful variables that 
estimate the physical plant states.  Therefore the 
controller states can be used to monitor the 
performance of system, on-line or off-line [18]. 
This study focuses on stability-preserving 
interpolation scheme with improved  
performance. This structure does not impose any 
strong restrictions. In [18] some practical 
techniques to compute observer-based controller 
forms to arbitrary compensators have been 
investigated. 
 This paper presented a methodology for 
interpolation of linear time-invariant (LTI) 
controllers with observer-based form. These 
controllers are designed for different operating 
points of a nonlinear system, then interpolated in 
such a way that produce a gain-scheduled 
controller with stability and performance 
guarantees at intermediate interpolation points. In 
addition, conditions are presented that establish 
local stability of the nonlinear closed-loop system 
The reminder of this paper is organized as 
follows: Section 2 presents the problem 

statement، a new gain-scheduled control design is 
described in Section 3 and the results are 
illustrated in a pitch-axis air vehicle model in 
Section 4. Finally, concluding remarks are 
presented in Section 5. 

 
2. PROBLEM STATEMENT 

Consider the nonlinear plant Where x is the 
state,  is the input,  denoted an error signal, 
and y denotes a measured output available to the 
controllers. denotes exogenous inputs to the 
plant such as reference commands, disturbances 
and noises. Suppose there exist continuous 
functions, 0, ,o ox u w such that for all lRρ ∈Γ ⊂ , 

Where Γ  is a connected compact subset of lR . 
For each , the Jacobian linearization of the 
nonlinear plant (1) about  is 
written as: 

Where 
 It is 

assumed that , etc. are 
continues functions on Γ . Suppose that there 
exists a stabilizing observer based controller (4) 
designed beforehand and independently at each 
designing points . Furthermore, 
the controller achieves certain   performance 
specifications, , . 

Then the objective is to formulate a new 
interpolation scheme for the state feedback gains 
and state observer gains such that: 

i. The gain-scheduled controller (5) Stabilizes 
the plant  defined in (3) at any point 

. 

( , , )
( , , )
( , )

x f x u w
x u w

y h x u
ζ

=
=
=

&

 (1) 

( ( ), ( ), ( )) 0o o of x u wρ ρ ρ =  (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

w u

u

y y

x t A x t B w t B u t

G t C x t D w t D u t
y t C x t D w t

δδ δ δ

ζ δ ζ δ ζ δ

δ δ

ρ ρ ρ

ρ ζ ρ ρ ρ
ρ

= + +

= + +
= +

&
 (3) 

ˆ ˆ( ) ( ( ) ( ) ( )) ( ) ( )( ) :
( ) ( )

i u i i i y i i
i

i i

x t A B K L C x t L y tC
u t K x t

ρ ρ ρ
ρ

= + + −
=

&  (4) 
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ii. The gain-scheduled controller (5) 
guarantees an H∞ norm bound constraint 
on disturbance attenuation for all . 

Furthermore, to find sufficient conditions to 
ensure local stability of the nonlinear closed-loop 
system.  

ˆ ˆ( ) ( ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( )( ) :
( ) ( ) ( )

u yx t A B K L C x t L y tC
u t K x t

ρ ρ ρ ρ ρ ρ
ρ

ρ
= + + −
=

&       (5) (5) 

 
3. GAIN-SCHEDULED CONTROLLER 

SYNTHESIS 

First, a preliminary result on sufficient conditions 
such that an observer based controller guarantees 

norm bound constraint on disturbance 
attenuation is presented. Then the results on 
stability and performance preserving interpolation 
of observer based controllers for a fixed linear 
plant are extended to parameter-varying plants. 
 

Lemma 1 

Suppose that observer based controller (6) stabilizes the 
LTI plant (7). 

 
ˆ ˆ( ) ( ) ( ) ( )
( ) ( )

u yx t A B K LC x t Ly t
u t Kx t

= + + −
=

&
                 (6) (6) 

( ) ( ) ( ) ( )
: ( ) ( ) ( ) ( )

( ) ( ) ( )

w u

u

y y

x t Ax t B w t B u t
G t C x t D w t D u t

y t C x t D w t
ζ ζ ζζ

= + +
= + +
= +

&

                (7) (7) 

Furthermore, assume there exist symmetric, 
positive-definite matrices ,P Q such that 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0
( )

( )

T T
u u u w u

T T T
u y y w y u

T T T
w w y

u u

P A B K A B K P B K B P C D K
B K A LC Q Q A LC Q B LD D K
B B LD Q I D

C D K P D K D I

ζ ζ

ζ

ζ

ζ ζ ζ ζ

γ
γ

 + + + − +
 − + + + + −  < + −
 

+ − −  

 
(8) 

 
Then the closed-loop system (9) satisfies 

 

     
,

( ) ( )
( )ˆ ˆ( )( )

:
( )

( ) ( )
ˆ( )

u w

y u y y
K L

u

x t A B K Bx t
w t

LC A B K LC LDx tx t
G

x t
t C D K D w t

x tζ ζ ζζ

      
= +      − + + −     

 
 = +  

 

&

&
(9) 

(9) 

 
In the other words, the observer based controller 
(6) guarantees the H∞ norm bound constraint on 
disturbance attenuation. 

 
Proof  
First, we rewritten the closed-loop system (9) as 
follows, 

,

' ' ( )
: '

ˆ' ( ) (t) (t)

0

cl cl
K L

cl cl

u u w
cl cl

y w y

cl u u cl

x A x B w x t
G x

C x D w e t x x

A B K B K B
A B

A LC B LD

C C D K D K D Dζ ζ ζ ζ

ζ
= +  

=  = + = − 

+ −   
= =   + +   

 = + − = 

&

(10) 

Equation (8) can be written as (11), 
1 1 1

1

0 0 0 00 0 0
( )

0 0 0 00 0 0

00
0

00

0
0

T T
cl cl cl cl

T T
cl cl

cl cl

P P P PP P P
A A B C

I I I IQ Q Q

PP
B I D

IQ
P

C D I
I

γ

γ

− − −

−

             
+             

             
     − <      
 

  −  
  

(11) 

 Again, we can rewrite (11) as (12), 
0 0 0 0

0 0 0 0 0
0 0 0 0

T T
cl cl cl cl

T T
cl cl

cl cl

R A W WA WB C R
I B W I D I

I C D I I
γ

γ

 +   
    − <    
    −    

(12) 

Where 
10 0

0 , 0
0 0
P P

R W
I Q

−  
= > = >  

   
      (13) 

It is clear that ,R W  are symmetric, positive-
definite matrices. Using bounded real lemma and 
(12), yield: 

2
,

2

( )
0 sup

( )

T T
cl cl cl cl

T T
cl cl K L

w

cl cl

A W WA WB C
t

B W I D G
w t

C D I

ζ
γ γ

γ
∞

 +
 − < ⇒ = ≤ 
 − 

(14) 

--------------------------- 
Lemma 2 

Suppose that the observer based controllers (15) 
both stabilize the LTI plant (16). 

ˆ ˆ( ) ( ) ( ) ( ) 1, 2
( ) ( )

u i i y i

i i

x t A B K L C x t L y t i
u t K x t

= + + −
=

=

&
(15) 

 
( ) ( ) ( ) ( )

: ( ) ( ) ( ) ( )
( ) ( ) ( )

w u

u

y y

x t Ax t B w t B u t
G t C x t D w t D u t

y t C x t D w t
ζ ζ ζζ

= + +
= + +
= +

&

               (16) 

Furthermore, assume there exist symmetric, 
positive-definite matrices 1 2,Q Q  and 1 2P P=  such 
that, 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0
( )

( )

1,2

T T
i u i u i i u i w i u i

T T T
u i y i i y i w i y u i

i T T T
w w i y i i

u i i u i i

P A B K A B K P B K B P C D K
B K A LC Q Q A LC Q B L D D K

S
B B L D Q I D

C D K P D K D I

for i

ζ ζ

ζ

ζ

ζ ζ ζ ζ

γ
γ

 + + + − +
 − + + + + − = < + −
 

+ − −  

=

(17) (17) 

Then for any fixed , 0 1µ µ≤ ≤  , the observer 
based controller (19) stabilize (16) with, 

2
, 1 2 1 2

2

( )
sup min( , ) max( , )

( ) K L
w

t
G

w t µ µ

ζ
γ γ γ γ γ γ

∞
= ≤ ≤ ≤  (18) 

 

1
1 1 2 2 1 2

1
1 1 2 2 1 2

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

( (1 ) ) , (1 )
( (1 ) ) , (1 )

u yx t A B K LC x t Ly t
u t Kx t

K K P K P P P P P
L Q Q L Q L Q Q Q

µ µ µ µ

µ µ µ µ

−

−

= + + −

=

= + − = + −

= + − = + −

&

 
(19) 

 
where ,K LG  is the closed-loop system. 

,

( ) ( )
( )ˆ ˆ( )( )

:
( )

( ) ( )
ˆ( )

u w

y u y y
K L

u

x t A B K Bx t
w t

LC A B K LC LDx tx t
G

x t
t C D K D w t

x tζ ζ ζζ

      
= +      − + + −     

 
 = +  

 

&

&  
(20) 

Proof 
Lemma 1 and (19) yield,  

and . Evaluating 1 2(1 )S Sµ µ+ −  for 

fixed , 0 1µ µ≤ ≤ yields after some computations, 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0
( )

( )

T T T
u u u w u

T T T
u y y w y u

T T T
w w y

u u

P A B K A B K P B K B P C D K
B K A LC Q Q A LC Q B LD D K
B B LD Q I D

C D K P D K D I

ζ ζ

ζ

µ ζ

ζ ζ ζ ζ µ

γ
γ

 + + + − +
 − + + + + −  < + −
 

+ − −  

 
(21) 

 

Where 

1
1 1 2 2 1 2

1
1 1 2 2 1 2

( (1 ) ) , (1 )

( (1 ) ) , (1 )

K K P K P P P P P
L Q Q L Q L Q Q Q

µ µ µ µ

µ µ µ µ

−

−

= + − = + −

= + − = + −
 (22) 

 

1 2(1 )µγ µγ µ γ= + −  (23) 

Lemma 1, (22) and (23) result, ,K LG µγ
∞

≤  and            

1 2 1 2min( , ) max( , )µγ γ γ γ γ≤ ≤  
----------------------- 
In [19], the stability covering condition is 
introduced for stable interpolating between state 
feedback gains, we generalized this for observer 
based controllers. It is noted that clA  is system 

matrix and we say a matrix is stable if it has 
negative real-part eigenvalues.  

Definition 1 

Generalized stability covering condition. Suppose 
that each arbitrary controller iC stabilizes (3) at 
designing points . In the other 
words,  is stable, . Let 

,containing , be an open neighborhood such 
that  is stable for each fixed . If 

 then we say that the controllers 
satisfy the generalized stability covering 
condition. 

Definition 2 

Stability-performance covering condition. 
Assume that all conditions of Definition 1 hold. 
In addition, each arbitrary controller  satisfies 

 for , 

, then we say that the controllers 
satisfy the stability-performance covering 
condition. Figure 1 illustrates how the controllers 

 satisfy stability-performance covering 
condition. 

1ρ 2ρ 3ρ

1

1

1

1

( )
&

( )C

C stabilize G

G

for U

ρ

ρ γ

ρ
∞

≤

∈

Γ

2

2

2 2

( ) &

( )C

C stabilize G

G for U

ρ

ρ γ ρ
∞

≤ ∈

3

3

3

3

( )
&

( )C

C stabilize G

G

for U

ρ

ρ γ

ρ
∞

≤

∈
 

Figure 1. 1 2 3, ,C C C satisfy Stability-performance covering 

condition. 
3

1
i

i

U
=

Γ ⊂ U Theorem 1 

 
Consider the linear parameter varying plants (3), 
which is the Jacobian linearization of the 
nonlinear plant (1) about equilibrium 

, , Assume that 
there exists a stabilizing observer based controller 
(4) designed beforehand and independently at 
each designing points , 

. Suppose also that the controllers 
satisfy stability-performance covering 
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condition,( ). If there exists  and 
symmetric positive-definite matrices 

 Such that  
( ) ( ( ) ( ) ) ( ) ( ) ( ( ) ( ) )

( ) ( ( ) ( )) ( ( ) ( )) ( ( ) )
( )

, 1,...,

T
i u i i u i w i u i

T
i i i y i w i y u i

T
i

i

i

P A B K P B K B P C D K
Q Q A LC Q B LD D K

I
I D

I

for U i q

ζ ζ

ζ

ζ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

υ
γ ρ

γ

ρ

 ∗ + + − +
 ∗ ∗ + + + −  < −
 ∗ ∗ −
 

∗ ∗ ∗ −  

∈ =

 (24) 

Then there exist intervals 

, such that the observer based gain-scheduled 
controller (25) Stabilizes the plant  defined 
in (3) at any fixed point  and 

. Furthermore, the linear parameter varying 
system (27) is exponentially stable if  
satisfies (28).     

ˆ ˆ( ) ( ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( )( ):
( ) ( ) ( )

u yx t A B K L C x t L y tC
u t K x t

ρ ρ ρ ρ ρ ρ
ρ

ρ
= + + −
=

&
 

 
Where  

1 1

1 1 1 1

1 1

1 1

[ , ) [ , )
( ) ( ) ( ) [ , ] , ( ) ( ) ( ) [ , ]

( , ] ( , ]

( )

( ) 1, ..., 1

(

i i i i i i

i i i i i i

i i i i i i

i i
i i i i i

i i i i

i i
i i i i i

i i i i

K b L b
K K P b c L Q L b c

K c L c

c bK K P K P
c b c b
c bL Q L Q L i q
c b c b

P

ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ
ρ

ρ ρ
ρ

− −

+ + + +

+ +

+ +

∈ ∈ 
 = ∈ = ∈ 
 ∈ ∈ 

− −
= +

− −

− −
= + = −

− −

1

1 1

1

1 1

[ , )

) [ , ]

( , ]

[ , )

( ) [ , ]

( , ]

i i i

i i
i i i i

i i i i

i i i

i i i

i i
i i i i

i i i i

i i i

P b
c bP P b c
c b c b
P c

Q b
c bQ Q Q b c
c b c b
Q c

ρ ρ
ρ ρ

ρ ρ

ρ ρ

ρ ρ
ρ ρ

ρ ρ

ρ ρ

+

+ +

+

+ +

 ∈


− −= + ∈
− −

 ∈

 ∈


− −= + ∈ − −
 ∈

 

(26) 

 
( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ( )( )
u

y u y

x t A B K x t
L C A B K L C x tx t

ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ

     
=     − + +    

&

&
 (27) 

1,..., 1
1

( ) min 0i i

i q
i i

c b
t t

Q Q
ρ

= −
+

−
< ≥

−
&  (28) 

 
Proof 
Since stability-performance covering condition is 
satisfied, there exist intervals 

 

A. For [ , ) , 1,..., 1i i ib U i qρ ρ∈ ⊂ = −  using 

Lemma 1 and (24) yield ( )iC ρ stabilize 

( )G ρ  and ( )
iC iG ρ γ

∞
≤ .  

B. For 1 1( , ] , 1,..., 1i i ic U i qρ ρ + +∈ ⊂ = −  using 

Lemma 1 and (24) yield ( )iC ρ stabilize 

( )G ρ  and 
1 1( )

iC iG ρ γ
+ +∞

≤ .  
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C. For 1[ , ] ,i i i ib c U Uρ +∈ ⊂ , 1,..., 1i q= −  we 
define (24) as follows: 

 

  
 

...

( ) ( ( ) ( ) ) ( ) ( ) ( ( ) ( ) )
( ) ( ( ) ( )) ( ( ) ( )) ( ( ) )

0
( )

[ , ] , , 1 1,..., 1

j

T
j u j j u j w j u j

T
j j j y j w j y u j

T
j

j

j j

S

P A B K P B K B P C D K
Q Q A L C Q B L D D K

I D
I

for b c j i i i q

ζ ζ

ζ

ζ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

γ ρ
γ

ρ

=

 ∗ + + − +
 ∗ ∗ + + + −  < ∗ ∗ −
 

∗ ∗ ∗ −  

∈ = + = −

 

(29) 

( )µ ρ is defined as follows: 
  

( ) : i

i i

c
c b

ρ
µ ρ

−
=

−
 (30) 

Evaluating 1(1 )i iS Sµ µ ++ −  for fixed 
, 0 ( ) 1µ µ ρ≤ ≤ yields after some computations, 

( ) ( ( ) ( ) ) ( ) ( ) ( ( ) ( ) )
( ) ( ( ) ( )) ( ( ) ( )) ( ( ) )

( )

[ , ] , 1, ..., 1

i

i

T
u u w u

T
y w y u

T

i i

P A B K P B K B P C D K
Q Q A LC Q B LD D K

II D
I

b c i q

ζ ζ

ζ

µ ζ

µ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

υ
γ ρ

γ

ρ

 ∗ + + − +
 ∗ ∗ + + + −  < − ∗ ∗ −
 

∗ ∗ ∗ −  

∈ = −

 (31) 

Where 
1 1

1 1

1 1

1

1

( ) ( ) ( ) , ( ) ( ) ( )

( )

( ) [ , ] , 1,..., 1

( )

( )

(1
i

i i

i i
i i i i i

i i i i

i i
i i i i i i i

i i i i

i i
i i

i i i i

i i
i i

i i i i

i

K K P L Q L

c bK K P K P
c b c b
c bL Q L Q L b c i q
c b c b

c bP P P
c b c b
c bQ Q Q
c b c b

µ

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ

ρ ρ
ρ ρ

ρ ρ
ρ

ρ ρ
ρ

γ µγ µ

− −

+ +

+ +

+

+

= =

− −
= +

− −

− −
= + ∈ = −

− −

− −
= +

− −
− −

= +
− −

= + − 1) iγ +

 

(32) 

So for [ , ] , 1,..., 1i ib c i qρ ∈ = − the observer based 
controller C( )ρ  stabilize ( )G ρ  and 

( )
i iCG µρ γ

∞
≤ . It is clear that 

1max( , )
i i iµγ γ γ +≤ .  

Since 
1

q

i
i

U
=

Γ ⊆U  and according to results of A, B 

and C  yield, 

1( ) max( ,..., )C qG forρ γ γ ρ
∞

≤ ∈Γ  (33) 

Proof for locally exponential stability of 
parameter varying system (27) is similar to that 
presented in [19]. By defining a change of 
coordinates 

1 1

2 2

0z x I
z T T

z x I I
ε     

= = =     −    
 

With ε  a real constant, exponential stability of 
(27) is implied by exponential stability of (35). 

1 1

2 2

( ) ( ) ( ) ( ) ( )( ) ( )
0 ( ) ( ) ( )( ) ( )
u u

y

A B K B Kz t z t
A L Cz t z t

ρ ρ ρ ε ρ ρ
ρ ρ ρ

+ −    
=     +    

&

&
 

 
For given ( )tρ , The Lyapunov function (36)  is 
choosen. 

1
1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( ( )) ( ( ))T TV z t V z t V z t z P t z z Q t zρ ρ−= + = +  

Where symmetric positive-definite 
matrices ( )P ρ and ( )Q ρ  are from (26). For 

1, 2,i =  there exist 1 2 3, , 0i i iδ δ δ > such that  

2 2 2
1 2 3( , ) , ( , )i i i i i i i i i

dz V z t z V z t z
dt

δ δ δ≤ ≤ ≤ −  

and 

{ } { }2 2
11 12 21 22min , ( , ) 2 max ,z V z t zδ δ δ δ≤ ≤  

Forε  sufficiently small and 
{ }3 31 320 min ,δ δ δ< < , 

1 1

2
3

1

( ) ( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( ) ( )

K u
T

T T
u L

dA P P B K
d dtV z t z z z

ddt K B P A Q
dt

ρ ρ ε ρ ρ ρ
δ

ε ρ ρ ρ ρ ρ

− −

−

 + − 
= ≤ − 

 − +  

                             
(39) 

Where  
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1 1( ) ( ( ) ( ) ( )) ( ) ( )( ( ) ( ) ( ))

( ) ( ( ) ( ) ( )) Q( ) Q( )( ( ) ( ) ( ))

T
K u u

T
L y y

A A B K P P A B K
A A L C A L C

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

− −= + + +

= + + +
 (40) 

By using Lemma 4.2.8 in [20], (27) is 
exponentially stable if (t)ρ satisfies (41), 

1,..., 1 1,..., 1
1 1

( ) min min , min 0i i i i

i q i q
i i i i

c b c b
t t

P P Q Q
ρ

= − = −
+ +

 − − < ≥ 
− −  

& . (41) 

Since, it is assumed 1i iP P+ =  then 

1,..., 1
1

( ) min i i

i q
i i

c b
t

Q Q
ρ

= −
+

−
<

−
& is sufficient to 

guarantee exponential stability of (27). 
 
4. EXAMPLE 

To illustrate the procedure of the 
interpolation technique, design of a gain 
scheduled autopilot for a pitch-axis air 
vehicle model is considered. Nonlinear 
model, performance and robust stability 
requirements are founded in [9], the 
model is valid for  and 

. The nonlinear 
system is converted to the parameter 
variable form. Plant equilibrium families 

are parameterized by the 
Mach ).Then the 
appropriate operating points are 
determined using the algorithm proposed 
in [9]. The robust linear control by  
loop shaping method is designed in such a 
way that the design criteria, including step 
tracking, maximum of overshoot, settling 
time, etc. are met, and the loop shaped 
system has a robust stability margin of 

 in each operating 
point. Then the designed robust 
controllers are implemented in observer-
based structure. The characteristics of the 
step response are listed in 

Table 1. It is clear that the designed robust 
controller has truly fulfilled the expected 
performance characteristics in every 
operating point. The characteristics related 

to the robust stability margin in the 
specified operating points are given in  

Table 2. 

Table 1. The characteristics of the step response in each designing point 

Operating 
Point 

 
[ ,M] 

Rise 
Time 
(90%) 

Settling 
Time 
(2%) 

Over 
Shoot 

Under 
Shoot 

P1 
 

0.43s    
P2 

 

 

   
P3 

 

 

   
P4 

  
   

 

Table 2. The characteristics related to the robust stability margin in each designing point 

 
Operatin

g 
Point 

 
[ ,M] 

Robust 
Stability 

Margin  

Performanc
e Level 

 

 
GM(dB) 

 
PM(deg) 

P1 
 

0.564 1.77   
P2 

 

0.578 1.73   

P3 
 

0.554 1.81   

P4 
 

0.551 1.81   
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A study on the stability-performance covering 
conditions 
By applying some theorems about the v-gap 
metric in [21], it will be shown that the designed 
local controllers will satisfy the stability-
performance conditions. From Figure 2 it is 
evident in the whole workspace, we 
have . In other words, in 

the entire workspace  is less than 
, so from [21] the designed controllers in 

the operating points of  guarantee the  

stability of closed loop system for any fixed 
operation point in the entire workspace. The 
lower limit of the robust stability margin that the 
designed controllers in the points of  
can make for their neighborhoods are illustrated 
in Figure 2.Regarding this figure, one can obtain 

 as well as ,  
It is evident from the  
 

1 1,C 1
0 (deg) 20

max ( , )
P PG v PG G

α
ε δ ∆

< <
−

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0.26

0.28

0.3

0.32

0.34

0.36

Mach         
(P1) 

2 2,C 2
0 (deg) 20

max ( , )
P PG v PG G

α
ε δ ∆

< <
−

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0.31

0.32

0.33

0.34

0.35

0.36

0.37

Mach        
(P2) 

3 3,C 3
0 (deg) 20

max ( , )
P PG v PG G

α
ε δ ∆

< <
−

2.1 2.2 2.3 2.4 2.5 2.6 2.7

0.29

0.295

0.3

0.305

0.31

0.315

Mach      
(P3) 

2.5 2.6 2.7 2.8 2.9 3
0.275

0.28

0.285

0.29

Mach

3 3,C 3
0 (deg) 20

max ( , )
P PG v PG G

α
ε δ ∆

< <
−

      
(P4) 

Figure 2. The lower limit of the robust stability margin that the designed controllers in the points of  
can make for their neighborhoods 
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Table 3 that  
( ). Thus the local 

controllers meet the stability-performance 
covering conditions, 

Figure 3). 
Regarding the method of interpolation between 
the controllers, it is required that the overlapping 
regions of s be determined, and the 
interpolation been carried out inside these 
overlapping regions. In the following, the 
overlapping regions of s between every two 
nominal operating points are given. 

[ ]

[ ]
[ ]
[ ]

1

1 2

2 3

3 4

1, 2,3

1.6 1.8

2.1 2.2

2.7 2.8

i i i ib c U U i

U U

U U

U U

+⊂ =

=

=

=

I

I

I

I

 

 

 
Table 3. Interval , lower limit of robust stability margin and performance level in the neighborhoods of each designing point 

 ( ). 

 

Ui 

Lower limit of robust 

stability margin 

 

Performance 

Level  

)( 

   

   

   

   

 
For non-common areas the local controller 
structure, and for common areas of stability- 
 

 
performance, i.e.  the method of 
interpolation stated in Theorem 1 is used. 
The common areas are shown in 

                               Table 4. 

                               Table 4. The overlapping regions of s between every two nominal operating points 

i 
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1 1.5P = 2 1.95P =
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1
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∈
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ρ
∞
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∈

 
Figure 3. The local controllers ) meet the stability-performance covering conditions 

Nonlinear simulation 
After designing the controllers in the operating 
points and presenting the method of interpolation 
between the controllers, it is time to simulate the 
nonlinear behavior of the designed autopilot. As 
can be seen in Figure 4, in the nonlinear 
simulation the air vehicle tracks the acceleration 
commands with a settling time less than 1 second, 
almost zero steady state error and less than 10% 
overshoot. Figure 6 shows the changes in the 
angle of attack of the flight vehicle in this 
scenario, which has covered almost the entire 
workspace of the object, i.e. -20° to 20°. It is 
worth noting that the mathematical model of the 
air vehicle is itself a function of Mach and angle 
of attack. But in this autopilot, only the Mach was 
selected as the scheduling variable, which means 
that the changes of the angle of attack does not 
affect the controller gains. However, proper 
selection of the operating points in the controller 
design as well as utilizing the method of  loop 
shaping in designing the controller so that in each 
Mach the system remains robust against the 
changes in the angle of attack, resulted in the fact 
that by choosing only one scheduling variable, all 
the desired design characteristics (stability and 
performance) are met. In addition using this new 

method of interpolation guarantees the preserving 
of a criterion of the system’s performance during 
interpolation as well as its stability. 

The mathematical model of the flying object is 
practically derived through some tests in the wind 
tunnel and calculating its aerodynamic 
coefficients. Therefore there exist some 
uncertainties in the mathematical model of the 
flying object, especially in the aerodynamic 
coefficients of its torque. In the studied air 
vehicle, there exists about 25% uncertainty 
around the nominal values in the aerodynamic 
coefficients. The response of the flight vehicle to 
independent changes of these coefficients are 
shown in Figure 8. As can be seen, the designed 
autopilot has properly maintained its stability and 
performance against the parametric uncertainties. 
Wind is often one of the disturbances that affect 
air vehicles. This disturbance is “output 
disturbance” and directly affects the angle of 
attack of the flight vehicles. The wind disturbance 
has been modeled in the form of a step with 5° 
amplitude, and is applied in sec. 3. Figure 9 
shows the effect of this disturbance on the 
response of the flying object. As can be seen the 
effect of this disturbance has rejected in less than 
1 second. 
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Figure 4. Acceleration commands and air vehicle esponse. 
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Figure 6. Air vehicle states 
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Figure 7. Fin deflection and its derivative. 
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Figure 8. Parametric robustness of the controller. 
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Figure 9. Acceleration commands and air vehicle response 

in presence of wind disturbance 
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5. CONCLUSION 
This paper presented a methodology for 
interpolation of linear time-invariant controllers 
with observer-based form. These controllers are 
designed for different operating points of a 
nonlinear system, then, interpolated in such a way 
that produce a gain-scheduled controller with 
stability and performance guarantees at 
intermediate interpolation points. In addition, 
conditions are presented that establish local 
stability of the nonlinear closed-loop system. As 
mentioned in the introduction, observer-based 
structure of controllers does not impose any 
strong restrictions because some practical 
techniques for determining the observer-based 
controller form for any compensator with 
arbitrary order have been investigated. A well-
appreciated advantage of this structure is 
implementation viewpoint. The method was 
successfully applied on the control of a well-
known benchmark system, namely, the pitch-axis 
model of an air vehicle. 
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