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Abstract 
This paper presents a gain scheduled autopilot for 
pitch channel of a flying vehicle. The selected 
method is based on polynomial fuzzy systems. The 
method does not involve linearization about 
operating point. First the polynomial fuzzy model 
of pitch channel of the flight body is derived. Next, 
using polynomial fuzzy system methodology the 
controller is design such that the outputs of the 
nonlinear plant drive to follow those of a stable 
reference model. Because of avoiding actuator 
saturation, some constraints derived that 
guarantees the amplitude of control signals be less 
than a specific threshold. It is considered that the 
controller has a known structure like three-loop 
autopilot. In other words the three-loop fuzzy 
polynomial autopilot is design to satisfy stability 
and performance of the closed loop system over a 
wide range of parameter variation. Stability and 
performance conditions derived in terms of sum of 
square will solve numerically via SOSTOOLS. 
 
Keywords: Gain scheduling; pitch channel; three-
loop autopilot; Sum of squares; fuzzy polynomial 
modeling 
 
Introduction  
Flying vehicle autopilot design is an interesting 
problem for the researchers. It has a challenging nature 
duo to the fact that the closed loop stability and 
performance has to be satisfied over a wide range of 
flight conditions. Gain-scheduling techniques have 
been used extensively for the design of flying vehicle 
autopilot [1-3]. Classical gain scheduling is typically 
based on designing a set of linear controllers for a set 
of flight operating point [4, 5]  . An interpolation 
method forms the entire controller according to the 
scheduling variables. In the modern methodologies 
such as linear parameter varying (LPV) framework the 
control problem are formulated as linear matrix 
inequalities (LMI) optimization problems which are 
then solved using semi-definite programming [6]. 
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Fuzzy model based (FMB) control [7] presents a 
systematic method for control of nonlinear systems. 
One of the important types of the fuzzy systems used 
in FMB control approach is Takagi and Sugeno (T-S) 
fuzzy model [8]. Designing controller based on T-S 
fuzzy model was proposed in [9-11]. Model based 
fuzzy control can be seen as a form of gain-scheduling 
and have received some attention during the last years 
[10]. Designing fuzzy gain scheduled autopilot based 
on T-S fuzzy model of the flying vehicles that satisfies 
zero steady state error in the presence of disturbances 
and modeling errors was proposed in [12, 13]. Some 
robust control methodologies such as H  control has 
been used to design gain scheduled controller [14] 
based on fuzzy model of flying vehicles.  

Recently an extended class of T-S fuzzy systems 
known as polynomial fuzzy systems [15] has been 
developed. A polynomial fuzzy system is such as the 
T-S fuzzy system with this difference that in the 
consequent part of the fuzzy rules presence of 
polynomials on system and input matrices is accepted.  

Also designing controller based on T-S fuzzy 
systems is parameterized in terms of a linear matrix 
inequality; polynomial fuzzy system approach leads to 
a sum of square problem. Sum of square formulation 
has been introduced as generalization of linear matrix 
inequalities [16] and has many applications in systems 
analysis and design [17].  

Polynomial fuzzy model based control (PFMB) 
systems [15] and [18] is an extension of the fuzzy 
model based control systems. Researchers’ attentions 
on polynomial fuzzy model based control have divided 
in two categories; stabilization and performance. 
Compared to the stabilization control problem[19, 20], 
there are a few works addressed the tracking control 
problem that a controller is employed to drive the 
system states of the nonlinear plant to follow a stable 
reference model [21]. 

In this paper we tailor the method proposed in [21] 
to design controller based on three-loop structure. 
Whereas the three-loop controller is a dynamical 
control structure the method presented in [21] cannot 
use directly. Moreover in [21] authors does not 
consider limitation on amplitude of control signals. 
Three-loop controller structure [22] is one of the most 
famous classical structures to implement controller for 
flying vehicles. The problem is to control the pitch-axis 
of flying vehicle to track reference normal acceleration 
Numerical value of controller gains will calculate using 
third-party MATLAB toolbox SOSTOOLS.  

The paper is organized as follows. In Section 2, 
preliminaries, polynomial fuzzy model and polynomial 
fuzzy controller are introduced. In Section 3, 
Polynomial Fuzzy Modeling of the Flight Vehicle is 
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described. Controller design and numerical simulations 
are done in Section 4. In Section 5 a brief mention to 
the fuzzy gain scheduling design based on TS fuzzy 
model has done. Finally, conclusion is presented in 
Section 6. 

 
2. Preliminaries 
Definition 2.1 [16]: A multivariate polynomial  ( ),  ∈ ℝ , is a sum of squares if there exist 
polynomials   ( ),  = 1, . . . ,   such that   ( ) =     ( ) 

    (1) 

If a decomposition of  ( ) in the form of (1) can be 
obtained, it is clear that   ( ) ≥ 0 for all  ∈ ℝ . The 
problem of finding the right hand side of Eq. (1) can be 
formulated in terms of the existence of a positive semi-
definite matrix   such that the following proposition 
holds: 

Proposition 2.1 [16]: Let  ( ) is a polynomial in  ∈ ℝ  of degree 2 . Let  ( ) is a column vector 
whose entries are all monomials in x with degree 
smaller than  . A monomial in  ( ) is a function of the 
form         …     , where   ,   , … ,   , are 
nonnegative integers. Therefore,  ( ) is said to be an 
SOS if and only if there exists a positive semi definite 
matrix   such that 

(2)  ( ) =   ( )  ( ) 
 

2.1 Polynomial Fuzzy Model 
Consider a fuzzy system with p rules that its i-th rule 

defined as [15]:  

(3
)  

IF   ( ( )) is     AND …  AND    ( ( )) is     THEN  ̇( ) =   ( ( ))  ( ( )) +   ( ( )) ( )  ( ) =      ( )  
where     for  = 1,2, … ,  are the fuzzy terms 

corresponding to the function   ( ( ));  ( ) ∈ ℝ  
denotes the system state vector;  ( ) ∈ ℝ  denotes the 
output vector;   ( ( )) ∈ ℝ × ,   ( ( )) ∈ ℝ ×  
and  ∈ ℝ ×  are the known polynomial system, input 
and output matrices, respectively. In (3)   ( ( )) ∈ ℝ  
denotes the vector of monomials in  ( ) and  ( ) ∈ℝ  denotes the input vector. It is assumed that   ( ( )) = 0 if and only if 
  ( ) = 0.  

The system dynamics and output of the fuzzy 
system is inferred as: 

(4)  
 ̇( ) =    ( ( )) 

   (    ( )     ( ) +     ( )  ( ))  ( ) =      ( )  
where 

(5)  

  ( ( )) = ∏          (  ( ( )))∑ ∏         (  ( ( )))     

   ( ( ) 
   ) = 1 ,  ( ( )) ≥ 1     ∀   

where     (  ( ( ))) is the membership function 
corresponding to the fuzzy term    . 

Remark 1: The traditional T-S fuzzy model is a 
special case of the system (4) if   ( ( )) and   ( ( )) 
are constant matrices for all   and   ( ( )) =  ( ). 

 
2.2 Polynomial Fuzzy Controller 

Consider a stable reference model as: 

(6)   ̇ ( ) =      (  ( )) +    ( )   ( ) =     (  ( )) 
where   ( ) ∈ ℝ  is the state vector of the 

reference model,    (  ( )) ∈ ℝ  is a vector of 
monomials in   ( ),   ∈ ℝ ×  and   ∈ ℝ × ,  are 
the system and input matrices, respectively. In (6),  ( ) ∈ ℝ  is the reference input vector and   ( ) ∈ℝ  is the output vector of the reference model. 

Consider the state tracking error as: 
(7)   ̂( ) =   ( ( )) −    (  ( )) 

Therefore the output error can be defined as:  
(8)    ( ) =  ( ) −   ( ) =   ̂( ) 

The output feedback polynomial fuzzy controller is 
defined as 

(9)   ( ) =    ( ( )) 
     (ℎ( ))  ( )+   (ℎ( ))  ( ) 

where ℎ( ) = ( ( ),   ( )). In (9),   (ℎ( )) ∈ ℝ ×  
and   (ℎ( )) ∈ ℝ ×  are the polynomial feedback 
gains to be determined. Define   (  ) ∈ ℝ ×   

 (10)   (  ) =  (  ) =          (  ) > 0 

where   = [   ,   , … ,    ,    ,    , … ,     ]  and  =[  ,   , … ,   ] denotes the row indices that the entries of 
the entire row of   ( ) for all i are zeros. Similarly,  = [  ,   , … ,   ] denotes the row indices that the 
entries of the entire row of   (  ) are all zeros. 

The polynomial feedback gains are defined as: 

(11)  

  (ℎ)= [  (ℎ) 0]   =   (ℎ)        (ℎ) = [  (ℎ) 0]   =   (ℎ)      
where   (ℎ) ∈ ℝ ×  and   (ℎ)  ∈ ℝ × .  

Theorem 1: The output-feedback polynomial fuzzy 
controller (9) is able to drive the system states of the 
system (4) to follow those of the stable reference model 
(6) if there exists pre-defined SOS scalar polynomial 
functions   (  ) and   ( ,   , ) and decision 
polynomial matrices  (  ) =  (  ) ∈ ℝ ×  in the 
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form of  (10), feedback gains   (ℎ) ∈ ℝ ×  and   (ℎ)  ∈ ℝ × ,  = 1,2, … ,  such that      (  ) −   (  )      is    SOS −            Ξ   
   

 
   ( ,   )+   ( ,   , ))    is    SOS 

where 

(12
)  

Ξ   ( ,   )
= ⎣⎢⎢⎢
⎡Φ  ( )( ,   ) + Φ  ( )( ,   ) +  ∗  

Φ  ( )( ,   ) 
Φ  ( )( ,   ) −    0 −

and ω =  ω   ,ω   , … ,ω    ,  ∈ ℝ     and ,  ∈ℝ  are arbitrary vectors independent of   and   . In 
(12)    and    are pre-defined scalars to be determined 
and 
Φ  ( )( ,   ) = Γ     ( )Γ (  )+ Γ-1   ( )   (ℎ)     
Φ  ( )( ,   ) =  Γ      ( ) −     Γ (  )+  Γ     ( )   (ℎ)    , 
Φ  ( )( ,   ) =  Γ      

where Γ ∈ ℝ ×  and 
(13)  Γ = [  (   )           (  )] 

Proof: see [21]. ■ 
Using Corollary 1 can reduce the computational 

demand to find a feasible solution that satisfies the 
conditions of Theorem 1.  

Corollary 1: [21] The output-feedback polynomial 
fuzzy controller (11) can drive the system states of the 
nonlinear plant in the form of (4) to follow those of the 
stable reference model (6) if there exists pre-defined 
SOS scalar polynomial functions   (  ) and   ( ,   , ) and decision variables, i.e., polynomial 
matrices  (  ) =  (  ) ∈ ℝ ×  in the form of  (10)   (ℎ) ∈ ℝ × ,   (ℎ)  ∈ ℝ × ,  = 1,2, … ,  such that      (  ) −   (  )         is  SOS −   Ξ  ( ,  ) + Ξ  ( ,   )+   ( ,   , )     is  SOS 

where  ∈ ℝ     and  ∈ ℝ  are arbitrary vectors 
independent of   and   . 

2.3 Constraint on control input and plant 
output magnitudes 

In many applications, control signal magnitude 
saturation is one of the main sources of performance 
limitation. On the other hands, during transient 
response the system output has not to take any values 
duo to the sensor saturation. Therefore one has to 

considered the plant input and output magnitudes 
limitation in controller synthesis.  

Assume that   ( ) =   ( )  (  ) ( )  is Lyapunov 
function and 

(14
)   (0)  (0) < 1 

Using Schur complement we can write (14) as: 
(15

)  1   (0) (0)  (  )  > 0 

where  =    . The constraint on the control input 
defined as: 

(16
) ‖ ( )‖ ≤   

From (9) and (16): 

(17) 

 ( )  ( )=     ( )  ( )      (ℎ)   (ℎ)   
   

 
   +      (ℎ)   (ℎ)  +      (ℎ)   (ℎ)  +      (ℎ)   (ℎ)   ≤    

Therefore, 

(18) 

1      ( )  ( ) 
   

 
    

[      ]    (ℎ)   (ℎ)   (ℎ)   (ℎ)  (ℎ)   (ℎ)   (ℎ)   (ℎ)       ≤ 1 
Eq. (18) can be written as: 

(19) 

 1      ( )  ( ) 
   

 
    

[      ]    (ℎ)   (ℎ)  [  (ℎ)   (ℎ)]       ≤ 1 
Defining   =  [  (ℎ)   (ℎ)] and since   ( )   (  ) ( ) <   (0)   (  ) (0) ≤ 1 for  ≥ 0, 

if  

(20) 
1      ( )  ( ) 

   
 

   [      ]           ≤   ( )   (  ) ( ) 
then (19) holds. In (20)      Defined as     =    (x ) 00 0 . It can be seen from (20) that  

(21)  
    ( )( )  ( ) 

   
 

    
[      ]( 1       −     )       ≤ 0 

From the left hand side of the last equation: 

(22)  12    ( )  ( )   
22
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         1       + 1       − 2           = 12    ( )  ( ) 
   

 
            1  (     +      )

− 1   (   −        −    − 2          ( ) ≤ 12    ( )  ( ) 
   

 
                (     +      ) − 2          ( ) = 

   ( ) 
   [      ]  1       −           ( )  

It can be seen from the last equation If 

 (23) ( 1       −     (x )) ≤ 0 

then (21) holds. Multiplying both side of (23) by   (x ) gives 

(24) ( 1     (x )       (x ) −   (x )) ≤ 0 

Substituting   =  [  (ℎ)   (ℎ)] in to (24) and 
applying Schur complement to the consequence 
results:  

(25
)   (x ) 0    0 0            ≥0 

Theorem 2: Assume that the initial condition  (0) 
is known. The constraint ‖ ( )‖ ≤   is enforced at all 
times  ≥ 0, if  

(26)  1   (0) (0)  (x )  ≥ 0 

(27)   (x ) 0    0 0            ≥ 0    for   = 1,2, … ,   
hold, where  =    ,   =      and   =    . 
Theorem 3: Assume that the initial condition  (0) 

is known. The constraint ‖ ( )‖ ≤   is enforced at all 
times  ≥ 0, if  

(28
)  1   (0) (0)  (x )  ≥ 0 

(29
)   (  )          > 0   

Proof: The proof is the same procedure as in 
Theorem 2. ■ 

 
3. Polynomial Fuzzy Modeling of the Flight Vehicle 

Consider the longitudinal dynamics of the airframe 
shown in Figure 1 around its center of mass as [23]:  

(30
) 

 ̇( )=    ( )  [ ( ),  ( ), ( )] cos( ( ))+  ( )  ̇( ) =     ( )  [ ( ),  ( ), ( )] 
where α denotes the angle of attack, q denotes the 

pitch rate, δ denotes the deflection angle, M denotes 

velocity in terms of the Mach number. The command 
input in system (30) is the elevator defection angle and 
the output is the vertical acceleration that can be given 
by 

(31)  ( ) =       [ ( ),  ( ), ( )] 

 
Figure 1. Flying vehicle pitch view 

 
In (30) and (31)    and    are aerodynamic 

coefficients that are given by 
(32)    [ ,  , ] =    [ , ] +    ∗   
(33)    [ ,  , ] =    [ , ] +    ∗   

(34) 
   [ , ] = (180 )     + (180 )   | |+ 180    2 − 3   

(35) 

   [ , ] = (180 )     + (180 )   | |+ 180    −7 + 8 3   

(36)     = 180       ,   = 180        
It is noted that   ,    and    are altitude dependent 

variables that it is assumed are constant.  The numerical 
values of parameters in (32)-(36) are presented in 
Appendix A. The nonlinear model (30) is valid for −20 <  < +20 and 1.5 <  < 3. The performance 
goals for the closed-loop system are as: 

• Maintain stability over the operating range 
specified by ( ( ), ( )) 

• Tracking reference model in  ( )  with   
constant and variable, and time constant no 

23

 [
 D

ow
nl

oa
de

d 
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n 
20

24
-0

5-
19

 ]
 

                             4 / 12

https://mjee.modares.ac.ir/article-17-4119-en.html


DADASHI ARANI AND MOAREFIANPOUR: DESIGNING FUZZY POLYNOMIAL GAIN SCHEDULED THREE-LOOP … 

25 

greater than 0.7s, maximum overshoot no greater 
than 10%, and settling time is 1s. 

• Maximum tail deflection rate for a 1g step 
command in  ( ) should not exceed 25 deg/s. 

According to equation (30) and the state vector is  = [  ] ,    ( ) =    and   ( ) =  , the 
polynomial matrix of the system can be written as: 

(37) 
  =        cos( ) 1       0    =        cos( )         

For the simplicity, one can replace non-polynomial 
term | | with: 

(38)    = 2.0863  + 0.10922 
The fuzzy form of the system could be written using 

sector nonlinearity [24]. It is considered premise 
variables of fuzzy controller rules as   ( ) =   and   ( ) = cos( ). It can be seen that   ( ) ∈ [1.5 3] 
and   ( ) ∈ [0.94 1]. Based on sector nonlinearity 
the i’th rule of fuzzy model of system (30) can be 
written as: 

(39)  IF    is      AND    is      THEN    ̇( ) =   ( ( ))  ( ( )) +   ( ( )) ( ) 
The membership function of fuzzy sets     for i =j = 2 can be written as: 

(40) 

    (  ) =   ( ) −           −      =  − 1.53 − 1.5  

    (  ) =      −    ( )     −      = 3 − 3 − 1.5     (  ) =   ( ) −           −      = cos(α) − 0.93961 − 0.9396      (  ) =      −   ( )     −      = 1 − cos( )1 − 0.9396 

and 

(41)  

  =           |    cos( )   1          |    0    =           cos( )                 =            |      0 ;   =              =           |    cos( )   1          |    0    =           cos( )                 =   ;  =      =           |    cos( )   1          |    0    =           cos( )                 =            |      0    =                =           |    cos( )   1          |    0    =           cos( )                 =   ;  =    
 
4. Controller Design 

The structure intended for the controller is shown in 
Figure 2. This configuration is known as the three-loop 
controller [22]. According to Figure 2, we encounter 
dynamic feedback controller design problem; whereas 
the design procedure described in Section 2.2 has 
developed to design the static output feedback 
controller. To overcome this difficulty we split the 
controller to the two parts; the controller gains and the 
controller structure. The fixed parts of the controller 
and the sensor block are augmented to the plant model. 
It can be seen that the resulting augmented systems has 
3 inputs and 2 outputs. 

 
Figure 2. Closed loop diagram of the pitch channel  

Assume that the sensor block shown in Figure 2 has 
the following dynamical model 

(42)    ̇ =     +      =     +      =[   ],   = [  ],  
24
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where    is the state vector,   is the physical output of 
the plant and    is the output of the sensor block. 

We assume the state space models of the sensor 
block as: 

(43) 

  =  −600 00 0    =  600 00 1    =  1 00 1    =  0 00 0  
Similarly, the controller block shown in Figure 2 

can be written as: 

(44) 

   ̇ =     +      =     +      = [      ]     =0 
   = [−1 1 0]   =1   = [0 0 1] 

where    is the state of the controller and   =   is the 
control signal. Using (39), (41) and (42), (44) the 
augmented system matrices can be driven as: 

 
(45) 

 =            ×      , =           ,  = [        ]  , =       
where 

(46) 

   =      ×          ,   =          ,    =        [  × 1]   ×    ,   =        ×   
Using (13),  Γ calculates as: 

(47) Γ =  0 0 −1 00 1 0 01 0 0 00 0 0 0   
On the other hands a stable reference model in the 

form of (6) can be chosen as a linear time invariant 
system with four states that its system and input 
matrices are: 

(48)  

  =  −600 −877 −877 −200000 −16.35 −16.35 −43.69−0.0960 −0.080.9698 0−0.03023 0−0.5574  =  0 0 00 0 000 0.0960 00  ,  
=  0 0 1 00 1 0 0 ,  = 0 

All the rows of the matrix   are non-zero but first, 
second and fourth rows of    are all zeros. So    in Eq. 
(10) chooses as   =     ,   ,,      .  (  ) chooses as a 
constant matrix and   (ℎ) and   (ℎ) for all j as 

polynomial matrices with degree of 2. Selecting   =25,   = 25,   = 0.001 and   = 0.001 and 
employing Corollary 1 to determine the controller 
gains leads to a feasible solution and the controller 
gains obtain as: 

(49) 
  =    (1,1) 00   (2,2)0   (3,2)      =   

for   = 1, … ,4 0.08984 F1(1,1)= 7.344. F1(2,2)= 3.724q  +  3.724  +  118.8 F1(3,2)= 0.2747 F2(1,1)= 21.6 F2(2,2)= 1.924   +  1.924   +  61.46 F2(3,2)= 0.2847 F3(1,1)= 22.6 F3(2,2)= 1.924   +  1.934   +  61.36 F3(3,2)= 0.2747 F4(1,1)= 20.6 F4(2,2)= 1.934   +  1.824   +  62.36 F4(3,2)= 
Using controller gains (49) it can be constructed 

controller based on (9). In consequence simulations are 
done for several flight conditions. Because in this paper 
the flight condition is relates to the Mach, we select  ∈ {1.5, 2.3,3}. 

Figure 3 to Figure 5 show the behavior of the closed 
loop system for Mach of 3. 

 
Figure 3. Output tracking for Mach 3 

 
 

0 5 10 15 20 25 30 35 40 45 50
-20

-10

0

10

20

30

A
cc

el
er

at
io

n(
g)

 

 

0 5 10 15 20 25 30 35 40 45 50
-40

-20

0

20

40

time(s)

P
itc

h 
R

at
e(

de
g/

s)

Y1(t)
Y1r(t)

25

 [
 D

ow
nl

oa
de

d 
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n 
20

24
-0

5-
19

 ]
 

                             6 / 12

https://mjee.modares.ac.ir/article-17-4119-en.html


DADASHI ARANI AND MOAREFIANPOUR: DESIGNING FUZZY POLYNOMIAL GAIN SCHEDULED THREE-LOOP … 

27 

 
Figure 4. Angle of attack response for Mach 3  

 
 

 
Figure 5. Control signal variations for Mach 3 

 
 

It can be seen from Figure 3 to Figure 5 that the 
system output of the fly vehicle is able to follow stable 
reference model.  

In Figure 6 to Figure 8 the results for Mach of 2.3 
have been shown. 

 
Figure 6. Output tracking for Mach 2.3 

 
 

 
Figure 7. Angle of attack response for Mach 2.3 

 
  

 
Figure 8. Control signal variations for Mach 2.3 

 
 

It can be seen from Figure 6 to Figure 8 that the 
tracking of the acceleration reference in the second 
operating condition is done very well.  

In Figure 9 to Figure 11 simulation results for Mach 
of 1.5 have been shown. 

 
Figure 9. Output tracking for Mach 1.5 
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Figure 10. Angle of attack response for Mach 1.5  

 
 

 
Figure 11. Control signal variations for Mach 1.5 

 
 

It can be seen from Figure 9 to Figure 11 that the 
system is stabilized via the SOS designed controller 
and follow stable reference model. 

In addition to the analysis of the closed loop system 
in frozen operating points, we consider a scenario that 
the velocity of the flying vehicle changes as in 

Figure 12. 
 

Figure 12. Dynamic speed (mach) 
 

 
Figure 13. Output tracking in variable operating point 
scenario 
 
 

 
Figure 14. Angle of attack response in variable operating 
point scenario. 
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Figure 15. Control signal variations in variable operating 
point scenario 
 

It can be seen from Figure 13 to Figure 15 that the 
stability and performance of the closed loop system 
remains acceptable. 

From the practical point of view, a closed loop 
system is encounter with the limitations of magnitude 
of control input. Therefore duo to avoidance of actuator 
saturation it is important to consider control signal 
amplitude limitations in controller design procedure.  

Whereas,   =  =   +    applying constraint on 
magnitude of control signal leads to applying input 
constraint on (  ) and output constraint on    
simultaneously. Therefore Theorem 2 and Theorem 3 
are employed to design the controller. For this purpose 
we choose  = 6 and  = 40. Simulation shown in 
Figure 16 and Figure 17 for variable operating point 
scenario implicates the effectiveness of the results of 
Theorem 2 and Theorem 3.  

 
Figure 16. Output tracking with constraint on control signal 

 
Figure 17. Constraint on control signal 

 
Figure 16 shows the response of the closed loop 

system. Although the performance of the closed loop 
system has no effective change, decrement in the 
magnitude of the control signal is seen obviously.  

 
5. Fuzzy gain scheduling based on TS model 
For comparison purposes, we construct a T-S fuzzy 
model to represent the nonlinear plant (30). Based on 
the sector nonlinearity concept, the T-S fuzzy model 
that exactly represents plant (30) derives as: 
 

(50)   ̇ =    ( )[   +    ] 
     

 
where  = [  cos    ] . It can be seen from (50) 
that T-S fuzzy model of the plant has 8 rules with the 
system and input matrices that are shown in Appendix 
B. The operating range of    ( ) =    is considered as   ( ) ∈ [0 400]. It can be seen that the fuzzy 
polynomial model based control approach 
demonstrates an enhanced feedback compensation 
capability with less number of rules. 
 
6. Conclusion 
In this paper a fuzzy gain scheduling autopilot designed 
for a flying vehicle. The design autopilot performed 
based on polynomial fuzzy system theory. From 
theoretical points of view, polynomial fuzzy method is 
less conservative than T-S fuzzy system. The used 
method guaranteed the stability and performance of the 
closed loop system over a wide range of operation. 
Some SOS conditions that applying constraint on the 
magnitude of control signal derived for the prescribed 
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control method. The method tailored for a famous 
classical autopilot structure known as three-loop 
autopilot. Using third-party MATLAB toolbox, 
SOSTOOLS, a feasible solution that satisfied the 
stability and performance have been obtained. 
Simulation confirmed the ability of controller to derive 
the system states to follow those of the stable reference 
model. 

 
 

Appendix A 
Table 1: details of pitch axis Flight vehicle model 

 (0.7)   /      = 

 (0.7)    /     = 

 (0.7)   /    = 

 (0.7)     /    = 

Static pressure at 
20000ft 

973.3    /      = 

Surface Area 0.44      = 

Mass 13.98        = 

Speed of sound at 
20000ft 

1036.4   /    = 

Diameter 0.75     = 

Pitch moment of 
inertia 

182.5     .       = 

Drag coefficient −0.3   = 

Actuator damping 
ratio 

0.7  =   = 0.000215       
0.000103      

   =   = −0.0195       
−0.00945      

   =   = 0.051       −0.1696      
   =   = −0.206       

−0.034      
   = 

 
 

 

 
Appendix B 

TS fuzzy model for flight vehicle: 

  =  −0.52 1 0 −0.05−43.69 0 0 −32.711.61 × 10 0 −600 1752.10 0 0 0      =  0 0 −5.680 0 −3271.50 0 1752.20−1 1 0    

  =  −0.55 1 0 −0.06−43.69 0 0 −32.711.61 × 10 0 −600 1752.10 0 0 0      =  0 0 −6.040 0 −3271.50 0 1752.20−1 1 0    

  =  −563.53 1 0 −0.06−1.03 × 10 0 0 −32.711.63 × 10 0 −600 1752.10 0 0 0      =  0 0 −6.040 0 −3271.50 0 1752.20−1 1 0    

  =  −529.49 1 0 −0.05−1.03 × 10 0 0 −32.711.63 × 10 0 −600 1752.10 0 0 0      =  0 0 −6.040 0 −3271.50 0 1752.20−1 1 0    
  =  −0.07 1 0 −0.01−45.17 0 0 −130.864.71 × 10 0 −600 7.00 × 10 0 0 0 0    

  =
 0 0 −11.360 0 −1.30 × 10 0 0 7.08 × 10 −1 1 0    
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  =  −0.081 1 0 −0.01−45.17 0 0 −130.864.71 × 10 0 −600 7.00 × 10 0 0 0 0    

  = 0 0 −12.090 0 −1.30 × 10 0 0 7.08 × 10 −1 1 0    

  =  −1126.8 1 0 −0.12−4.13 × 10 0 0 −130.866.53 × 10 0 −600 1752.10 0 0 0    

  =
 0 0 −12.090 0 −1.30 × 10 0 0 7.08 × 10 −1 1 0    

  =  −1058.7 1 0 −0.11−4.13 × 10 0 0 −130.866.53 × 10 0 −600 7.00 × 10 0 0 0 0    

  =
 0 0 −11.360 0 −1.30 × 10 0 0 7.08 × 10 −1 1 0    

  =  0 0 1 00 1 0 0 ,   = 0  
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