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Abstract:  
This paper addresses adaptive observer design 
problem for joint estimation of the states and 
unknown parameters for a class of nonlinear 
systems which satisfying one-sided Lipschitz and 
quadratic inner bounded conditions. It’s shown 
that the stability of the proposed observer is 
related to finding solutions to a quadratic 
inequality consists of state and parameter errors. 
A coordinate transformation is used to 
reformulate this inequality as a linear matrix 
inequality (LMI). Sufficient conditions that ensure 
the existence of adaptive observer are expressed in 
forms of LMIs, which are easily tractable via 
standard software algorithms. If the proposed 
conditions are satisfied, then the state estimation 
errors are guaranteed to converge to zero 
asymptotically while, the convergence of the 
parameters is guaranteed when a persistence of 
excitation condition is held. The effectiveness of 
the proposed method is shown by simulation for 
the joint estimation of states and parameters of a 
numerical system. 
 
Keywords: Adaptive observer; Nonlinear systems, 
Nonlinear observers; One-sided Lipschitz; Linear 
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1. Introduction 
The adaptive observer design problem for 
nonlinear systems has been an interesting subject 
for the last three decades. The adaptive observers 
can estimate the state variables despite of the 
unknown parameters in the system. In fact, 
adaptive observers perform the twin tasks of 
state estimation and parameter identification [1]; 
An approach to achieve this goal is assuming 
known parameters and taking some possible 
observer design for the system and try to find 
some appropriate adaptation law for the 
unknown parameters so as to keep the observer 
convergence in presence of those unknown 
parameters; this makes the observer a so-called 
“adaptive observer” [2]. 

The design of adaptive observer for an LTI 
system is well analyzed in [3]. In case of 

nonlinear systems, early results can be found in 
[4]-[7]; in which the nonlinear systems can be 
linearized with some change of coordinates and 
output injections. In [8] Based on existing results 
on adaptive observer designs, the author 
proposes a unifying adaptive observer form. 
Adaptive observers for a class of nonlinear 
systems satisfying a Lipschitz condition were 
first developed in [9] and [1], in these works 
there’s no need the considered nonlinear system 
to be linearizable. Inspired by [1], several 
authors extended adaptive observer design for 
Lipschitz systems [10], [11], [12]. In non-
adaptive cases where there is no unknown 
parameter in the system the observer design 
problem first introduced in [13] and then 
extended in several works like: [14]-[19] 
.However, The main shortcoming of all these 
works is that they can only stabilize the error 
dynamics for dynamical systems with small 
Lipschitz constant but, fail to provide a solution 
when the Lipschitz constant becomes large [20]. 
To overcome this shortcoming in observer 
design, in [21] the author used a new tool which 
it was first introduced in mathematical literature 
[22], this tool is known as “one-sided Lipschitz” 
condition, and has widely used in observer 
design problems [23]-[28]. 

The one-sided Lipschitz continuity covers a 
broad family of nonlinear systems which 
includes the well-known Lipschitz systems as a 
special case. Moreover, as previously mentioned, 
observer design techniques based on Lipschitz 
functions can guarantee stability only for small 
values of Lipschitz constant which directly 
translates into small stability regions. However, 
one-sided Lipschitz constant can be found to be 
significantly smaller than the classical Lipschitz 
constant. This makes the one-sided Lipschitz 
constant much more appropriate for estimating 
the influence of non-linear terms [22]. 

Althogh using one-sided Lipschitz condition 
in observer synthesis is reported in some 
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researches, but this condition has not been used 
in adaptive cases, which have some unknown 
parameters in the system. Therefore, in this 
paper our objective is to find a systematic 
approach in adaptive observer synthesis for 
nonlinear systems where nonlinearities satisfy a 
one-sided Lipschitz condition. Since our 
approach is LMI based, less conservative and 
most efficient results are developed, and these 
LMIs can be easily solved through standard 
numerical software packages like YALMIP [29]. 

The rest of the paper is organized as follows. 
Section 2 is devoted to preliminaries and basic 
concepts. In section 3, we present an adaptive 
nonlinear state observer for one-sided Lipchitz 
systems in the presence of unknown parameters. 
To verify the efficiency of the proposed 
approach, the simulation results are presented in 
the section 4. 

2. Preliminaries and basic concepts 

In this section, for better understanding the 
subject we gathered the mathematical 
Preliminaries. 
Definition 1: The non-linear function ,  is 
said to be locally Lipschitz in a region D 
including the origin with respect to x, uniformly 
in u, if there exist a constant 0 satisfying: 
 
‖ , , ‖ 	 	 ‖ ‖		  
	∀ , ∈   

(1)

 
where  is any admissible control signal. The 
smallest constant 0 satisfying (1) is known 
as Lipschitz constant. The region D is the 
operational region or the region of interest. If 
condition (1)is valid everywhere in , then the 
function is said to be globally Lipschitz. 
Definition 2: The non-linear function ,  is 
said to be one-sided Lipschitz if there exist 
∈  such that ∀ , ∈ : 

 
x, u φ x, u , x x 	

	γ ‖x x‖   
(2) 

  
where ∈  is called the one-sided Lipschitz 
constant. 
Similarly to Lipschitz property, the one-sided 
Lipschitz property might be local or global. Note 
that while the Lipschitz constant must be 
positive, the one-sided Lipschitz constant can be 
positive, zero or even negative. 

For any Lipschitz function φ ,  we have: 

| , , , |
‖ , , ‖‖ ‖ 
γ‖x x‖  

 

(3)

 

Therefore, any Lipschitz function is also one-
sided but converse is not true [20]. For 
continuously differentiable nonlinear functions it 
is well-known that the smallest possible constant 
satisfying (1) is the supremum of the norm of 
Jacobian of the function over the region D, that 
is: 

γ sup , ∀x ∈ D  (4) 

Alternatively, the one-sided Lipschitz 
constant is associated with the logarithmic 
matrix norm (matrix measure) of the Jacobian. 
The logarithmic matrix norm of a matrix A is 
defined as [22]: 

μ A lim →
‖ ‖

  (5) 

In (5) the symbol ‖. ‖ represents any matrix 
norm. Then, we have: 

γ sup , ∀x ∈ D   (6) 

If the norm used in (6) is indeed the induced 
2-norm (the spectral norm) then it can be shown 

that  [30]. On the other 

hand, from the Fan’s theorem we know that for 

any matrix, ‖ ‖ 

[31]. Therefore	 ; i.e. one-sided Lipschitz 
constant can be found to be much smaller than 
the Lipschitz constant [22]. 

Definition 3: The non-linear function φ ,  
is called quadratic inner-boundedness in the 
region  if ∀ , ∈  there exist , 	 ∈  such 
that [20]: 

 

, , ,
,   

‖ ‖   

, , ,   

(7)
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By the definition, the Lipschitz function is 
quadratically inner-bounded with 0	&	
0. So the Lipschitz continuity implies quadratic 
inner-boundedness; However the converse is not 
true [20]. It should be noted that  in (7) can be 
positive, zero or even negative. 

Lemma 1 [32]: Every continuous function on 
a compact set is uniformly continuous (Heine–
Cantor theorem).In particular, if a function is 
continuous on a closed bounded interval of the 
real line, it is uniformly continuous on that 
interval. 

Lemma 2 [32]: Every uniformly continuous 
function on the bounded set E is bounded on E. 

3. Adaptive observer synthesis 

Theorem:  consider the following class of 
continuous time nonlinear dynamical system: 

, ,   

  

(8)

where:	x ∈ R 	, y ∈ R 	, θ ∈ R 	, b ∈ R ∗ 	,
C ∈ R ∗ 	,		and , : R → R  is one-sided 
Lipschitz in  with one-sided Lipschitz constant 
	and quadratically inner-bounded in  as 

defined in (7), and , : R → R ∗  is 
Lipschitz in D with Lipschitz constant . The 
vector of unknown constant parameters  is 
bounded as shown below: 

‖θ‖ γ  (9)
If there exist matrices ,  and scalars 
 0, 0 such that LMI (10) is feasible  
 

‖ ‖
0

‖ ‖ 0
0 

(10)

where  

  and  ν=	  , 

and  ̅ which each rows of C is a linear 
combination of rows of , then the adaptive 
observer: 

, ,   
							   

(11)

with adaptive law: 

	
, ̅ ͂

, 0 
(12) 

is stable and observer gain  in (11), can be 
computed from . 
 

Remark 1: The existence of a positive definite 
matrix P satisfies the condition ̅ is 
guaranteed when at least some of the measured 
outputs are such that the transfer function 
between these outputs and unknown parameters 
are dissipative or strictly positive real [1] 
 
Proof of theorem: Let  be the 
estimation error. Then: 
x͂ A LC x͂ φ x, u φ x, u

bf x, u θ bf x, u θ  
(13) 

 
Let ͂ ͂  be the Lyapunov 
candidate. Then: 

͂

2 ͂ ,
,

2 ,

, ͂

2
͂

͂
2 ͂ ,

,
2 ,

, ͂

2 , ͂

2  

(14) 

Considering Lipschitz condition on f 
and using (9) we can write (14) as 
follows: ͂

͂ 2 ͂ ,
, 2 ‖ ‖‖ ͂‖‖ ͂ ‖

2 , ͂ 2
͂

‖ ‖ 	 ͂
2 ͂ , ,

2 , ͂ 2  

 
(15) 

 
where in the last inequality, 
	2 ‖ ‖‖ ͂‖‖ ͂‖ ͂ ‖ ‖

͂  was used. 
 
By setting: 

2 , ͂ 2 0  (16) 

 
We obtain the adaptive law: 
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θ θ , ͂ , ͂
  (17) 

Then we can write 

(15) as inequality (18). 
 

͂ ‖ ‖
0

͂
 

(18) 

 
From inequality (2), we obtain 

͂ ͂ ͂ 0.  
 
Therefore for any 0 we have: 
 

͂ /2
/2 0

͂
0  

 
(19)

 
Likewise from (7) for any 0: 

͂ /2
/2

͂
0  

(20)

By adding  
(19) and (20) to (18) yields: 
 
V

͂ ͂
 

 
(21)

where 
 

‖ ‖ . 
 
By letting  in (21)and applying 
Schur’s complement [33], for all 0 we 
conclude that 0 provided that LMI 
(22)is feasible. 

‖ ‖
0

‖ ‖ 0
0  

 
(22) 

 
where 
 

  and  ν=	 . 

 
Remark 2: since  is continuous and ∈ , 
therefore, from lemma 1 we can conclude that 

 is uniformly continuous, and from lemma 2 
we conclude that ∈ . 
 

Proof of Convergence of ͂ : assume there 
exists a 0 such that (23) is satisfied. 
 

 
(23)

 
Then: 

V ξ
x͂
φ

͂
 

(24) 

By integrating: 
 

ξ
x͂
φ

͂
V 0 V t   

(25) 

 
Since ∈  and 0  is finite, therefore 
͂
∈ 	and hence ͂ ∈ . Besides, from 

remark 2 and knowing that ,  is 
Lipschitz, from (13)we can see that ∈ . 
Therefore, by Barbalat’s lemma [34], → 0. 
 
Proof of Convergence of ͂ :  
 

x
∞

0
dt limt→∞ x t x 0 x 0   (26) 

 
Since x 0  is finite then (26) is finite. 
Besides,  is Lipschitz continuous and from 
remark 2 we know that φ is uniformly 
continuous, so we can see that x in (13) is 
uniformly continuous. Hence, by Barbalat’s 
lemma, → 0. This implies that bf x, u θ
bf x, u θ → 0. 
 
Remark 3: In terms of parameter 
convergence, we could only show that 

, , → 0. Since →  we 
can write that 
 bf x, u θ θ → 0. This leads to the 
following persistency of excitation condition: 
If ∃ , , 	 0 such that: 
α I

bf x τ , u τ f x τ , u τ b 	dτ

(27
) 
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Then θ θ → 0. 

4. Illustrative Example 

In this section, we illustrate the effectiveness 
of the proposed adaptive observer design 
method through an example. 
Example: suppose that the equations of 
motion of a moving object are given in as 
follows: 

x
x
1 1
1 1

x
x

x x x
x x x

0
1
θ 

y 0 1
x
x  

(28)

In [20], it’s proved that the system is globally 
one-sided Lipschitz with one-sided Lipschitz 
constant γ 0, while about Lipschitz 
continuity, we can only say that the system 
(28) is locally Lipschitz, and on any set 

∈ :	‖ ‖  the Lipschitz 
constant is 3 , i.e. the  Lipschitz 
constant rapidly increases with the increase of 
. 

The system (28) is quadratically inner-
bounded in ∈ :	‖ ‖  with [20]: 

min
4
,

4
 

 

Then we have 0,			 0. Hence, by 

manipulating 	and , the region  can be 
made arbitrarily large. Note that as the system 
is globally one-sided Lipschitz ( ), our 
solution is valid in ∩ . Now by 
letting 100, 98.5 from LMI (22), 
we obtain: 

P 15.5694 0
0 15.7879

,  

	H 0.0397 3.6129   

 

and hence we obtain 	as: 
L P H 0.0025 0.2288    
To illustrate the effectiveness of the proposed 
method, Fig1 shows the trajectory tracking of 
the adaptive observer (11) for and . Also 

the estimation of unknown parameter  by 
adaptive law (12) with 0.5 is presented in 
Fig2. 
 

 

 

 
Fig 1. Actual and estimated values of the 

states 

 

 
Fig 2. Estimation of system parameter 

 

5. Conclusion 

In this paper, we proposed an approach to 
design nonlinear observers for systems which 
satisfy one-sided Lipschitz and quadratic 
inner bounded conditions, in the presence of 
unknown parameters. Based on Lyapunov 
technique, necessary conditions for stabilizing 
the adaptive observer are derived. These 

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

Time (Sec)

S
ta

te

 

 

x1
estimation of x1

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

1.5

Time (Sec)

S
ta

te

 

 

x2
estimation of x2

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

1.5

Time (Sec)

er
ro

r

 

 

e1
e2

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

Time (Sec)

es
tim

at
io

n 
of

 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.11,NO.4, WINTER 2012 

50 

conditions converted into LMIs, by solving 
the proposed LMI through standard software 
packages the observer gain will obtain.  
Simulation results are presented to show the 
effectiveness of the proposed method. 
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