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Abstract 
Due to the high penetration of wind farms in the 
networks, they can have a significant role in the 
control of power systems. In this paper, wind 
farms (WFs) are used to improve the static 
security margins of the power system. Generation 
rescheduling is one of the remedies to improve the 
static security margins of the power system. In 
this paper, the generation rescheduling is 
presented based on wind farms. To assess the 
security of the power system, the net active and 
reactive (generation minus demand) powers of all 
buses are selected as features. The numbers of the 
features are reduced based on one of the famous 
methods of the feature extraction methods named 
Principle Component Analysis (PCA). The feature 
extraction method is used to save all features 
effects on the security of the power system. In this 
paper, to find the most optimum way to improve 
the static security margins, two optimization 
problems are introduced for the two strategies 
presented. The proposed method is implemented 
on the IEEE 39-bus network and the results show 
its effectiveness on the static security margin. It 
should be mentioned that the proposed method 
can deal with correlated random variables. Nataf 
transformation is used to build more accurate and 
more realistic database to train the classifier to 
assess the static security margins of the power 
system. The real data of Iran's grid are used to 
validate the Nataf transformation.  
 
Keywords: Static Security Assessment, Decision 
Tree, Preventive Control, Wind Farms. 
 
Notation 
The main notation used in this paper is stated below, 
while other symbols are defined as needed. 
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Constants 

kB  Susceptance of line k 

max
kf  Transmission capacity of line k 

,n fFV  Feature vector (step 4 of PCA algorithm) 

nME  Mean value of each feature (step 1 of PCA 
algorithm) 

a
fMIN  Lower limit of fth feature in ath area 

a
fMAX  Upper limit of fth feature in ath area 

as
fMIN  Lower limit of fth feature in sa

thsecure area 

as
fMAX  Upper limit of fth feature in sa

thsecure area 

G
iP  

Upper limit of the ith generation unit 

G
iP  

Power scheduled to be produced by the ith 
generation unit before the generation 
rescheduling  

W
lP  Maximum output power of lth wind farm 

W
lP  

Output power of lth wind farms before the 
generation rescheduling 

G
iλ  Marginal Cost of ith generation unit 

Variables 

kf  Power flow through line k 

fF  Amount of fth feature 

z
fF  Amount of fth feature in zth scenario 

G
iP  Power scheduled to be produced by the ith 

generation unit 
W
lP  Output power of lth wind farm 

nδ  Voltage angle at bus n 

Indices 
a Indices of areas in feature space 
f Indices of features 
i Indices of generators 
j Indices of loads 
k Indices of lines 
l Indices of wind farm 
n Indices of buses 
r(k) Receiving-end bus of line k 
s(k) Sending-end bus of line k 
sa Indices of secure areas in feature space 
t Indices of types of agreements 
Sets 

sAΩ  Set of indices of secure areas 
DΩ  Set of indices of demands 
FΩ  Set of indices of features 
GΩ  Set of indices of generation units 
KΩ  Set of indices of lines 
NΩ  Set of indices of buses 
NΩ  Set of features which control and classify the 

security 
MΩ  Set of features which classify the security 

WΩ  Set of wind farms 
G
nψ  Set of indices of generation units located at bus n 

mailto:mostafagholami@aut.ac.ir
mailto:grptian@aut.ac.ir
mailto:m.mohammadi@shirazu.ac.ir


MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.4, WINTER, 2013 

2 

D
nψ  Set of indices of demands located at bus n 

W
nψ  Set of indices of wind farms located at bus n 

 
I. Introduction 
The security assessment of a power system refers to 
the problem of how well a particular system 
condition can withstand some credible contingencies. 
Modern power systems are being pushed to operate 
near their security limits by the growing load demand 
and inadequate infrastructure investments in many 
networks. On the other hand, the deregulation of 
electric utilities and large amount of penetration of 
renewable energy has introduced increasing 
uncertainties and complexities to the systems. As 
security is a major goal of power system operation 
and control, a fast and reliable security assessment is 
necessary. The security is an important issue for 
utility engineers and researchers [1-14]. Some 
researchers have used numerical methods to assess 
the security of the power system. In numerical 
methods [2-4], a non-heuristic method is used. On the 
other hand, some researchers have used machine 
learning methods and different classifiers to assess 
the security of the power system [5-14]. In machine 
learning based methods, a database is built, and then 
the database is used to train a classifier. Different 
feature selection and feature extraction [12] 
algorithms have been applied to machine learning 
based methods. In these methods, independent 
random variables have been used to build the 
database, but in real networks, there is a correlation 
between the generations and loads, i.e., in peak hours 
almost all the buses have their peak consumption. In 
this paper, a new method is used to overcome this 
problem. 

High penetration of distributed energy resources 
in networks encourages the operators to use them to 
control the states of the power system. Among 
renewable energy resources, wind energy is used well 
and has a major role in providing electrical energy all 
over the world. One of the main issues in power 
systems is the security of the network.  
Improving the security margin of the power system is 
an interesting subject in the literature. Different 
methods have been proposed on this subject [15, 16, 
20, 22 and 23].  

The difference among these methods lies in 
selecting a strategy for generator selection and 
selecting the loads to be shed. In [22] the feature 
selection method has been used to select the most 
effective loads. The sensitivity of each generator to 
the transient stability index has been calculated. 
Based on this sensitivity, the most effective generator 
to change the transient stability index is selected. The 
most effective generators are participated in the 
generation rescheduling program. In [22-23] a feature 
selection method has been used to choose the most 

effective generators. In [22] the selection of loads is 
based on the proposed sensitivity calculations. The 
sensitivity calculations are based on critical interface 
power flow with respect to changes in the load. In 
[18], the security constraint Optimal Power Flow 
(OPF) has been proposed. In [18], DT is used to build 
a constraint for the security constraint OPF. In [18] 
the RELIEF algorithm is used to select the most 
effective generators. In [19], the same work is carried 
out as compared to [18], but the pattern discovery 
method has been used to add some constraints to the 
OPF.  

The maintenance cost of conventional generators 
increases when the oscillations of output power of 
generators increase, and also the lifetime of 
generators decreases. Using green energy resources 
to control the states of the power system becomes 
more interesting for system operators. In this paper, 
the wind farms are used to improve the security of 
the power system. The output of WFs is set to the 
highest possible value. Thus, the output of WFs can 
only decrease. To decrease the output power of the 
WFs, some wind turbines fall out or the converter set 
points are changed.  
The novelties and contribution of this paper are as 
follows: 

• The wind farms are used to improve the static 
security margin of the power system, 

• The Nataf transformation is used to generate more 
accurate random data, and  

• The security constraint is presented as a linear 
relation in the optimization problem 
This paper is organized as follows. In section II, the 
proposed method is introduced. In section III, 
Simulation results and the case study are presented 
and finally the conclusion of the paper is presented in 
section IV. Nataf transformation and Principal 
Components Analysis (PCA) are explained in 
appendix section. 
   
II. Proposed Method 
The proposed algorithm is divided into 5 steps. These 
steps are introduced as follows.  
Step 1: Database Generation: The first step of this 
algorithm is to assess the static security of the power 
system. In this paper, the machine learning method is 
used to assess the static security of the power system. 
The first step in machine learning based methods is 
to build the proper database. The database is built 
based on time consuming off line simulations. 
Different scenarios with different load levels are 
simulated. Different load levels are generated based 
on random generation numbers. The probabilistic 
distribution functions of the loads are assumed to be 
known.  

In [3-14] random variables, loads and generation 
of different buses have been built for different 
scenarios. In these papers, no correlations among the 
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variables have been considered. In a real network, 
there is a correlation among different loads and 
generations. In addition to loads and generations, the 
adjacent wind farms have correlated outputs, too. In 
the proposed method, the correlations between 
variables are modeled with Nataf transformation. 
This transformation is introduced in appendix. 

Based on the Nataf transformation, different load 
levels are generated. The amounts of generations are 
calculated based on optimal power flow equations.  
Step 2: Feature Extraction: Different features have 
been used in the literature to assess the static security 
of the power system. In this paper, the net active and 
reactive power of each bus is used to assess the static 
security of the power system. The numbers of buses 
in the real networks are very high; therefore, the 
numbers of the features should be decreased. 
Different feature selection and feature extraction 
methods have been used in different studies. In this 
paper, one of the famous methods of feature 
extraction named Principal Component Analysis 
(PCA) is used. PCA is introduced in appendix.  In 
feature extraction methods all the features have an 
effect on each extracted features. The PCA is 
modeled based on simple summations and 
multiplications, and these equations are linear so they 
can be used in the main MILP problem.  

The numbers of final features are selected based 
on sensitivity analysis. The error of classification 
errors is calculated based on different numbers of 
features, and the best candidate is chosen.  

As it is mentioned, the net active and reactive 
power of all buses are selected as features in this 
paper. The selected features are reduced by PCA. The 
net active power of WFs are separated and the other 
features are reduced by PCA. The final number of 
input features is N+M, in which N is the number of 
WFs, and M is the reduced number of features, as it 
is shown in Fig-1. 

 

 

 
Fig-1: Number of Features in the Proposed Problem 

 
As it is shown in Fig-1, N is the number of the wind 
farms in the network and n is the number of buses. M 
is the number of reduced features by PCA. 
Step 3: Assess the Static Security Status: Among 
different classifiers, the decision tree (DT) is 
selected. The DT divides the feature spaces to 
separate subspaces, with some simple if-then rules. 
These if-then rules can model with linear equations. 
The main problem of this paper is written in a mixed 

integer linear programming (MILP) form; therefore, 
the decision tree is selected. 
The DT is trained by the extracted features of the 
database, and divides the feature to subspaces. Some 
of the subspaces are “secure” parts and the others are 
“insecure”. The trained DT classifies the security 
state of the power system. 
Step 4: Static Security Margin Improvement 
(Strategy 1): As it is mentioned before, each scenario 
is classified as secure or insecure. Each insecure case 
should be converted to the secure case with some 
preventive actions. Generation rescheduling is one of 
the methods which is used as tools to improve the 
static security margin of the power system. In this 
paper, wind farms are used to improve the static 
security margin. Due to the high penetration of 
renewable energy resources, they can also be used for 
system security improvement.  

In generation rescheduling methods, conventional 
generators are used. In normal situations the output 
of the generators are calculated based on optimal 
power flow calculations. In insecure cases, the 
outputs of the generators are changed based on the 
generation rescheduling commands.  

In this paper, the wind farms have been used to 
control the security of the power system. The 
renewable energy resources have been used as a 
substitute of conventional generators because of [26]: 

- The maintenance cost of conventional generators 
increases when the output powers of generators 
change. 

- The high penetration of renewable energy resources 
makes the operator of the power system use them for 
security purposes. 

The system operator uses the renewable energy 
resources as much as possible. So the outputs of the 
distributed energy resources are in the maximum 
available energy at all times. So, the operators that 
improve the security margins can only reduce their 
outputs. The reduced energy must compensate with 
other resources. In this paper, an optimization 
problem is solved to find the cheapest way to 
compensate this reduction in energy.  
As it is mentioned, the outputs of the DT are if-then 
rules. These rules divide the feature spaces to 
different parts. Each part represents a unique class. In 
this paper, there are two classes, secure and insecure 
classes.  
The proposed algorithm is introduced through an 
example. Consider a problem with two input features 
named ‘X1’ and ‘X2’ and two output classes named 
‘A’ and ‘B’. Suppose that DT classifies the feature 
spaces with the rules which are shown in Fig-2. 
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Fig-2: DT for Typical Case 

 
The feature spaces with two dimensions are divided 
into 5 areas as shown in Fig-3. The dotted areas are 
labeled as class ‘A’ and the shaded areas are labeled 
as class ‘B’. 
 
 

 
Fig-3: Feature Spaces for Typical Case 

 
The margins of these areas are presented in Table-I. 

 
Table-I: The Margins of Areas for Typical Case 

Area Feature X1 Feature X2 
 lower 

Bound 
Upper 
Bound 

lower 
Bound 

Upper 
Bound 

Area 1 y1 +∞ y3 +∞ 
Area 2 -∞ y1 y2 +∞ 
Area 3 y4 +∞ -∞ y3 
Area 4 y4 y1 y3 y2 
Area 5 -∞ y4 -∞ y2 

 
The same method is used for N+M dimensional 
feature spaces and each area is presented with the 
same constraints as the constraints of Table-I. As it is 
mentioned, the DT divides the feature space to some 

secure and insecure areas and for each area in N+M 
dimensional feature space there are constraints as (1). 

,a a U
f f fMIN F MAX f< < ∀ ∈ Ω                (1a) 

,a a V
f f fMIN F MAX f< < ∀ ∈ Ω                      (1b) 

In strategy 1, for each insecure scenario z, the 
proposed method seeks for the secure areas ( as ) 
which satisfy the constraints (2): 

, ,a ss Az U
f f aMIN F f s< ∀ ∈ Ω ∃ ∈Ω               (2a) 

, ,a a ss s Az V
f f f aMIN F MAX f s< < ∀ ∈Ω ∃ ∈Ω (2b) 

If there is any secure area ( as ), then strategy 1 would 
be implemented. In strategy 1, the first N features are 
the output active power of wind farms. As it is 
mentioned before, the wind farms can only reduce 
their production. Therefore, the output active power 
of wind farms must be greater than the saMIN f . The 

wind farms production can be greater than saMAX f  or 
less than it. Since the production of wind farms can 
only reduce, the output active power of wind farms 
will be calculated based on (3).  

{ }min , ,asW W W
l l lP P MAX l= ∀ ∈ Ω      (3) 

The output active power of some wind farms is 
reduced and the total reduced active power of wind 
farms will compensate by conventional generators. 
The changes in the generators are selected based on 
the following optimization problem.  
The objective function can be formulated using the 
following model: 
Minimize WF∆  

G

G G
i i

i

Pλ
∈Ω
∑                                     (4a) 

Subject to 
as WF WF

l l lMIN P P≤ ≤                   (4b) 

min max
, , ,

, ,

G D
n n

N

W
n

s

G D
i j

i j
f s n f f sW

n l n
l

AF
a

P P

F FV F
P M E

f s

ψ ψ

ψ

∈ ∈

∈Ω
∈

  −
  

≤ × ≤  
+ −     

∀ ∈ Ω ∃ ∈ Ω

∑ ∑
∑ ∑

        (4c) 

| ( ) | ( )

0,

G
n

D W
n n

G
i k k

k s k n k r k ni

D W N
j l

j l

P f f

P P n
ψ

ψ ψ

= =∈

∈ ∈

− +

− + = ∀ ∈Ω

∑ ∑ ∑

∑ ∑
                    

(4d) 

( ( ) ( )), K
k k s rf B k k kδ δ= − ∀ ∈ Ω                (4e) 

max max , K
k k kf f f k− ≤ ≤ ∀ ∈Ω                             (4f) 

0 , :G G
i iP P i ref≤ ≤                 (4g) 

, \ :G G G
i iP P i i ref= ∀ ∈ Ω                  (4h) 

, \ :N
n n n refπ δ π− ≤ ≤ ∀ ∈ Ω                (4i) 

0, :n n refδ =                  (4j) 
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The objective function (4a) of the problem is the cost 
of generators. Constraint (4b) limits the output active 
power of wind farms. The lower bound of (4b) limits 
the lower bound of the secure area ( as ). The upper 
bound of (4b) limits (3).  

Constraint (4d) imposes the KCL law in each bus 
of the system. Constraint (4e) calculates the power 
flow through each line which is limited by constraint 
(4f). Constraint (4g) imposes the generation limits of 
slack bus. Constraint (4h) fixed the generation of 
other generation units due to one of the main 
objectives of this paper, which is the reduction of 
wear and tear cost of conventional generators by the 
reduction of oscillation of the generators output. 
Constraint (4i) bounds the voltage angles, and finally, 
equation (4j) fixes the voltage angle of the slack bus 
to zero. 

Constraint (4c) is a security constraint. The 
security constraint has been presented as a nonlinear 
constraint of the optimization problem in the 
literature[31]. To eliminate this non linearity and 
solve the problem much faster, in this paper, the 
security constraint is presented as a linear equation 
using the decision tree. As mentioned, the decision 
tree (DT) is used to assess the security of the power 
system. The DT splits the feature space into the 
subspaces labeled as “Secure Area”, and “Insecure 
Area”. The margins of the secure areas are used as 
the security constraint. 
For each insecure scenario, the margins of the secure 
areas which satisfy (2) are selected. The optimization 
problem is repeated for the number of selected secure 
areas.  

The optimization variables of problem (4) are the 
variables in the set WF∆ ={   , :i ref ;  , Kk∀ ∈ Ω
;   , Nn∀ ∈ Ω ; w

lP , Wl∀ ∈ Ω ; t
jP ,

,D Tj t∀ ∈Ω ∀ ∈Ω }. 
Step 5: Checking the Availability of the First 
Strategy (Strategy 2): In some insecure cases, there is 
not any feasible solution for the optimization 
problem, i.e. reduction of the WFs production cannot 
properly improve the security margin. In these cases, 
conventional generators are used for generation 
rescheduling purposes. One optimization problem is 
solved to find the best way to improve the static 
security margins of the power system. The 
optimization problem's objective function and its 
constraints are introduced as follows: 
The objective function can be formulated using the 
following model: 
 
 
 
 
 
 

 
Minimize GR∆  

G

G G
i i

i

Pλ
∈Ω
∑

                  (5a) 
Subject to  

| ( ) | ( )

0,

G
n

D W
n n

G
i k k

k s k n k r k ni

D W N
j l

j l

P f f

P P n
ψ

ψ ψ

= =∈

∈ ∈

− +

− + = ∀ ∈Ω

∑ ∑ ∑

∑ ∑
                    

(5b) 

( ( ) ( )), K
k k s rf B k k kδ δ= − ∀ ∈ Ω                (5c)

max max , K
k k kf f f k− ≤ ≤ ∀ ∈Ω    (5d) 

0 ,G G G
i iP P i≤ ≤ ∀ ∈ Ω                 (5e) 

, \ :N
n n n refπ δ π− ≤ ≤ ∀ ∈ Ω                (5f) 

0, :n n refδ =                  (5g) 

m in m ax
, , ,

, ,

G D
n n

N

W
n

G D
i j

i j
f s n f f sW

n l n
l

F S

P P
F FV F

P M E

f s

ψ ψ

ψ

∈ ∈

∈Ω

∈

  −
  

≤ × ≤  
+ −     

∀ ∈ Ω ∃ ∈ Ω

∑ ∑
∑ ∑

 

                                                                               (5h) 

,W W W
l lP P l= ∀ ∈ Ω                    (5i) 

The objective function (5a) of the problem is the 
security constraint DC-OPF.  
Constraint (5b) imposes the KCL law in each bus of 
the system. Constraint (5c) calculates the power flow 
through each line which is limited by constraint (5d). 
Constraint (5e) imposes the generation limits of 
generation units. Constraint (5f) bounds the voltage 
angles, and finally, equation (5g) fixes the voltage 
angle of the slack bus to zero. 
Constraint (5h) is the security constraint. Constraint 
(5i) fixed the production of wind farms on the 
amount of the production before generation 
rescheduling. The optimization variables of problem 
(5) are the variables in the set GR∆ ={   , Gi∀ ∈Ω
;  , Kk∀ ∈ Ω ;  , Nn∀ ∈ Ω }. 
The flowchart of the proposed method is shown in 
Fig-4. 
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Fig-4: Flowchart of Proposed Method 

 
III. Case Study 
The proposed method is implemented on the IEEE 
39-bus network. The five steps of the problem are 
introduced in this section. 
Step 1: Database Generation: The Nataf 
transformation is used to generate the correlated data. 
The PDF of loads is presented in Table-I. 
 

Table-I: Probabilistic Distribution Function of Loads 

Type Load PDF No. of Buses 
1 Gaussian  1-2-3-4-5-8-10-12-

13-14-15-16-21-25 
2 Discrete  18-26 
3 Uniform  4-23-29 

 
The loads of some buses are correlated together. The 
CCM of the loads which are located at buses 15, 16 
and 21, is as follows: 

                 (6) 
The CCM of the loads, which are located at buses 4 
and 29 and have uniform PDF is as follows: 

               (7) 
 The CCM of the loads which are located at buses 25 

and 23, is as follows:  

                (8) 
The first one has the Gaussian PDF and the latter one 
has a uniform PDF. In this network it has been 
assumed that two WFs have been installed on buses 
30 and 37. It is assumed that the locations of the WFs 
are near each other geographically. So, the output 
powers of these WFs are correlated to each ‘other. 
The CCM of these WFs is assumed to be as follows: 

                  (9) 
The correlation coefficients mentioned above are 
considered to build the database to train the DT. The 
number of generated scenarios and the number of 
secure and insecure cases are presented in Table-II. 
 

Table-II: Number of Scenarios 

Scenario Secure case Insecure Case 
9546 3322 6224 

 
As it is mentioned in step 1 of section 2, Nataf 
transformation is used to create a more real and 
accurate database. To verify this reality and accuracy, 
one real case study is simulated in this paper. The 
active power consumption of five real load buses in 
Iran’s grid is considered. The mean and standard 
deviation of these loads are shown in Table-III. The 
loads have a normal probabilistic distribution 
function. Based on the known mean and standard 
deviation and normal PDF, two databases are created. 
One database is created based on the Nataf 
transformation and the other is created based on 
normal random generation numbers. The mean and 
standard deviation of these two created databases are 
presented. 

As it is shown in Table-III, the mean value and 
standard deviation of two generated databases are 
close to the real database, but the real active power 
consumptions have a correlation between each other. 
The correlation coefficients between the real database 
and the two generated databases are shown in (10). 

 
1 0.8377 0.7149 0.7052 0.7812

0.8377 1 0.7413 0.7523 0.8610
0.7149 0.7413 1 0.9552 0.9503
0.7052 0.7523 0.9552 1 0.9517
0.7812 0.8610 0.9503 0.9517 1

 
 
 
 
 
 
  (10a) 

15 16 21
15 1 0.2 0.3
16 0.2 1 0.4
21 0.3 0.4 1

 
 
 
  

4 29
4 1 0.4
29 0.4 1

 
 
 

23 25
23 1 0.3
25 0.3 1

 
 
 

30 37
30 1 0.5
37 0.5 1
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1 0.8399 0.6905 0.6859 0.7650
0.8399 1 0.7413 0.7502 0.8622
0.6905 0.7413 1 0.9533 0.9463
0.6859 0.7502 0.9533 1 0.9482
0.7650 0.8622 0.9463 0.9482 1

 
 
 
 
 
 
  (10b) 

1 0.0558 0.0452 0.0306 0.0196
0.0558 1 0.0011 0.0201 0.0364
0.0452 0.0011 1 0.0587 0.0614
0.0306 0.0201 0.0587 1 0.0176
0.0196 0.0364 0.0614 0.0176 1

− − − 
 − − − 
 − −
 − − 
 − − − − (10c) 
 
 

Table-III: Mean and Standard Deviation of Active Power Consumption for Real Load Buses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Real Data Nataf Based Database Normal Database 

Load Bus 
Name 

Mean Value 
(MW) 

Standard 
Deviation 

(MW) 

Mean Value 
(MW) 

Standard 
Deviation 

(MW) 

Mean Value 
(MW) 

Standard 
Deviation 

(MW) 

Tehran 6164.31 873.51 6173.512 845.303 6147.305 821.646 

Mazandaran 1667.28 407.32 1675.343 406.4808 1686.251 406.5551 

Isfahan 791.84 191.19 793.565 189.8465 794.9269 194.3038 

Kerman 1299.19 251.63 1303.474 250.071 1296.753 781.937 

Fars 2586.77 787.59 2600.233 251.0426 2657.964 777.6739 
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The Correlation coefficient matrix (CCM) of (10a) is 
for real data, (10b) is for the Nataf based database and 
(10c) is for the normal based database. As it is obvious 
the CCM of the Nataf based database is very similar to 
the CCM of the real database. The CCM of the normal 
random generation is very far from the real CCM. This 
comparison shows the accuracy of the Nataf 
transformation and shows that the Nataf based database 
is closer to reality than the normal database. 
Step 2: Feature Extraction: The test case has 39 buses, 
so it has 78 net injected active and reactive powers as 
the selected features. Among these features, the net 
injected active power of WF buses 30 and 37 are 
eliminated, and 76 features are reduced to 10 features 
using the PCA method. These 10 features, in addition 
to the 2 net injected active powers of buses 30 and 37; 
become 12 features which are used to train the DT and 
control the security margin of the power system. 
Step 3: Assess the Static Security Status: The inputs of 
the DT are twelve extracted features and the output of 
the classifier is the static security status of the power 
system. The output has two classes named ‘Secure’ and 
‘Insecure’. The resubstitution error and k-fold cross 
validation error [27] of the classification are presented 
in Table-IV. As it is mentioned in step 1, the Nataf 
transformation is used to generate more realistic 
random numbers. The classification errors of the 
decision tree in two cases are presented in Table-IV. In 
case 1, the random numbers are generated separately 
and are between 50-200 percent of their base values 
[3], but in case 2, the random numbers are generated 
based on Nataf Transformation. Through the results, it 
is shown that the classification based on Nataf 
transformation has better performance. 
 
Table-IV: The Resubstitution and k-fold Cross Validation 
Error of Classification in Two Cases 

Case Resubstitution 
Error (%) 

k-fold Cross 
Validation Error 

(%) 

Case 1 
(Normal) 2.8 13.11 

Case 2 
(Nataf) 0.4 3.26 

 
Step 4: Static Security Margin Improvement (Strategy 
1): To show the implementations of this step, one of 
the scenarios is selected as an example. As it was 
mentioned before, for each insecure case, some secure 
areas have been found which satisfy (2). For example, 
one of the insecure cases has the following features: 
 

1 2

3 4

5 6

7 8

9 10

11 12

207.98, 447.95
6.97, 363.34
115.71, 231.89

342.89, 19.50
0.436, 0.243
1.372, 39.79

F F
F F
F F
F F
F F
F F

= =
= − = −

= − = −
= = −

= =
= =

               (11) 

 
As it is mentioned, the net active and reactive powers 
of the buses are selected as the features to assess the 
static security of the power system. In this paper, the 
PCA algorithm is used to reduce the number of 
features. As mentioned, the final number of features is 
N+M, in which N is equal to the number of wind farms 
that have participated in the generation rescheduling 
program. In this paper, the IEEE 39-bus is selected as a 
test case. It is assumed that in this network, there are 
two wind farms both of which have participated in the 
generation rescheduling program. So, in this test case, 
N is equal to 2, and the first and second features are the 
output active power of wind farms on a random case. 
The remaining 37 buses have 37 active and 37 reactive 
net powers. These features are reduced to 10 features 
based on PCA. The three to twelve numbers are the 10 
features that are produced by the PCA algorithm based 
on the 37*2 remaining powers. 

In this case, six secure areas are found, in which 
features three to twelve have been located between 
margins and features one and two are out of the 
margins of the secure parts. Therefore, the optimization 
problem is repeated six times to find the best solution. 
If all the problems have feasible solutions, the solution 
with minimum cost is selected to be implemented.  
Based on the results of the optimization problem’s 
solutions, the results of the following secure area have 
the least cost. 
 

1 2

3 10
4 4

8

186.13 203.19, 442.63
1.77, 12.42

9.75*10 5.25*10

F F
F F

F

< < <
< <

− < <
(12) 

 
The generations of generators between and after the 
control action are presented in Table-V. 
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Table-V: Production of Generators Before and After 
Generation Rescheduling Program 

Bus No. Before 
Control 
Action 

After Control 
Action 

31 587.09 587.09 
32 586.92 586.92 
33 521.12 525.09 
34 507.99 507.99 
35 523.93 523.93 
36 520.95 520.95 
38 651.20 651.20 
39 679.59 679.59 

WF1: 30 207.98 202.19 
WF2: 37 447.95 447.95 

 
As it is shown in Table-V, the insecure state is 
converted to secure state, with only 3.97 MW changes 
in the generation of the conventional generators.  
Step 5: Checking the Availability of the First Strategy 
(Strategy 2): Among 6224 insecure cases in the 
generated database, 5333 insecure cases convert to 
secure state with strategy No. 1. The remaining 
insecure cases should be improving their static security 
margins by strategy No. 2. 
To compare the ability of the first strategy in contrast 
to the second strategy, it is assumed that the active 
power bidding of the 8 generators of the test case are 2, 
2.2, 2.4, 2.6, 2.8, 3, 3.2 and 3.4. Based on these prices, 
the cost of the generation rescheduling program for 
insecure cases are calculated. In strategy 1, the 
generation of some generators are changed. The cost of 
the generation rescheduling program in strategy 1 is 
equal to the additional cost, which are payed to the 
selected generators for which the output are changed. 
In strategy 2, the program cost is equal to the 
differences of the OPF cost and new generation 
scheduling cost. The mean and standard deviations of 
costs of these two strategies are presented in Table-VI. 
 
Table-VI: Mean and Standard Deviations of Two Proposed 
Strategy Costs 

Strategy Mean 
($/kWh) 

Standard 
Deviation ($/kWh) 

Strategy 1 102.17 51.65 
Strategy 2 481.21 58.90 
 
As it is presented in Table-VI, the proposed method 
can improve the static security margin of the power 
system with less cost in comparison to the conventional 
generation rescheduling program [18-19]. 
 
 

IV. Conclusion 
In this paper, the Nataf Transformation coupled with 
Principal Component Analysis technique has been 
proposed as a means for building a more realistic 
database and more effective features for power system 
security assessment.  

A new strategy to improve the security margin of 
the power system has been presented. In the proposed 
strategy WFs have been used in the generation 
rescheduling strategy, to improve the security margin. 
In this strategy, the oscillation of output power of the 
conventional generator decreases while the 
maintenance cost of the generators decreases, so the 
lifetime of generators increases. On the other hand, 
renewable energy resources are used to improve the 
security margin of the power system. In each insecure 
case, two optimization problems have been solved to 
find the cheapest way to improve the security margin. 
The second optimization problem is a backup strategy 
for the first optimization problem. The first 
optimization problem is based on wind farms and the 
second one is based on the conventional generators. 
The linear decision tree based security constraint has 
been considered in the presented optimization problem. 
From the results, it is observed that the proposed 
algorithm can be implemented in real-time 
applications. 

The proposed method has been applied to IEEE 
New England 39-Bus test case. The simulation results 
show the effectiveness of the proposed method.  
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Appendix 
A. Nataf Transformation 
Nataf transformation is a mathematical model for the 
transformation from correlated original space to 
mutually independent standard normal one [25]. It 
requires the marginal Cumulative Distribution Function 
(CDF) of each random variable and their Correlation 
Coefficient Matrix (CCM), which are easy to be 
obtained in engineering applications. When the 
marginal CDF and the CCM of correlated data are 
available, a correlated Standard Normal Variable 
(SNV) vector can be obtained by marginal 
transformation. 
The relationship between correlation coefficient of real 
data 'ijρ  and SNV ijρ  data can be obtained as follows 
[25]: 

' *ij ij Fρ ρ=                                      (6) 
In [25] for each CDF of real data the coefficient of F 
has been introduced.  
The CCM of SNV data can be decomposed by 
Cholesky decomposition. The inferior triangular matrix 
of resulting matrix has been used to transform 
correlated SNV vector to independent standard normal 
variables. The inverse procedure of mentioned 
procedure, transform the independent standard normal 
variables to dependent variables with arbitrary CDF. 
 
B. Principal Components Analysis (PCA) 
The PCA is a tool to identifying patterns in data, and 
express them in such a way as to highlight their 
similarities and differences [26]. Since patterns in data 
can be hard to find in high dimension data, PCA is a 
powerful tool for analyzing the data. 
This method has five steps. 
Step 1: subtract the mean. In this step, each of the data 
dimensions is subtracted from mean value of that 
dimension. This step produces a data set whose mean is 
zero.  
Step 2: calculate the covariance matrix. In this step the 
covariance matrix of data is calculated. If the data set 
has N dimensions, then the covariance matrix has the 
size of N*N.  
Step 3: Calculate the eigenvectors and eigenvalues of 
covariance matrix. Since the covariance matrix is a 

square matrix, the eigenvector and eigenvalues of this 
matrix can be calculated.  
Step 4: Choosing components and forming a feature 
vector. The data compression has been done. The 
eigenvector with the highest eigenvalue is the principle 
component of data set. In this step, at first sort of the 
eigenvectors should be sorted in descending order, then 
the first M eigenvectors have been chosen. The selected 
M features formed the feature vector. 
Step 5: Deriving the new data set. In this step the 
feature vector is multiplied on the left of the original 
data set. Now, the new data set with M dimensions has 
been built. 

 


