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 

Abstract—In recent decades, the researchers have been 

attracted in utilizing of the multi-agent systems due to the 

sophistication in industrial processes, the cost of performing them 

and increasing the reliability. One of the interesting problems in 

this field of study is formation control of agents. In this paper, we 

are going to design a decentralized control strategy for the 

formation control of a group of quadrotors. To be more specific, 

we simplify the nonlinear dynamic of a quadrotor by using motion 

approximation and feedback linearization. Then, we solve the 

formation control problem of quadrotors by the utilization of 

leader-follower strategy with a decentralized protocol. In this 

control strategy, only do a partial number of followers have access 

to the leader’s information. This matter can reduce noticeably the 

energy consumption of the leader since it requires to send less 

amount of information. Thereafter, we will corroborate the 

convergence of quadrotors to the predefined formation and leader 

tracking mathematically. Finally, the simulation example will be 

presented in order to validate the theoretical results.  

 
Index Terms—Multi-agent system, Formation control, 

Quadrotor, Leader-follower, Tracking. 

 

I. INTRODUCTION 

ITH the advent of time, the researchers have been 

intersected in the employing of the multi-agent systems 

especially in the field of coverage, formation, and consensus 

control [1]-[3]. Among these interesting fields, the formation 

problem of UAVs (Unmanned Aerial Vehicles) has attracted 

the attention of many researchers. This problem has a myriad of 

applications including gathering information, surveillance, 

traffic control, and etc., [2] and [4] Among many recent 

investigations, quadrotor is one of the interesting agents which 

has been used in many recent industrial and military projects 

and problems. However, this type of agent has its own 

challenges including under-actuated nonlinear coupled 

dynamic structure, which make it a sophisticated control 

problem. Despite these issues and encumbrances, quadrotor is 

widely used in many multi-agent systems especially in the 

formation problem due to its rational size, low cost of 
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manufacturing, and capable of equipping with sensors, 

cameras, communication systems or even lightweight weapons.  

So far, a lot of efforts have been made in order to facilitate or 

even obviate these challenges. In [5], the author employed 

classical linearization method in order to simplify the 

quadrotor’s dynamic. However, based on the intrinsic limitation 

of this approach, the flawless performance and global stability 

of the closed-loop system cannot be guaranteed. Moreover, 

another interesting method was used in [6]. In this approach, the 

authors utilized feedback linearization method and transformed 

the nonlinear system into a linear decoupled system. On the 

other word, in the new dynamic model, the translational 

dynamic (position in 3-D space) and angular dynamic (heading 

angle) were decoupled and transformed into a fourth-order 

integrator and second-order integrator respectively. Then, by 

employing a leader-follower strategy, they solved the formation 

problem of a group of quadrotors.  

In order to increase the robustness of the system, SMC (Sliding 

mode Control) was employed, [6]-[10]. In [7], the authors 

utilized SMC in order to cancel uncertainty and disturbance of 

single quadrotor. Furthermore, in [6] SMC was also employed 

to cancel the uncertainties in the dynamical model due to the 

use of feedback linearization. One of the main drawbacks of 

using SMC is the chattering problem. However, in [8], a QSMC 

(Quasi SMC) method and TSMC (Terminal SMC) method in 

[10] were employed in order to obviate the problem of 

chattering. It should be noted that defining appropriate bounds 

of uncertainty is also another kind of challenges, especially in 

practical experiments.  

Moreover, some other strategies have been used to model and 

control the networked quadrotors [11]-[13]. As an instance, in 

[11], the authors employed a two-layer controlling procedure in 

order to stabilize and conduct the agents to a desired formation. 

In this approach, a linear MPC method (Model Predictive 

Control) was utilized in the top layer in order to produce an on-

line trajectory planning as well as achieving a desired 

formation. On the other hand, in the bottom layer, a nonlinear 
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control mechanism is employed in order to stabilize the 

quadrotors. However, this approach is not practical when the 

number of agents increases.  

Another kind of strategy called potential field is also used to 

generate and achieve formation. This method was used in [14]-

[17]. In this method, a potential field is defined over the domain 

of the whole system workspace such that the formation of 

agents can be achieved by attracting and repulsing forces 

among the agents. It is worth mentioning that this method was 

also used in flocking algorithm which the shape of formation 

cannot be defined beforehand, [18] and [19]. 

Dealing with the nonlinearity in the dynamic of quadrotor is a 

quite arduous task. However, in [6], this problem was relatively 

handled by using SMC and feedback linearization. In our 

proposed approach, we are going to employ the feedback 

linearization approach [6] in order to simplify the quadrotor’s 

dynamic. Additionally, by employing a leader-follower strategy 

and partial accessibility of the followers to the leader’s 

information, formation convergence and leader tracking of the 

followers will be shown mathematically. The interaction 

between the followers is defined by an undirected graph and 

also the leader sends its information to only a part of the 

followers with a unidirectional link. In this approach, there is 

no constraint on the number of agents and the shape of the final 

formation in comparison with the potential field strategy. 

Moreover, the state feedback control is used in order to adjust 

the leader at the desired height and heading angle. All in all, the 

main achievement of this paper can be summarized as follow: 

1. Designing a decentralized leader-follower strategy for a 

formation of a group of quadrotors in which a part of the 

followers has access to the leader’s information. In this 

approach, the shape of formation can be designed 

beforehand.  

2. Designing a state feedback control in order to maintain the 

leader at a fixed and desired height and heading angle. 

The rest of the paper is organized as follow. In Section 2, we 

will present some basic preliminaries regarding graph theory 

and a quick introduction to feedback linearization of MIMO 

(Multi-Input Multi-Output) systems. Next, in Section 3, we will 

introduce the nonlinear dynamical structure of a single 

quadrotor. Moreover, in Section 4, we will propose the control 

inputs in order to reach our goals. Finally, in the Section5, 

simulation example will be presented in order to validate the 

theoretical results. 

II. BACKGROUND AND PRELIMINARIES 

In this section, we are going to present some basic preliminaries 

regarding graph theory and feedback linearization. 

A. Graph Theory 

A graph is an ordered pair  ,G V E  where V represents the 

node set of the graph and E is the subset of E V V  which 

represents the edge set of the graph. We denote an edge between 

the node i and j as a pair. A directed path between two nodes 

i and j is defined as a connected sequence of edges 

      , , , ,..., ,i e e t h j where , ,...,e t h  are the middle nodes of 

the path. An undirected path can be traversed both directions 

(whether from i to j or j to i ). An undirected graph is 

connected if at least there is one undirected path between every 

pair of its nodes. The neighborhood of node i is defined as: 

 ( , )iN j V i j E    

Also, 
i iN   is the degree of a node i and the degree matrix 

is defined as 
1 2( . ,..., )ND diag    . 

The adjacency matrix 
N NA  of a given graph  ,G V E

is defined as: 

1,       ( , )

0,      
ij

i j E
a

otherwise


 


 

where 
ija ’s are the entries of the adjacency matrix A . A graph 

is called symmetric if ,    ,ij jia a i j  . Moreover, the 

Laplacian matrix L is defined as  L D A , [20]. 

Lemma 1. [21] 

Consider L as the Laplacian matrix and 
aH as the accessibility 

vector in a leader-follower strategy. Then, the matrix 
aL H  (

( )a aH diag H ) is positive definite if and only if L  is semi-

positive definite and 
aH is nonzero. 

Remark 1. 

Lemma 1 indicates that the topology should be connected and 

at least one of the followers has access to the leader's 

information. 

B. Feedback Linearization 

In this section, we are going to introduce feedback linearization 

method in the control of a nonlinear system with multiple 

inputs. In this technique, the nonlinear system is transformed to 

a linear system by designing and applying  proper control laws. 

Definition 1. [22] 

Let : nh   be a smooth scalar function, and : n nf   

be a smooth vector field on 
n
, then the lie derivative of h  

with respect to f  is a scalar function defined by 
fL h h f  

. 

Now, Consider a nonlinear system defined in a neighborhood 

  of the point 0
x with the following form: 

   

 





 



x f x G x u

y h x
                              (1) 
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wh

ere 
nx   is state vector, mu   is control input vector, 

my   is output vector of the system, m mG  is a matrix 

whose columns are smooth vector fields m

ig  ,  and 

   ,f x h x  are also smooth vector fields. 

Assume that 
ir  is the smallest integer such that at least one of 

the inputs appears in 
 ir

iy , then: 

   1

1

 i i i

i

m
r r r

i f i g f j

j

y L h L L h i u




      

With  1
0i

i

r

g fL L h i


  for at least one j , in a neighborhood 

i of the point 
0x . By repeating the abovementioned 

procedure for each output, we will have, [22]: 

   
   

   

   

1

2

1 1

22

m

r

r

r
m

m

y x u

uy x
b x x

uy x

   
   
        
   
    

 

where   m
b x  and   

 
m m

x  are a vector and an 

invertible matrix respectively with the following forms, [22]:  

 

 

 

 

 

1 1 1
1 2

2 2 2
1 2

1
1 2

1

2

1 1 11 1 1

1 1 1

1 1 11 1 1

2 2 2

1 11 1 1

1

2

   

m

m

m m m
m

m

r r r

f f fg g g

r r r

f f fg g g

r r r

f m f m f mg g g

r

f

r

f

r

f m

L L h L L h L L h

L L h L L h L L h
x

L L h L L h L L h

L h x

L h x
b x

L h x



  

  

 

 
 
 

   
 
 
 

 
 
 
 
 
  

 

Now, by defining the following control input, [22]: 

    1
  u x v b x                                (2) 

where 
m

v  is control input vector. The system (1) is 

transformed into a linear system with the following form: 
    , 1,2,...,ir

i iy x v i m   

Remark 2. [22] 

In the case r n  (where 
1 2 ... mr r r r     is the total 

relative degree of the system), there is no internal dynamics. On 

the other word, the control input (2) guarantees the stability of 

the system (1) without any worry regarding the stability of the 

internal dynamics. 

III. DYNAMIC MODEL OF A QUADROTOR 

In this section, we are going to introduce the dynamic of the 

quadrotor. Its dynamic is defined with 6-DOF (Degree Of 

Freedom) with the  , ,   
T

as its angular coordinates and 

 , ,
T

p x y z as its Cartesian coordinates. Moreover, the mass 

of each rotor is , 1,2,3,4im i  and the total mass of quadrotor 

is M , Fig. 1 shows a quadrotor in 3-D space.   

 
Fig. 1. A single quadrotor in 3-D space. 

By assuming the fact that quadrotor is not allowed to have agile 

motion, which means ,   are so small, the dynamic model 

of a quadrotor can be represented as follows, [23]: 

11

12

13

2

3

4

,     

,    

,     

1
,    

1
,    

1
,    

x x

y y

z z

yy zz

xx xx

zz xx

yy yy

xx yy

zz zz

A
x v v u

M

A
y v v u

M

A
z v v u g

M

I I
u

I I

I I
u

I I

I I
u

I I

   

   

   

  

  

   


  


  


  

                     (3) 

where, is the position of the quadrotor,  , ,
T

p x y z  

is control 1 2 3 4, , ,
T

U u u u u   
are Euler angels,  , ,

T
   

input signal, , ,xx yy zzI I I are the moments of inertia along 

, ,x y  and z axis respectively, g is gravitational 

acceleration constant, and 
1 2 3, ,A A A  are defined as: 
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1

2

3

cos sin cos sin sin

cos sin sin sin cos

cos cos

A

A

A

    

    

 

 


 
 

 

Now, by utilizing the procedure performed in [6], the dynamic 

of the system can be rewritten as: 

   
4

1

k k

k

F G u


                                 (4) 

Where , , , , , , , , , , , , ,
T

x y zx y z v v v            
, 

1 1,    u u , and 
14 1F 

 is a vector with the following form: 

31 2, , , , , , ,0, ,

     , , , ,

x y z

T

yy zz xx yyzz xx

xx yy zz

AA A
F v v v g

M M M

I I I II I

I I I

    

    


   


 



 

Moreover, 
14 1, 1,2,3,4kG k   are vectors whose all the entries 

are zero except 1 2 3 4

8 10 12 14

1 1 1
1,  ,  ,     

xx yy zz

G G G G
I I I

. 

According to [6], the system (4) can be transformed into a linear 

system by utilizing feedback linearization method. This goal 

can be achieved by the following control input: 

 1U b r                                     (5) 

By applying control input (5) to the system (4), the linearized 

form of the system (4) has the following form: 

4

p r

r




                                          (6) 

where 
4

,   
T

T
r r r is a desired control input which will be 

designed later. 

IV. PROBLEM STATEMENT AND MAIN RESULTS 

In this part, we are attempting to design a leader-follower 

control strategy such that a group of networked quadrotor 

converge to an optional predefined formation as well as 

tracking their leader. In this problem, the dynamical equations 

(6) are employed as the dynamics of each agent. Moreover, the 

problems of converging to formation and tracking will be 

shown mathematically. Then, a control strategy will be 

proposed to fix the leader at a desired height and heading angle. 

A. Formation Control of Quadrotor 

Consider a network of N agents as the followers modeled by 

an undirected graph  ,G V E . In this modeling, each node 

represents an agent and the edge set E represents their 

communication links. Additionally, some of the followers 

access the information of their leader through an undirected 

link. The accessibility of followers to the leader is defined by a 

vector called accessibility vector
aH . 

The dynamics of each follower have the following form: 

4

,   

,       1, 2,...,

i i

i i

p r

r i N



 

                        (7) 

where i is the agent number and 
4

,   
T

i i i
r r r is the control 

input signal of the follower i . Similarly, the dynamics of the 

leader has also the following form: 
4,    L L i Lp r r                                  (8) 

where 
4

,   
T

L L L
r r r is the control input signal of the leader. 

Before the proposing the control input signal, the formation 

should be defined first. Therefore, we define the relative 

distance between each follower and the leader which is 

represented by p

iLd . This parameter is fixed and indicates that 

each follower reaches this relative distance at the end while the 

formation is creating. It is worth mentioning that each agent 

requires 3 components in order to determine its relative distance 

in 3-D space. These components are: 

, ,
T

p x y z

iL iL iL iLd d d d   
 

Now, we redefine the states of the system as 
1 2 3 4,   ,   ,   i i i i i i i iS p S p S p S p     and 1 2,   si i i is   

where 1,2,...,i N is used to show the numbered agent is a 

follower and i L  is used to show the numbered agent is the 

leader (It should be noted that 3k

iS  , for instance

1

1 [ , , ]TS x y z ). Based on the aforementioned discussions, the 

proposed control inputs have the following form: 

   

   

1

1 1 1 1

1

4

2 1

4 4

1

1
      

1
      

N
p i p p

i a i L iL ij i j ij

ji

N
k i k k k k

p a i L ij i j

k ji

N
i

a L ij j

ji

r H S S d a S S d
K

H S S a S S
K

H S a S
K







 



 
       

 

 
    

 

 
  

 



 



        (9) 

   
2

4

1 1

2 2

1

1

1
       

N
k i k k k k

i a i L ij i j

k ji

N
i

a L ij j

ji

r H s s a s s
K

H s a s
K


 



 
     

 

 
  

 

 



          (10) 

where ,   1, 2k k   and ,  1, 2,3, 4 
k

p
k  are positive constant 

numbers, 
ija are the entries of the adjacency matrix, and 

1

 
N

i

i a ij

j

K H a . Additionally, according to (8), 

4 2 4,   L L L LS r s r . The accessibility vector 

1 2, ,..., 
 

T
N

a a a aH H H H is also defined such that 1i
aH  

whenever agent i  has access to the leader's information and 
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0i

aH   whenever an agent i  does not have access to the 

leader's information. 

Remark 3. 

To clarify the control laws (9) and (10), it should be noted that 

we employ the consensus control laws with some 

modifications. On the other words, the quadrotors converge to 

desired formation rather than a single point by applying nonzero 

relative distance among quadrotors. Additionally, the time 

derivatives of leader’s states are also added to the control inputs 

to guarantee that the tracking error will converge to zero. 

Remark 4. 

In the proposed control inputs (9) and (10), three main goals are 

considered. First one is to navigate all the agents to the 

predefined formation. The second one is that the higher order 

time derivatives of all agents’ position converge to a common 

value in order to the guarantee the endurance of formation. 

Finally, the third one is that the followers follow the leader. 

B. Stability Analysis and Leader Tracking 

To corroborate that the systems (7) and (8) under the control 

inputs (9), (10), and 
Lr guarantee the goals stated in Remark 3, 

first the following theorem is presented and then it will be 

proved. 

Theorem 1. 

Consider a multi-agent system with N  follower with the 

dynamic of (7) under control inputs (9) and (10), and one leader 

with the dynamic of (8) under control input 
Lr . The follower 

interacts through an undirected graph  ,G V E . Additionally, 

the accessibility of the follower to the leader’s information is 

determined by the accessibility vector
a

H . Now, if: 

1. The Graph  ,G V E  is connected. 

2. The accessibility vector
10 a NH  , which means at least 

one follower has access to leader’s information. 

3. The polynomials assigned to  1 2 3 4, , ,p p p p     and 

 1 2,    are Hurwitz. 

Then the system (7) and (8) under control inputs (9) and (10), 

and Lr will converge to the predefined formation and track the 

leader. 

Proof. 

Before starting the proof, it should be noted that the 

translational and angular dynamics of the quadrotor are 

separated since these two parts were decoupled by feedback 

linearization. Therefore, the stability (converging to the 

formation and tracking the leader) of each part will be proved 

separately. 

In order to investigate the stability of translational dynamics of 

the quadrotor, we define a new variable called position error 

with the following form, [24]: 

   1 1 1 1

1

,    1,2,..,
N

i

i a i L ij i j

j

e H S S a S S i N


         (11) 

where 1 1 p

i i iLS S d  . Now, based on this definition, the position 

error dynamic of the system is rewritten. By computing the 

fourth-order time derivative of the error variable, we will 

obtain: 

   

   

1 1 1 1

1

4 4

1

4 4

1 1

   

   

N
i

i a i L ij i j

j

N
i

a i L ij i j

j

N N
i i

i ij j a L a ij

j j

e H S S a S S

H r S a r S

a S H S H a r





 

   

   

 
     

 





 

                  (12) 

By choosing 
1

 
N

i

i a ij

j

K H a , the  (12) can be simplified 

into: 

4 4

1

,    1, 2,..,
N

i

i i i ij j a L

j

e K r a S H S i N


                  (13) 

By substituting (9), (11), and first-order to third-order time 

derivatives of (11) into (13), we will obtain: 

1 2 3 4 ,    1,2,..,i p i p i p i p ie e e e e i N             (14) 

Eq. (14) is a differential equation expressing the error dynamic 

(convergence of the followers to the formation and tracking the 

leader) of the system. In order to show that the error variable in 

differential equation (14) will converge to zero, the polynomial 

assigned to  1 2 3 4
, , ,   

p p p p
 should be Hurwitz. By holding 

this assumption, we can conclude that: 

0,  0,  0,  0   1, 2,..,i i i ie e e e i N      

It can be shown that (11) can be written into the following form: 

   1 1

3 3 3 3a a Le L H I S H I S 
      

             (15) 

where  a aH diag H , L  is Laplacian matrix, and 

1 1 1 1

1 2, ,...,
T

T T T

NS S S S              
. According to 0e  , we will 

have    1 1

3 3 3 3a a LL H I S H I S 
     

. In order to 

simplify this equation, we should investigate the inversibility of 

aL H . In order to satisfy this condition, two constraints 

should hold. Firstly, the interaction topology between followers 

should be connected (Laplacian matrix L  should have the 

rank of 1N ) and secondly at least one follower has access 

to leader's information ( 0a N NH  ). Then, according to 

Lemma 1, 
aL H  is full rank and inversible. Based on these 

assumptions and (16), we will have: 
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   

   

  

1
1 1

3 3 3 3

1 1

3 3 3 3

1 1

3 3

    

    

a a L

a a L

a a L

S L H I H I S

L H I H I S

L H H I S



 



 





     

    
 

  

               (16) 

where   is kronecker product. It can be easily shown that 

  11a N aL H H  . Then, according to the inversibility of 

aL H , we will have  
1

11a a NL H H


  . By substituting 

this result into (16), we will obtain: 

 1 1

1 3 31N LS I S                                (17) 

The (17) implies that the position error of all the followers (

1 1 ,    1,2,...,p

i i iLS S d i N   ) will converge to the leader's 

position. On the other word, the desired formation will be  

achieved. Additionally, it can be shown that 

 1 3 31   k k

N LS I S , (
1 2, ,...,

T
T T T

k k k k

NS S S S              
),

2,3,4k  which they imply that the other states of followers 

will track leader's states. On the other word, formation and 

tracking will be guaranteed. 

So far, we have shown the stability of translational dynamics of 

the quadrotor. Similarly, we can show the stability of angular 

dynamics of the quadrotor. 

In a similar way, we define a new variable called angle error 

with the following form: 

   1 1 1 1

1

,    1, 2,..,
N

i

i ij i j a i L

j

c a s s H s s i N


         (18) 

Now, based on this definition, the angular error dynamic of the 

system is rewritten. By performing the same procedure, it can 

be obtained that: 

1 2 ,    1,2,..,i i ic c c i N                          (19) 

Eq. (19) is a differential equation expressing the error dynamic 

(tracking the leader) of the system. In order to show that the 

error will converge to zero, the polynomial assigned to  1 2,    

should be Hurwitz. By holding this assumption, we can 

conclude that 0,  c 0   1, 2,..,i ic i N   . 

Now, it can be shown that (18) can be written into the following 

form: 

  1 1

a a Lc L H s H s                                (20) 

where 1 1 1 1

1 2, ,...,
T

Ns s s s   
. By performing the same procedure 

and holding the mentioned assumptions, we will have: 

1 1

11N Ls s  

The (20) implies that the heading angle of all the followers will 

converge to the leader's heading angle. Additionally, it can be 

shown that 
2 2

11N Ls s ( 2 2 2 2

1 2, ,...,
T

Ns s s s   
), which it 

implies that the other states of followers will track leader's 

states. 

All in all, we showed that all the followers track the leader as 

well as converging to the formation. 

                                                                                                  

Remark 4. 

According to the aforementioned proof, there is no constraint 

on the number of agents and the shape of formation. Therefore, 

any formation with any number of agents can be achievable by 

the proposed control input. 

Remark 5.  

Although the Theorem 1 states that the followers interact 

through an undirected graph, the necessary condition is that the 

topology should be connected. Additionally, based on the proof, 

there is no limitation on the direction of communications. It is 

only necessary that the lemma 1 holds. Therefore, this proposed 

approach can be used when the followers interact through a 

directed graph. In this case the graph should contain a spanning 

tree. 

C. Leader Control  

So far, we have discussed about the controlling of followers. In 

this section, we are going to design a control input signal 

1 2 3 4, , ,
T

L L L L Lr r r r r   
so that the leader converges to a fixed 

desired height and fixed desired heading angle as well as 

tracking a desired path in the X Y  plane. In order to achieve 

these goals, we utilize a state feedback method for 3 4,L Lr r . 

Therefore, we propose the following control laws: 

 

 

3 1 1 2 2 3 3 4 4

4 1 1 2 2

L z L d z L z L z L

L L d L

r z h z z z

r s s 

   

  

     

   
         (21) 

where 
k

Lz  is the third component of 

, , ,    1,2,3,4
T

k k k k

L L L LS x y z k   
. Additionally, positive 

constant numbers ,  1,2,3,4k

z k   and ,  1,2k k   should  

be chosen such that the polynomial assigned to  1 2 3 4, , ,z z z z     

and  1 2,    are Hurwitz respectively. By holding these 

conditions, the leader will converge to the desired height 

 0,dh    and desired heading angle 0,
2

d




 
 
 

. 

Moreover, in order to navigate the system in the XY plane, 

control input signal 
1 2,L Lr r  can be just an appropriate function 

of time,    1 2,L Lr t r t . 
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Fig. 2. Desired formation. 

 
Fig. 3. Interaction topology among the followers and the 

leader. 

V. SIMULATION 

Before starting the simulation, it should be noted that, first of 

all, the nonlinear dynamics of quadrotor (3) is transformed into 

the linear dynamic (6) by applying control input (5) (In this 

control input, 2 20.03 . ,  0.04 .xx yy zzI I kg m I kg m    and 

1.5M kg  were considered). Then, in the second step, by 

considering the dynamics of the followers as (7) and the leader  

as (8) and applying control inputs (9), (10), and Lr , the 

simulation will be executed. 

Moreover, in order to control the leader, we will employ control 

inputs (21). We choose ,  1, 2,3,4 
k

z
k  as 

 0.0052,0.0797,0.4475,1.1 , ,  1,2k k   as  1,2 , 

 1 0.0002Lr t  , and  2 0Lr t  . Also, we adjust the desired height 

at 12dh   and heading angle at
4

d


  . 

 
Fig. 4. Path of the agents moving in 3-D space. 

Now, consider six followers and one leader is available. The 

interaction topology among the followers and the leader is 

depicted in Fig. 3. Additionally, we define the formation with 

the following relative distances ( 1d m ), Fig. 2. 

     

     

1 2 3

4 5 6

0, ,0 ,  ,0,0 ,  0, ,0

,0,0 ,  0,0, ,  0,0,

   

    

T T Tp p p

L L L

T T Tp p p

L L L

d d d d d d

d d d d d d

 

 

The parameters of the control inputs (10) and (11), i.e. 

,  1,2,3,4k

p k   are selected as  0.0938,0.7813,2.1875,2.5  and 

,   1, 2k k   are selected as  0.4,1.3 . 

By performing the simulation, the path of moving the agents is 

depicted in Fig. 4. As it can be observed in this figure, all the 

agents converged to the desired formation and the followers are 

tracking the leader as well. Additionally, the leader has 

converged to the desired height. In Fig. 5, the first-order time 

derivative of all the followers' position are shown and as it can 

be seen they have converged to the leader as well as tracking it. 

Moreover, in Fig. 6 and Fig. 7, the higher-order time derivative 

of all the followers' position are depicted. As it can be observed 

all of them converged to the leader's trajectory. In Fig. 8, the 

heading angle and its time derivative are depicted. As it is 

obvious   in   this figure, all  the followers' heading  angles  are 

tracking the leader's heading angle and they have converged to 

the desired heading angle. 
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Fig. 5. The first-order time derivative of all agents’ position. 

 

 
Fig. 6. The second-order time derivative of all agents’ 

position. 

VI. CONCLUSION 

In this paper, the formation and tracking problem of a group of 

quadrotors were investigated. Under the leader-follower 

strategy, a control input signals were designed such that the 

closed-loop system achieve a formation and track their leader. 

The convergence of the followers and leader to the predefined 

formation and leader tracking were corroborated through a 

mathematical proof. It should be noted that, by employing this 

control strategy, any kind of formation is feasible. Moreover, 

a height and heading angle regulation were also designed to 

improve the free movement of the leader in the X Y plane. 

 
Fig. 7. The third-order time derivative of all agents’ position. 

 

 
Fig. 8. Heading angle of all agents and their first-order time 

derivative. 
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