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Abstract- In this paper the reflection coefficient of electromagnetic wave incidence on the
walls of the buildings and obstacles that occurs in mobile communication path was
modified by solving the Riccati nonlinear equations. For this purpose, the building walls are
assumed inhomogeneous layers where their permittivity changes as [unction of the wall
thickness. Using this reflection coefficient, a new propagation model based on UTD and
GTD (uniform geometrical theory of diffraction and geometrical theory of ditfraction) for
multiple diffraction paths is proposed. Using this model, the diffraction loss as well as the
path loss for a row of buildings with two inhomogeneous faces are calculated and compared
with measured data. Comparison of theoretical and measured results reveals that the
modified reflection coefficient can adequately predict the reflective properties of the
building walls. Moreover, results obtained with the proposed UTD meodel are in good
agreement with the measurement data. Therefore, the modified reflection coefficient as well
as the new UTD model can be used for estimation of multipath signals strength, diffraction
loss and also path delay in ray tracing algorithms used in mobile communication, radar and
radio links.

Keywords: Mobile Communication. Path Loss Prediction, UTD/GTD. Higher Order Diffraction

Coefficient, Multiple Diffraction and Inhomogencous Medium.

1. Introduction

With the rapid development of radio
communications including cellular. wireless
and portable communication, radio waves
from HF to microwave bands are now in use
everywhere. However, the attenuation of radio
wave caused by reflection and diffraction from
the buildings and obstacles in the radio path
lead to sever problems in the communication
channel. Therefore. in designing such links the
prediction of received signal for optimum
estimation of transmitter power, receiver noise,
antenna gain, position of the base stations and
characteristics of handset is very important.
However in order to predict the attenuation
caused by buildings and obstacles, different
methods such as ray tracing, GTD/UTD and
physical optics (P.O) which are high frequency
and asymptotic solutions of Maxwell equations
have been used [1-3]. Even though these
approaches are high frequency approximation,
but they are relatively efficient for field
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estimation in cellular mobile communication,
radar and radio link design.

The ray tracing method assumes that the
electromagnetic field is the sum of individual
contributions associated with the rays and
accordingly the received signal is sum of
direct. reflection and diffraction rays [2]. Also
it can be easily shown that in P.O. the received
fields are related to the reflection coefficient in
a direct manner. Therefore, ray tracing,
GTD/UTD and P.O. approaches are based on
the coefficients of diffracted and reflected rays.
So the accuracy of the field estimation directly
relates to these coefficients. However, up to
now many researchers have studied these
coefficients and tried to modify them for
different surface. especially there are many
approaches for modification of the diffraction
coefficient [3-6]. It can be argued that in path
loss estimation, the reflection coefficients are
at least as important as the diffraction
coefficients.
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Moreover most of the reflection coefficients
used in ray-tracing, UTD/GTD and P.O. are
based on first-order reflection coefficient
(Fresnel reflection cocfficient) but as it is
known the first-order reflection coefficient at
most can predict the reflected field for smooth,
thick and infinitely long structure which such
surface rarely exists in reality, since the
reflected field in the mobile path occurs from
the buildings and streets which are rough and
finite in size. Therefore, [or better path loss
prediction the first order reflection coefficient
has to be modified especially in the area where
the surface roughness is high. This problem
has mentioned in Reference [7] where it was
suggested that for a smooth surface the first
order reflection coefficient can predict the
reflected wave with reasonable accuracy, but
for rough surface with finite width and
thickness it was concluded that the first order
reflection coefficient is inadequate and not
good enough for field estimation.

Therefore, this paper considers rellection
coefficient for indoor and outdoor wireless
communication and concludes that for
homogeneous  medium  with  moderate
roughness, the first-order reflection coefficient
obtained from linear equation, is adequate. But
for inhomogencous medium the reflection
coefficient is usually complex and can be
expressed with nonlinear equation such as
Riceati equation [8]. On the other hand, most
of the nonlinear equations usually do not have
analytic and exact solutions, so they have to be
solved numerically with respect to different
profiles. Therefore, for solving the Riccali
equation the first step is to find the path profile
and then approximating the nonlinear equation
for that profile. The second step is to use the
suitable numerical approach. However, it can
be shown that when the reflection coefficient
of the layer i1s weak, the Riccati differential
equation can be solved iteratively [8].

The structure of this paper is as follows: in
section I1 we outline the reasons for modifying
the reflection coefficient and in section III the
new reflection coefficients are introduced. In
section IV the solution of the deterministic
reflection coefficient in relation to the
diffraction coefficient are provided. In section
V the solution of the stochastic reflection
coefficient in relation (o the diffraction
coefficient are provided. In section VI
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application of the modilied reflection
coefficient in diffraction coefficients and the
new model for diffraction loss estimation are
also presented. Finally, the theoretical results
obtained for the reflection coefficient and
diffraction loss are compared with the
measurement data.

2. Reasons for modification of the
reflection coefficient
In this section, we provide the rcasons for

justifying the reflection coefficient
modification required for radio wave
propagation. As mentioned above, for
estimating the wave attenuation function

caused by a building in wireless networks,
different methods have been applied and most
of these methods use reflection coefficient
directly or indirectly in their procedure for path
loss calculations. For example. the well known
method for field estimation in the mobile
network is ray tracing, GTD/UTD and Physical
Optics based solution, where the accuracy of
these methods relies on the reflection
coefficient accuracy. That is. because ray
tracing method is the asymptotic solution of
Maxwell's equation and accordingly, the
electric field received at the receiver is the sum
of N rays (paths) that connect the source and
the point of observation. These paths are:
direct, reflected, diffracted. transmitted,
reflected—diffracted. double—reflected, higher—
order terms of reflection, diffraction rays and
combination of them. Therefore, it is obvious
that the reliability and accuracy of ray tracing
methods depends heavily on the reflection
coefficient used in the calculation procedure.

On the other hand, P.O. approach or
Kirchhoff-Huygens methods  not only have
been applied in urban and rural areas for
predicting multiple diffraction caused by
obstacles in the path. butl also they have been
widely used as the deterministic methods for
calculating the field scattered by the surfaces
of the obstacles in the radio path. In fact the
P.O. and ray tracing are also high frequency
approximations ol Maxwell's  equation
solution; these methods are extensively used
for cell coverage calculations [5, 9-10].

The diffraction coefficient applied in ray
tracing method for field calculations is defined
as [2, 11]:
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Where I, , represents the first-order reflection

coefficients ( Fresnel reflection coefficient ) of
the surfaces of the wedge at the edge for soft
and hard polarizations respectively.

Also D;, D, D, and D, are defined as:
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Where the parameters &, o, a', a . L. 8, ¢'
and transition function F(x) are defined in [2].
As it can be seen later in the slope diffraction
approximation, similar relation between
diffraction  coefficient  and  reflection
coefficient exists [ 12].

On the other hand, in order to calculate the
aperture fields using P.O. method we have:
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Again in these formulas /', represents the
Fresnel surfaces reflection Coefﬁuents of the
building's wall, 71 is the normal unit vector at
the surface point 7, H!,(¥)and E;,(F")are

the soft and hard components of the incident

magnetic and electric field vectors at the
surface point respectively. r is the distance
between the center of the facet and the
observation point 7 is a unit vector from the
center of the facet to the observation point and
S is the surface of the facet. As it can be clearly
seen from these equations, the reflection
coefficient plays an important role in field
calculation and estimation in mobile path,
using either P.O. or GTD/UTD methods.
Therefore, more accurate reflection coefficient
leads to better or more precise solution of the
path loss estimation in mobile, radar and radio
link calculations.

3. Reflection coefficient equations
The reflection coefficient of the reflecting wall
or ground that is extended to infinity along y
axis (in the x, y plane) can be modeled by
Fresnel reflection  coefficients, these
coefficients are the first-order approximations
of reflection coefficient [7]. For vertical and
horizontal polarization the reflected fields can
be obtained as:
E =TE, (1)
Where E;. E, are the incident and the
received electric fields respectively and T is
the first-order reflection coefficient. The
relation between transmitted and reccived
fields in terms of hard and soft (vertical and
horizontal) reflection coefficients are given as:

ET r . |E
o _ " § ( I 2}
E;: . Fh E;

Where I, , ( first order approximation ) are

as follow:

11('9)—6 cos@) — \E‘_—_Sln_(ﬂ) (13)
£ cos@ + E,. —sin’(6)

r6)= cos(@) — € —sin“(0) (14)

cos(@) ++€, —sin’ (&)
Now if we consider a homogeneous layer with

finite thickness (d) in this case the reflection
coefficients can be modified as:

[,(0)=(g —sin" ¢ —£" cos’ ()J[exp(ZJdﬂw' —sin’ 4 )— l]i
(exp(Zjdﬂo\f&'r—sm H,.){,ja',—sm 8 +& cost) —
(J& —sin’ @ —£, cosB)’) (15)
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(16)
with refer to Fig.l d is the thickness of the
reflection layer, # is incident angle, f, is phase
and £,
dielectric constant of the layer which is given

by:

constant is the complex relative

Z— 5
£ = Jﬂ_} (]?)

L

d=0).3m

Figure 1 incident and reflected ray in a brick wall

Further for a moderate rough surface with
Gaussian roughness having a height standard
deviation g < A, (h stand for height of
roughness) the reflection coefficient correction
factor is delined as |2]:

P ) 3
plx)=edy(x), x= 8( 1"!‘592"_*-(-9’_?) (18)

Where /,is the modified Bessel function of

order zero, hence the new Fresnel reflection

coefficients for rough surface can be
represented as:

U (rough)=1.p (19)
T, (rough) = (20)

Finally, for a layer of inhomogeneous
dielectric stab with diclectric constant change
along z-axes (¢ (z)) which is infinite along the
x and y axes as shown in Fig.2. Also if we
assume the incident wave to be plane wave
with transverse electric polarization (TE), with
an absorber. surface is located between the
transmitter and receiver (the absorber surface
absorb direct path between (ransmitler and
receiver as shown in Fig.1). The reflection
coefficients for this inhomogeneous slab can
be represented as below.

I

Figure 2 incident and reflected ray in
inhomogeneous layer

If we consider a plane wave incident to this
inhomogeneous layer, we have:

Bl vexp(—jk,xsin(@) + jk,zcos(8))  (21)

Where E'is incident wave, k, is wave number

and & is incident angle respectively. Also
from Maxwell's equations. we have:

oF
a—'—Jw;JH (22)
GE» = jouH . (23)
dx .

oH, OH

2O e (24)
B

Now for calculating the reflection

coefficient of this inhomogeneous layer we
represent the incident and reflected fields at
any point in the layer as:
B, =Alz) E;=B(z) (25)
it the new reflection coefficient, R, is defined
as:
_B(2)
Alz)
where R can be obtained from the solution of
the nonlinear differential equation known as
the Riccati equations which have the general
form:

(26)

/’

R =—j2k R+ f—(l R%) (27)

in this formula R1s derivative of R with
respect to z and can be written as:

R =—j2k R+ y(1-R*) (28)
also ¥ for TE and TM mode are given as:
L4 ;TE
et (29)
k)&
\ ELS ] k,
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Furthermore, for wave impedance similar
Riccati equation exists and is given by:

2
! - k. 2
i = J'kn l_[_‘_} n (30)
kl}
Where # is normalized impedance:
n=217, (31)

by changing the variable one can obtain
simpler Riccati equation as [8]:

gf:??f.fknzz"‘jkozn (32)
E=1+k2E (33)

After solving either of these Equations (28
or 33) the same answers for reflection

coefficients are obtained.

For solving these nonlinear equations we
need to determine boundary conditions. The
boundary condition in these problems is
obtained by assuming that the reflection
coefficient at the lowest layer is zero (since the
medium characteristics gradient does not exist
at that point).

4. Solution of the nonlinear Riccatti
equations

For solving nonlinear equations such as the
Riccati equation various numerical methods
such as method of moment. finite element,
finite difference method (FDM), and finite
difference time domain can be applied. In this
paper FDM has been applied.

As we know in FDM the stability is an
important requirement; therefore in order to
find which value of Az leads to the stable
condition, the Riceati equation must be solved
and checked for convergence with various
values of Az This is necessary since for
nonlinear equations stability condition does
not obey a linear and distinguished pattern.
Therefore for solving Riccati equation with
stable condition, first we discretize Riccati
equations (Equation (28)) in terms of wall
thickness:

R,. =—j\WaR, Az, (\—nAz)—sin" 6, +
. 60-RAD o popreR,
fle,(V—nAz)—sin g)
R,., =—j\WaR,Az £, (0~ nAz) —sin " 0, +
£,(\=nAz) £, —-nAz) (35)
F(fr{\— nAz)—sin' 9_) Y&, (V= nAz)

(\—=R)Az+ R,

(34)

Where in the above equations n varies from
0 to 100 which corresponds to z = Im and Az =
0.01 (z is the wall thickness). After substituting
different value of Az in Eq. (34) and (35) we
observed that the stable condition oceur if Az <
0.01m.

Having found stable condition, the
discredited reflection coefficient at any pointin
the wall can be obtained using above formulas
if the dielectric constant of the wall at different
point is known. Since it can be seen that Eq.
(34) and (35) depend on the electrical
properties of the wall or more generally on the
profile of the surface, therefore for this purpose
we assume that the walls' surface have
dielectric constant profile as shown in Figs. 3
and 4. (In Fig. 3 we assume that the wall
consists of one layer and in Fig. 4 two layers of
inhomogeneous bricks).

[
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'
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Figure 3 Permittivity as a function of z, for one
layer of inhomogeneous brick
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Figure 4 Permittivity as a function of z, for two
layers ol inhomogeneous brick
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With the above assumption and profiles 3 and
4 the nonlinear Riccati equation is solved with
FDM for TE and TM modes in this paper. The
calculated and measured results for magnitude
and phase of the reflection coefficient are
shown in Figs. 5. 6, 7, 8, 9, 10, for TE and TM
modes. Also in these figures for comparison,
the phase and magnitude of the first reflection
coefficient are plotted.
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Figure 5 Magnitude of reflection coefficient in
accordance to incident angle for TE mode and
profile shown in figure 3

It is clear from these figures that the results
obtained from the modified reflection
coefficient (Riccati equation) are more close to
measurement rtesults when compared with
either the first order or modified first order
reflection coefficient.

D_""."T'""":'"""'."'"""_'""""""""""""""""""'
simple fresrel reflection coeficiant p

Reflaction coefficiant phase

Incident angie (degree)
Figure 6 Phase of reflection coefficient in
accordance to incident angle for TE mode and
profile shown in figure 3
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Figure 7 Magnitude of reflection coefficient in
accordance to incident angle for TE mode and
profile shown in figure 4
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Figure 8 Phase of reflection coefficient in
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Figure 9 Amplitude of Reflection coetficient for
TM mode and profile shown in figure 3
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Figure 10 Amplitude of reflection coefficient in
accordance to incident angle for T™ mode and
profile shown in ligure 4

Furthermore. from these figures we conclude
that the phase obtained using Riccati nonlinear
cquation arc approximately the same as the
phase of the reflection coefficient for
homogeneous layer given by equations 15 and
16 but it differ from the phase obtained from
Eq.s 13 and 14. Therefore, as the phasc
reflection coefficient is an important parameter
in multipath delay calculation, the modified
reflection coefficient introduced in this paper
can estimate the phase and magnitude of the
reflection coefficient- as well as the reflected
and dilfracted ficld- for different walls with
any degree ol roughness with betler accuracy
compared with previous methods.

Also for TM mode and profiles given in
figures 3 and 4 the calculated and the
measured results are shown in figures 9 and
10.

5. Reflection coefficient calculation

for surface with stochastic roughness
The deterministic reflection coefficient
considered up to now cannot encompass all
scenarios. For this reason we assume the true
reflection coefficient is a while random
process with a mean function. The
deterministic Riccati equation is now invoked
by a stochastic reflection coefficient. The new
formulation is a deterministic Riccati equation
with a random input. The solution we seek to
obtain 1s the mean and the variance; the
variation, around this mean. Mean solution of
the Riccati equation on the other hand will

aA

provide the average propagation behavior for
all buildings. The variation around the mean
with respect to angle of incidence provides
how sensitive the propagation is with respect to
this angle. A foresight into the behavior of the
propagation  with respect to reflection
coefficient is the variance of the white random
process. This variance can serve as a measure
of uncertainty in our modeling strategy. It is
shown numcrically that the solution of the
Riccati equation is not a strong function of this
parameter when the angle of incidence is held
constant. The more the variance of the white
process, the more deviation exists beyond the
deterministic input. However, we reach an
unrealistic reflection coefficient for very large
variances of the additive white random process
as in Fig. 12.

Fig. 11 shows the reflection coefficient for
rough surface. The roughness of surface is
assumed to be normal probability density
function with standard deviation and mean are
equal to 0.1 and 0, respectively. Figure 12
presents the magnitude of the reflection
coefficient against the standard deviation of the
relative permittivity for profile shown in Fig. 4
and TE mode when the incident angle equals
60",

6. Application of the modified
reflection coefficient in diffraction

coefficient estimation
As mentioned in [13],
coefficient is given by:
Dy @@L, Bo)=Dy+ Ty oy Dol g Dst
F.i‘,h,ﬂ D4 (‘1’6)

the diffraction

where D;, D, , D; , D, are defined in
equations (2)-(5) and Iy . I’y o are reflection
coefficients of the face 0 and n of a wedge
respectively. As it can be seen from Eq. (36)
the diffraction coefficient depends on
reflection coefficient, therefore after applying
the modified reflection coefficients o the
above formula, the diffracted fields are
calculated as shown in Fig. [3. In this
calculation the incident field assumed to be
plane wave and the interior wedge angle 90
degree.
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Figure 13 Diffracted tield vs incident angle (plane
wave), n=3/2, 6=5°, £;=8 and 0=0.001 S/m.
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Also in Fig. 13, the diffracted field is
calculated using Holm diffraction coefficients.
As it can be seen from this figure the Holm
diffraction coefficient [13] has a deep null
when the incident angle is around 275 degree
which corresponds to a zero diffracted field or
shadow region. This null does not appear when
using diffraction coefficient with the modified
reflection coefficient. As it is well known, this
situation does not happen in practice since the
received field has a smooth behavior in the
shadow regions. Therefore. the diffraction field
calculated using the modified reflection
coefficient can estimate the diffracled fields
more closely than the diffraction coefficient
using the first order reflection coefficient. This
is because the modified reflection coefficient
can estimate the phase of the received reflected
field with more accuracy than then Fresnel
reflection coefficient.

Also in mobile communications the path
usually consists of a row of buildings.
therefore it is interesting to calculate the excess
path loss due to row of buildings using the
madified reflection and diffraction coefficient.
For this propose we assume n rows of
buildings with space width "d"” as shown in
Fig. 14, then the total electric field, at the n"
building can be written as:

Figure 14 n buildings spaced with distance "d".

,,,(”+1) - { — flond cos ¢ +{_%e—juﬁ+in-hmsm
¥ (37)
l—(D e:{mwscrmljj,r\/_)rr}
7l

l_“{)‘w1 el (o) ’,J-— |
where D, (a) and D, , (n/2) can be calculated

from equations 2-5 as [ollows [14]:

sh

D,®)=D,, (L=d,p=302,6=12+a,

fA'= n/2) (38)
Dy, W2) = D, (L = d2, ¢ = 32 ,
o =u/2,f'=n/2) (39)

Observation poing
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Furthermore, with reference to Fig. 15. Eq.
(37) can be modified by taking into account
the reflected path from ground. Therefore for
this new situation the corresponding equations
are modified as follows:

Figure 15 n row of buildings spaced with
distance "d"and height "h"

— ke 1+ n=11coser)

(
,,,{H +1)= { = jhnd cos & n 12}(_ "
(40)

Jd

l_(DﬂNe;kdiLu\a‘—Ilf\/_} }}

1_ DH  Jhd (cosa—1) f-\/_

+E{R I f4<-J=
]—(D o Hdicos - l|}f\/_)nl}

fi= th- ;M{cosu—i:!‘/—

In Eq. (40) R is the reflection coefficient from
ground which can be obtained from Eq. (28).

Finally it can be argued that the higher
order diffraction term can play an important
role in the diffraction mechanism and ignoring
them usually leads to errors in field estimation,
especially in the multiple wedge cases (which
normally occurs in mobile communication,
radar, radio wave propagation and NDT).
Therefore, in order to consider the higher order
diffraction coefficients for two wedges, the
received field is modified by using the new
reflection coefficient as well as the higher
order term diffraction coefficient as shown
below [lSJ:

-—_H.-rHH-: n—2joas |

$r, NS SeSym nm Jk':, da" dgy"
(41)
In this formula S.. §;. S> and §; are defined
in [13].

The first order diffracted field is obtained
by putting, m = 0 in Eq. (41). The received

a7

field £

Eq. (41) by ignoring the diffraction coefficient
higher than 5 since it was observed that the
higher terms (>5) do not change the result
more than 1%. so they can be ignored without
losing accuracy.

The calculated results using Equation (41)
for configuration 14 and 15 with higher order
(5" order) diffraction coefficients (using
modified reflection coefficient) are shown in
Fig. 18.

It can be seen from Fig. 18 that the settling

behavior occurs for the electric field when n >
5 (number of building) therefore it is accurate
enough to calculate the electric or excess path
loss when the number of building are greater or
equal to 5.
In this paper with the above assumptions. the
excess power loss for multiple diffraction from
buildings is calculated using both the first-
order and modified reflection coefficient
(diffraction  coefficient ~ with  modified
reflection coefficient and also taking into
account the higher-order term for diffraction
coefficient as given by Eq. (41)).

. I this paper is also calculated using

N i
? /P”_
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T
slollsml "dedree : !

i alpham 2 dogioa---—|

Field amalitue

TahaST T degke |

z al‘pﬁ.-,—TI"'d'egxpé

03 : e b
; i g S R
o o e e e e e e
o 1 2 3 4 5 b s 8 g L]
Buiidieg numbaer, n

Figure 16 Field amplitude vs. building number for
multiple diffraction from roof of buildings

The results are plotted in Fig. 19, also in this
figure the measurement obtained from
reference [15] for a row of buildings is shown.
As it can be seen from Fig. 19 the proposed
model agrees more closely with the
measurement data. This justifies our argument
about the need for modification of the
reflection coefficient as well as taking into
account higher-order terms for diffraction
coefficient, if better ficld estimation in mobile
communications is required.
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7. Conclusions

In this paper. we have shown that the normal
reflection coefficient that is usually used in the
past for path loss estimation is not accurate
enough for calculating the reflected and
diffracted fields in mobile communications.
We introduced a modified reflection
coefficient that originates from the Riccati
nonlinear equation for this purpose. By
applying the modified reflection and
diffraction coefficients to a row of buildings
with inhomogeneous profile, the excess path
loss as well as the diffraction loss was
calculated. It was observed that the results
obtained from this model agree more closely
with the measurement data, this is so since the
new reflection coefficient relies on the
nonlinear equation and exact profile of the
media. Therefore, any profile (deterministic or
stochastic) for walls can be implemented and
reflection and diffraction coefficient can be
estimated for them. Also in this paper the path
losses are calculated by using the new
reflection coefficient as well as higher-order
diffraction coefficient for a row of buildings.
The results obtained in this paper for phase and
magnitude of the reflection coefficient as well
as for diffraction loss are in close agreement
with the measurement data obtained elsewhere.
Therefore. it can be concluded that by using
the modified reflection coefficient and adding
higher-order terms for the diffraction
coefficient, the path loss can be estimated more
accurately.
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