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Abstract: In this paper, we describe our 
implementation of an interior point algorithm for large 
scale systems. First we identify system with small and 
medium methods convex optimization, then we use 
interior point method for identification. Finally we 
offer an interior point method that uses nonlinear cost 
function and see that we achieve a good trade-off 
between error and CPU time. Actually, in this paper, 
we are looking for a method that can identify large 
scale systems with low model order, error and CPU 
time of solution of simulation. Previous articles didn’t 
check the order of the computed model, and the 
relationship between the error and CPU time. We 
assume that the model of our simulation is ARMA. We 
are going to identify a large scale system and compute 
the error and CPU time and compare the relationships. 
Examined data in this paper is related to cutaneous 
potential recordings of a pregnant woman. These data 
are pendulous and have a large standard deviation; 
therefore, it can’t be fitted with ordinary curve fittings, 
so we use the smoothing spline for computing the 
order of the model. Finally, we checked the influence 
of the number of data on error and CPU time and order 
of model. 
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1. Introduction 
System Identification is about building mathematical 
models of dynamical systems from observed input-
output signals. There is a very extensive literature on 
the subject, with many text books, like [1] and [2]. 
Most of the techniques for system identification have 
their origins in estimation paradigms from 
mathematical statistics, and classical methods like 
Maximum Likelihood (ML) have been important 
elements in the area. In this article the main 
ingredients of this state-of-the-art view of System 
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Identification will be reviewed. This theory is well 
established and is deployed e.g. in the software [3]. 
The estimates show attractive asymptotic properties 
and the methodology has been used extensively and 
successfully. Some problems can however be listed: 
(1) the selection of model structures (model orders) is 
not trivial and may compromise the optimality 
properties, in particular for shorter data records, and 
(2) the typically non-convex nature of the criteria may 
cause numerical optimization artifacts (like ending up 
in non-global, local minima). Therefore there is a 
current trend to enforce estimation methods based on 
convex formulations. So recently, alternative 
techniques, mostly from machine learning and the 
convex optimization area have emerged. Also these 
have roots in classical statistical (Bayesian) theory. 
The main elements of these will also be reviewed here. 

In recent years there has been growing interest in 
convex optimization techniques for system 
identification and time series modeling. In [4-5] this 
interest is motivated by the success of convex methods 
for sparse optimization and rank minimization in 
signal processing, statistics, and machine learning, and 
by the development of new classes of algorithms for 
large-scale, such as interior point method, nonlinear 
optimization method, Proximal gradient algorithms 
and Alternating Direction Method of Multipliers. 
Low-dimensional model structure in identification 
problems is typically expressed in terms of matrix rank 
or sparsity of parameters. 

In optimization formulations this generally leads to 
non-convex constraints or objective functions. 
However, formulations based on convex penalties that 
indirectly minimize rank or maximize sparsity are 
often quite effective as heuristics, relaxations, or, in 
rare cases, exact reformulations. The best known 
example is 1-norm regularization in sparse 
optimization, i.e., the use of the 1-norm 1

x  in an 
optimization problems a substitute for the cardinality 
of a vector x. 
This idea has a rich history in statistics, image and 
signal processing [6-10]. And an extensive 
mathematical theory has been developed to explain 
when and why it works well [11-15]. The other norms 
also has been used in different papers for identify with 
convex optimization such as nuclear norms, Tikhonov 
norm and Chebishov norm. And the other convexity 
issue has been discussed in other papers [16-18]. But 
in none of them error and CPU time and order of 
system that identified didn’t checked. 

In this paper we will identify a system with a 
convex optimization method and we will compute 
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error and order of the answer and CPU-time and 
compare these values and discover the relationships 
between them. We will increased data and identify 
large scale systems with this method and interior point 
algorithm and compare these methods. And finally we 
will offer an interior point algorithm with nonlinear 
objectives. 

 
2. Small and medium sized problems 
The simplest norm approximation problem is an 
unconstrained problem of the form 

minimize Ax b−  
(1) 

where m nA R ×∈   and mb R∈ are problem data, 
nx R∈ is the variable, and .  is a norm on mR . A 

solution of the norm approximation problem is 
sometimes called an approximate solution of Ax b≈ , 
in the norm . . The vector r Ax b= −  is called the 
residual for the problem; its components are 
sometimes called the individual residuals associated 
with x . 

The norm approximation problem is a convex 
problem, and is solvable, i.e., there is always at least 
one optimal solution. Its optimal value is zero if and 
only if ( )b R A∈ . 

Inasmuch as our data is pendulous so for 
smoothing the solution of the simulation we have to 
use regularization method for cost function and 
identification. 

In this method we need to use prior knowledge. In 
this paper we assume that our model is an 
autoregressive moving average model and ϕ  is 
regression vector and we use 2 step-ahead data for 
smoothing. So we define the function α  as below: 

2 ( 2)
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Now we can define cost function that we will use 
in our simulation as below: 

2 2 2

2 2 2
(1 )minimize x b x xβ ϕ λ λ α− + + −

 

(3
) 

 Where 5 ( )maxβ λ≥ , and φ  is regression 
vector of ARMA model and 0 1λ< < . 

 
3. Interior point algorithm 
For small and medium sized problems the applications 
discussed in the previous sections can be handled by 
general-purpose convex optimization solvers, such as 
the modeling packages CVX [19] and YALMIP [20], 

and general-purpose conic optimization packages. In 
this section we discuss algorithmic approaches that are 
of interest for large problems that fall outside the 
scope of the general-purpose solvers. 

Interior-point algorithms are known to attain 
a high accuracy in a small number of iterations, fairly 
independent of problem data and dimensions. The 
main drawback is the high linear algebra complexity 
per iteration associated with solving the Newton 
equations that determine search directions. 

However sometimes problem structure can be 
exploited to devise dedicated interior-point 
implementations that are significantly more efficient 
than general purpose solvers. In interior point 
algorithm we use linear programming, so we start 
form a description of linear programming. 

 
4. Linear programming 
We consider the following primal linear program: 

. .
0

0

T

i i

i

miiin c x
s t Ax b

x u i I
x i J

=
≤ ≤ ∈

≤ ∈

 

(4) 

Where m nA R ×∈ , which determines the sizes of 
other vectors involved, and I  and J are disjoint index 
sets such that { }1,2,...,I J n∪ =  and I J∩ =∅. 

Without loss of generality, let us assume that for 
some positive integer un n≤  

{ } { }1,2,..., 1, 1,..., .u u uI n and J n n n= = + +   

Given a vector x in nR , we use the notation ux  

for the vector in unR  whose elements are the first un  

elements of, i.e., [ ] , 1,2,..., n .u i ui
x x i= =   

Moreover, we define the appending operator “app” 
from unR  to nR  that appends un n−  zero to vectors 

in unR , i.e., for unw R∈ : 

[ ] , 1
( )

0, .
i u

i
u

w i n
app w

n i n
≤ ≤

=  ≤ p
 

(5) 

By adding the slack variable uns R∈ , now we can 
rewrite the above linear program into the standard 
form: 

. .

0, 0

T

u

miin c x
s t Ax b

x s u
x s

=
+ =

≥ ≥

 

(6) 

The dual of the above standard primal linear 
program is:  
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. . ( )
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(7) 

Where ,y z and w are the dual variables and 
slack. 

It is well known that the solution of the primal and 
the dual linear programs, if they exist, satisfy the 
following KKT conditions which is a system of linear 
quadratic equations with no negativity constraints on 
some variables: 

( , , , , ) 0, ( , , , ) 0,( )
u

T

Ax b
x s u

F x z s w y x z s wA y z app w c
xz
sw

− 
 + − 
 = = ≥+ − −
 
 
 
 

 

(8) 

where xz and sw denote component wise 
multiplications and the equations 0xz =  and 

0sw =  are called the complementarily conditions for 
the linear program. 

For nonnegative variables , , , ,x s z w  we will call 
the quantity T Tx z s w+  the duality gap. The duality 
gap measures the residual of the complementarily 
portion of F  in 1l -norm when ( , , , ) 0.x z s w ≥  A 
straightforward calculation shows that the Jacobin 
matrix of ( , , , , )F x z s w y  is 
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(9) 

 where [ ]0T
uE I= , uI  is the identity matrix of 

dimension un , ( )X diag x= , ( )Z diag z= , 
( )S diag s=  and ( )W diag w= . Unlike a primal 

method which concentrates on solving the primal 
program, a primal interior point method for linear 
programming solves the KKT, which includes all the 
primal and dual variables and slacks. 
 
5. Newton’s method 
Solving a linear program is equivalent to solving a 
system of linear quadratic equations with no negativity 
constraints on a subset of variables. In order to 
simplify our coming discussion, we rewrite the KKT 
into a constrained algebraic system of l  equations and 
l variables with no negativity constraints on l+  
variables: 

( ) 0, 0, 1iF v v i l+= ≥ ≤ ≤  (10) 

where 
( , , , , ), 2 2 2 2u uv x z s w y l n n m and l n n+= = + + = + . 

Let us first drop the no negativity constraints from 
equation and consider Newton’s method for solving an 

unconstrained system of nonlinear equations 
( ) 0.F v =  
Which can be written as: 

1 1( ) ( ).k k k kv v F v F v+ −′= −  (11) 

It is well known that Newton’s method has 
excellent local convergence properties. More 
specifically if the Jacobin matrix ( )F v′  is nonsingular 
and Lipchitz continuous at a solution v ∗ , and the 
initial point 0v  is sufficiently close to v ∗ , then the 
iterate sequence { }kv  converges to v ∗ Q-quadratic. 
On the other hand, Newton’s method generally does 
not have very good global convergence properties. A 
variant of Newton’s method is called the damped 
Newton: 

1 1( ) (v )k k k k kv v F v Fα+ −′= −  (12) 

Which introduces a damping factor, or step length, 
kα , usually chosen from the interval (0,1] , to 

enhance global convergence. Another variation of 
Newton’s method is the so-called composite Newton’s 
method.  

At each iteration, it calculates an intermediate point 
ˆkv and uses the same Jacobin matrix twice: 

1 1 1ˆ ˆ ˆ( ) ( ), ( ) ( ).k k k k k k k kv v F v F v v v F v F v− + −′ ′= − = −
 

(13
) 

Equivalently, we can shorten the expression as 
1 1 ˆ( ) ( ( ) ( )).k k k k kv v F v F v F v+ −′= − +  (14)    

In terms of linear algebra work, the composite 
Newton requires one matrix factorization per iteration, 
same as for Newton’s method, but two back-solves 
instead of one. Since matrix factorization are usually 
much more expensive than back-solves, the required 
work per iteration for the composite Newton is 
comparable with that for Newton’s method. However, 
under similar conditions, the composite Newton has a 
Q-cubic asymptotic convergence rate, one order faster 
than that of Newton’s method. 

Similarly, one can introduce a damping factor into 
the composite Newton’s method: 

1 1 ˆ( ) ( ( ) ( )).k k k k k kv v F v F v F vα+ −′= − +  (15) 

6. Simulation results 
Examined data in this paper is related to cutaneous 
potential recordings of a pregnant woman. This data 
are pendulous and has a large standard deviation, 
therefore it can’t be fitted with ordinary curve fittings, 
so we use the smoothing sp-line for computing the 
order of model. 
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Figure 1. potential recordings of a pregnant woman 

 

Now with assuming cost function that mentioned 
in previous section we are going to identify the system. 
For computing the order of the answer we use the 
smoothing sp-line for fit. 

The smoothing spline s  is constructed for the 
specified smoothing parameter p  and the specified 

weights iw . The smoothing spline minimizes  
2

2 2
2( (x )) (1 ) ( )i i i

i

d sp w y s p dx
dx

− + −∑ ∫  (16) 

If the weights are not specified, they are assumed 
to be 1 for all data points. p is defined between 0 and 
1. 

p = 0 produces a least-squares straight-line fit to the 
data, while p = 1 produces a cubic sp-line interplant. 

Now we can define cost function that we will use 
in our simulation as below: 

2 2 2

2 2 2
(1 )minimize x b x xβ ϕ λ λ α− + + −

 

(17
) 

Where 5 ( )maxβ λ≥ , and φ  is regression vector 
of ARMA model and 0 1λ< < . 

In curve fitting problems we have a parameter R-
square that if this parameter is 1 that means our fit is 
match with the real data. Here we set

0.9R square− = , and compute parameter p for 
different values for λ .  

Now if we use interior point method that discussed 
in previous section we will achieve this information. 

 
Table 1: Model Characteristics for different values for n 
obtained with interior point algorithm 

N BETA_OPT E_OPT P_OPT CPU_TIME 

100 0.95 6.9321 0.984341 336.45 

250 0.85 6.4522 0.983903 350.43 

500 0.8 5.9555 0.983318 412.74 

750 0.65 5.0012 0.983004 503.45 

1000 0.6 4.0947 0.98276 602.69 

1250 0.5 3.9134 0.98264 650.354 

1500 0.35 3.7634 0.98244 714.34 

1750 0.3 3.6435 0.98226 769.45 

2000 0.2 3.52145 0.98212 823.4 

 
Now if we identify our data with interior algorithm 
that explained in previous section with nonlinear cost 
functions and do same things that in previous sections 
we did, we will achieve these results. 
 

Table 2: Model Characteristics for different values for n 
obtained with convex optimization, interior point algorithm 
with and without nonlinear cost functions 

N E(CV
X) 

CPU(C
VX) 

E(IP
M) 

CPU(IP
M) 

E(IPM.
NL) 

CPU(IPM.
NL) 

100 5.0012 0.82 6.9321 336.45 5.4121 388.45 

250 4.2053 3.57 6.4522 350.43 4.9322 402.43 

500 3.455 12.74 5.9555 412.74 4.4355 464.74 

750 2.6031 22.3 5.0012 503.45 3.4812 555.45 

1000 1.5946 42.69 4.0947 602.69 2.5747 654.69 

1250 1.4032 160.3 3.9134 650.354 2.3934 702.354 

1500 1.2043 484.3 3.7634 714.34 2.2434 766.34 

1750 1.1432 803.4 3.6435 769.45 2.1235 821.45 

2000 1.0218 1523.4 3.5214
5 823.4 2.00145 875.4 

According to Table 2 we see that convex optimization 
method in small and medium sized problems give us 
very good CPU time that is less than other methods 
that offered. And also this method gives us less error 
than interior point method with and without nonlinear 
cost functions in these sizes of problems. 

But if we use this method in large scale problems, 
likewise it will give us good error but CPU time 
increase strongly and with exponential function, that 
is not desirable, so we cannot use this method in large 
scale problems. According to the results in Table 2 we 
see that IPM in large scale has less CPU time in large 
scale so we should use this method in these types of 
problems(see figure 3,4). Only thing that remains is 
the error of these answers that seen is very much than 
convex problems and maybe is not acceptable. In this 
section we use interior point method with nonlinear 
cost function that come in below.  

2 2 2 2 2

2 2 2 2 2
(1 )minimize x b x x x b xβ ϕ λ γ α λ γ φ− + + + − − −  

 
Figure 2. Error of outputs that has been identified with the 
proposed algorithm  

 
Where 5 ( )maxβ λ≥ , and φ  is regression vector 

of ARMA model and 0 , , 1λ γ λ γ< + < . 
If we use this cost function and identify our data 

with interior point method we will achieve the results 
that come in Table 2. 
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Figure 3. CPU time of identify system with different 
algorithms 
 
According to the results we see that with this method 
howbeit CPU time increased a little but we reduce 
error and this is a good trade-off between error and 
CPU time. Now we calculate error of outputs that has 
been identified with the proposed algorithm. In figure 
2 we see that the error of our model is soupcon and 
this model is accepted. 
 

 
Figure 4. Error of outputs that has been identified with the 
proposed algorithm  

 
7. Conclusions 
Convex optimization method in small and medium 
sized problems gives us very good CPU time that is 
less than other methods that offered. And also this 
method gives us less error than interior point method 
with and without nonlinear cost functions in these 
sizes of problems. But if we use this method in large 
scale problems, likewise it will give us good error but 
CPU time increase strongly and with exponential 
function, that is not desirable, so we cannot use this 
method in large scale problems. We see that IPM in 
large scale has less CPU time in large scale so we 
should use this method in these types of problems. 
With this method howbeit CPU time increased a little 
but we reduce error and this is a good trade-off 
between error and CPU time. 
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