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Abstract: In  this paper, we describe our
implementation of aninterior point algorithm for large
scale systems. First we identify system with small and
medium methods convex optimization, then we use
interior point method for identification. Finaly we
offer an interior point method that uses nonlinear cost
function and see that we achieve a good trade-off
between error and CPU time. Actualy, in this paper,
we are looking for a method that can identify large
scale systems with low model order, error and CPU
time of solution of simulation. Previous articlesdidn’t
check the order of the computed model, and the
relationship between the error and CPU time. We
assumethat the model of our smulationisARMA. We
are going to identify alarge scal e system and compute
the error and CPU time and compare the relationships.
Examined data in this paper is related to cutaneous
potential recordings of a pregnant woman. These data
are pendulous and have a large standard deviation;
therefore, it can't befitted with ordinary curvefittings,
so we use the smoothing spline for computing the
order of the modd. Finally, we checked the influence
of the number of dataon error and CPU time and order
of model.
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1. Introduction

System ldentification is about building mathematical
models of dynamica systems from observed input-
output signals. There is a very extensive literature on
the subject, with many text books, like [1] and [2].
Most of the techniques for system identification have
their origins in edtimation paradigms from
mathematical statistics, and classica methods like
Maximum Likdihood (ML) have been important
dements in the area. In this article the main
ingredients of this state-of-the-art view of System
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Identification will be reviewed. This theory is well
established and is deployed e.g. in the software [3].
The estimates show attractive asymptotic properties
and the methodology has been used extensively and
successfully. Some problems can however be listed:
(1) the selection of model structures (modd orders) is
not trivill and may compromise the optimality
properties, in particular for shorter data records, and
(2) the typically non-convex nature of the criteriamay
cause numerical optimization artifacts (like ending up
in non-global, loca minima). Therefore there is a
current trend to enforce estimation methods based on
convex formulations. So recently, alternative
techniques, mostly from machine learning and the
convex optimization area have emerged. Also these
have roots in classica statistical (Bayesian) theory.
Themain elements of these will also bereviewed here.

In recent years there has been growing interest in
convex optimization techniques for system
identification and time series modeling. In [4-5] this
interest ismotivated by the success of convex methods
for sparse optimization and rank minimization in
signal processing, statistics, and machinelearning, and
by the development of new classes of algorithms for
large-scale, such as interior point method, nonlinear
optimization method, Proximal gradient algorithms
and Alternating Direction Method of Multipliers.
Low-dimensional model structure in identification
problemsistypically expressed in termsof matrix rank
or sparsity of parameters.

In optimization formulations this generally leadsto
non-convex constraints or objective functions.
However, formulations based on convex penaltiesthat
indirectly minimize rank or maximize sparsity are
often quite effective as heurigtics, relaxations, or, in
rare cases, exact reformulations. The best known
example is 1-norm regularization in sparse

optimization, i.e., the use of the 1-norm || X||l in an

optimization problems a substitute for the cardinality
of avector Xx.
This idea has a rich history in statistics, image and
signal  processing [6-10]. And an extensive
mathematical theory has been developed to explain
when and why it works well [11-15]. The other norms
a so has been used in different papersfor identify with
convex optimization such as nuclear norms, Tikhonov
norm and Chebishov norm. And the other convexity
issue has been discussed in other papers [16-18]. But
in none of them error and CPU time and order of
system that identified didn’t checked.

In this paper we will identify a system with a
convex optimization method and we will compute
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error and order of the answer and CPU-time and
compare these values and discover the relationships
between them. We will increased data and identify
large scale systems with this method and interior point
algorithm and compare these methods. And finally we
will offer an interior point algorithm with nonlinear
objectives.

2. Small and medium sized problems
The simplest norm approximation problem is an
unconstrained problem of the form

minimize||Ax - b|| )
where AT R™" and b1 R™are problem data,
x 1 R"is the variable, and |||| isanormonR™. A

solution of the norm approximation problem is
sometimes called an approximate solution of AX » b ,

in the norm||.|| . Thevector r = Ax - b iscaled the

residual for the problem; its components are
sometimes called the individual residuals associated
withX .

The norm approximation problem is a convex
problem, and is solvable, i.e., thereisalways at |east
one optimal solution. Itsoptimal valueis zero if and
onlyifbT R(A).

Inasmuch as our data is pendulous so for
smoothing the solution of the simulation we have to
use regularization method for cost function and
identification.

In this method we need to use prior knowledge. In
this paper we assume that our model is an
autoregressive moving average model and | is
regression vector and we use 2 step-ahead data for
smoothing. So we define the function a as below:
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Now we can define cost function that we will use
in our simulation as below:

minimize b||j x - b2 +1 [ x| +@- 1)]a> ©

)

Whereb 3 5max (I ), and f is regression

vector of ARMA model and 0<| <1.

3. Interior point algorithm

For small and medium sized problemsthe applications
discussed in the previous sections can be handled by
general-purpose convex optimization solvers, such as
the modeling packages CV X [19] and YALMIP [20],

@
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and general-purpose conic optimization packages. In
this section we discuss a gorithmic approachesthat are
of interest for large problems that fall outside the
scope of the general-purpose solvers.

Interior-point algorithms are known to attain
ahigh accuracy in asmall number of iterations, fairly
independent of problem data and dimensions. The
main drawback is the high linear algebra complexity
per iteration associated with solving the Newton
eguations that determine search directions.

However sometimes problem structure can be
exploited to devise dedicated interior-point
implementations that are significantly more efficient
than genera purpose solvers. In interior point
agorithm we use linear programming, so we start
form a description of linear programming.

4, Linear programming
We consider the following prima linear program:

miiin c'x 4
st. Ax =b

OE£x, £u, il

0£x, i1

WhereAT R™", which determines the sizes of
other vectorsinvolved, and | and J aredigoint index

setssuchthat | EJ ={1,2,..,n} and | CJ =A.
Without loss of generality, let us assume that for
some positiveinteger N, £n
| ={1,2,..,n,} and J ={n, +1n, +1..,n}.
Given avector X inR", we use the notation X,
for the vector in R™ whose elements are the first n,
elementsof, i.e, [xu] =X;,1 =12,..,n,.

Moreover, we define the appending operator “app”
from R™ toR" that appends N- N, zero to vectors

in R™ i.e,forw1 R™:

1£i £n, ©)

[ppt)] =1
PP ‘_}0, n,pi £n.

By adding the slack variablesT R™ , now we can
rewrite the above linear program into the standard
form:

miin c'x (6)
st. Ax =b

X, +sS=u

x30s30

The dua of the above standard primal linear
programis:
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max by -u'w (7)
st. ATy +z-appw)=c
z30w:30

Where y,z and w are the dua variables and

dack.

It iswell known that the solution of the primal and
the dua linear programs, if they exist, satisfy the
following KKT conditions which is asystem of linear
guadratic equations with no negativity constraints on
some variables:

@ Ax-b ) )
& X, +s-u -
F(x,z,sW,y)=CATy +z - appw)-c+=0, (Xx,z,5w)3 (
g Xz :
& sw o
where Xzand Sw denote component wise

multiplications and the equations xz =0 and
sw =0 arecalled the complementarily conditionsfor
the linear program.

For nonnegative variables X,S,z,w, wewill cal

the quantity X' z +s'w the duality gap. The duality
gap measures the residua of the complementarily
portion of F in | ,-norm when (x,z,s,w)3 0. A
straightforward calculation shows that the Jacobin
matrix of F(x,z,s,w,Yy) is

A 0 0 0 Ou 9)

g 01, 0 o0y
F&x,z,sw,y)=€0 | 0 -E A"

8Z X 0 0 oy

€0 O W S 0§
where ET =[1, 0], I, is the identity matrix of
dimenson n,, X =diag(x), Z =diag(z),

S =diag(s) and W =diag(w). Unlike a primal
method which concentrates on solving the primal
program, a primal interior point method for linear
programming solves the KKT, which includes all the
primal and dual variables and slacks.

5. Newton’s method

Solving a linear program is equivaent to solving a
system of linear quadratic equationswith no negativity
congtraints on a subset of variables. In order to
simplify our coming discussion, we rewrite the KKT
into aconstrained algebraic systemof | equationsand

| variables with no negativity constraints on |,
variables:

FWV)=0v, 30 1£i £1,
where
v=(X,z,sw,y),l =2n+2n,+m and |, =2n+2n,.

Let usfirst drop the no negativity constraints from
equation and consider Newton’ smethod for solving an

(10)
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unconstrained system  of
Fyv)=0.
Which can be written as:
Vk+1:Vk_ quk)_lF(Vk). (11)
It is well known that Newton's method has
excdlent local convergence properties. More
specifically if the Jacobin matrix F §v ) isnonsingular

nonlinear equations

and Lipchitz continuous a a solution v, and the
initial point v° is sufficiently close to v, then the
iterate sequence {v k} converges to v Q-quadratic.
On the other hand, Newton's method generaly does
not have very good globa convergence properties. A

variant of Newton’s method is called the damped
Newton:

Vk+1:Vk_aquvk)—1F(Vk) (]_2)
Whi ch introduces a damping factor, or step length,
a“, usudly chosen from the interva (0,1], to

enhance global convergence. Another variation of
Newton’ s method isthe so-called composite Newton's
method.

At eachiteration, it calculates an intermediate point

V' and uses the same Jacobin matrix twice:
VK =vE - P )RR, vt vk - Fvk) R EY).

k

(13
)

Equivalently, we can shorten the expression as
Vk+1:Vk_ ka)_l(F(Vk)‘l‘F(\;k)). (]_4)

In terms of linear algebra work, the composite
Newton requires one matrix factorization per iteration,
same as for Newton’s method, but two back-solves
instead of one. Since matrix factorization are usually
much more expensive than back-solves, the required
work per iteration for the composite Newton is
comparable with that for Newton’ s method. However,
under similar conditions, the composite Newton has a
Q-cubic asymptotic convergence rate, one order faster
than that of Newton’s method.

Similarly, one can introduce a damping factor into
the composite Newton’ s method:

Vk+1 :Vk _ akFQ\/k)—l(F(vk)_'_F(\;k)).
6. Simulation results
Examined data in this paper is related to cutaneous
potential recordings of a pregnant woman. This data
are pendulous and has a large standard deviation,
thereforeit can't befitted with ordinary curvefittings,
so we use the smoothing sp-line for computing the
order of model.

(15)
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Figure 1. potential recordings of a pregnant woman

Now with assuming cost function that mentioned
in previous section we are going to identify the system.
For computing the order of the answer we use the
smoothing sp-line for fit.

The smaoothing spline S is constructed for the
specified smoothing parameter P and the specified

weights W; . The smoothing spline minimizes
o N d 28 (16)
paw, (y, - s(x))’+@- p)o(dx—z)zdx
If the weights are not specified, they are assumed
to be 1 for dl datapoints. pis defined between 0 and
1
p = 0 produces aleast-squares straight-linefit to the
data, while p = 1 produces a cubic sp-line interplant.
Now we can define cost function that we will use
in our simulation as below:
minimize b [j x - b2 +1 | x|f +@- Dja x| @7

)

Where b 32 5max (I ), and f isregression vector
of ARMA model and 0<1| <1.

In curve fitting problems we have a parameter R-
sguare that if this parameter is 1 that means our fit is
match with the red daa Here we set
R - square = 0.9, and compute parameter p for
different vduesforl .

Now if we useinterior point method that discussed
in previous section we will achieve thisinformation.

Table 1: Model Characteristics for different values for n
obtained with interior point a gorithm

N | BETA_OPT | E.OPT | P.OPT | CPU_TIME
100 0.95 6.9321 | 0.984341 336.45
250 0.85 6.4522 | 0.983903 350.43
500 058 59555 | 0.983318 412.74
750 0.65 50012 | 0.983004 503.45
1000 06 40947 | 098276 602.69
1250 05 39134 | 0.98264 650.354
1500 0.35 37634 | 098244 714.34
1750 03 36435 | 0.98226 769.45
2000 0.2 352145 | 0.98212 823.4

Now if we identify our data with interior algorithm
that explained in previous section with nonlinear cost
functions and do same things that in previous sections
we did, we will achieve these results.

Table 2: Model Characteristics for different values for n
obtained with convex optimization, interior point algorithm
with and without nonlinear cost functions

N E(CV | CPU(C | E(IP | CPU(IP | E(IPM. | CPU(IPM.

X) VX) M) M) NL) NL)
100 | 50012 082 | 69321 | 33645 | 54121 388.45
250 | 42053 357 | 64522 | 35043 | 4.9322 402.43
500 | 3455 | 1274 | 5955 | 41274 | 4.4355 464.74
750 | 26031 223 | 50012 | 50345 | 3.4812 555.45
1000 | 15946 | 4269 | 40947 | 60269 | 25747 654.69

1250 14032 160.3 39134 | 650.354 2.3934 702.354

1500 1.2043 484.3 3.7634 714.34 2.2434 766.34

1750 1.1432 803.4 3.6435 769.45 21235 821.45
35214
5

2000 1.0218 1523.4

According to Table 2 we see that convex optimization
method in small and medium sized problems give us
very good CPU time that is less than other methods
that offered. And aso this method gives us less error
than interior point method with and without nonlinear
cost functions in these sizes of problems.

But if we use this method in large scale problems,
likewise it will give us good error but CPU time
increase strongly and with exponential function, that
isnot desirable, so we cannot use this method in large
scale problems. According to theresultsin Table 2 we
seethat IPM inlarge scale has less CPU timein large
scale so we should use this method in these types of
problems(see figure 3,4). Only thing that remains is
the error of these answers that seen is very much than
convex problems and maybe is not acceptable. In this
section we use interior point method with nonlinear
cost function that come in below.

minimize b [j x - b[} +1 [ x|} +gfa x|, +@- 1 - g)[f x - b

8234 2.00145 875.4
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Figure 2. Error of outputs that has been identified with the
proposed a gorithm

Where b 3 5max (I ),and f isregression vector
of ARMA model and 0<1I ,g,I +g<1.
If we use this cost function and identify our data

with interior point method we will achieve the results
that comein Table 2.
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Figure 3. CPU time of identify system with different
algorithms

According to the results we see that with this method
howbeit CPU time increased a little but we reduce
eror and this is a good trade-off between error and
CPU time. Now we cd culate error of outputs that has
been identified with the proposed a gorithm. In figure
2 we see that the error of our mode is soupcon and
thismodel is accepted.
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Figure 4. Error of outputs that has been identified with the
proposed algorithm

7. Conclusions

Convex optimization method in small and medium
sized problems gives us very good CPU time that is
less than other methods that offered. And aso this
method gives us less error than interior point method
with and without nonlinear cost functions in these
sizes of problems. But if we use this method in large
scale problems, likewise it will give us good error but
CPU time increase strongly and with exponential
function, that is not desirable, so we cannot use this
method in large scale problems. We see that IPM in
large scale has less CPU time in large scale so we
should use this method in these types of problems.
With this method howbeit CPU timeincreased alittle
but we reduce error and this is a good trade-off
between error and CPU time.
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