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Abstract 
This paper presents a multiobjective power 

control algorithm that updates the transmitted 

power based on local information. The proposed 

algorithm is expanded by using multiobjective 

optimization schemes. The objectives to be 

optimized in this paper are determined so as to 

reduce the SINR fluctuations as well as 

maintaining the SINR to an acceptable level with 

minimizing an average transmitted power. The 

convergence properties of the proposed algorithm 

are studied theoretically and with numerical 

simulations. The results indicate that the 

algorithm converges more rapidly and has lower 

average transmitted power than other existing 

algorithms. The current study also suggests a 

practical version of the proposed algorithm and 

compares it to the existing totally distributed 

bang-bang power control (B-BPC) or fixed step 

power control (FSPC) and multiobjective totally 

distributed power control (MOTDPC) algorithms. 

Numerical results show that the proposed 

algorithm is potentially much more efficient in 

terms of convergence speed and average 

consumption power than the other two algorithms. 

 

Keywords: Distributed Power Control, 

Multiobjective Optimization, Cellular Systems, 

CDMA, Convergence. 

 

1. Introduction 

Power control (PC) plays an important role in 

mobile cellular systems' design. The objective is 

to manage mutual interference so that every user 

can have an acceptable link quality. Usually, the 

link quality (also called quality of service, QoS) is 

measured by the signal-to interference plus noise 

ratio (SINR). In recent decades, many researchers 

have investigated the PC problem wioth different 

perspectives. Especially, the PC in cellular radio 

systems has drawn much attention since Zander's 

work in [1] and [2] on centralized and distributed 

SINR balancing. The SINR balancing was further 

investigated by Grandhi  et al. in [3] and [4]. In 

[5], Foschini and Miljanic considered a more 

general and realistic model, in which a positive 

receiver noise and a respective target SINR were 

taken into account. Foschini and Miljanic’s 

distributed algorithm (FMA) was shown to 

converge, either synchronously or asynchronously 

as defined in [6], to a fixed point of a feasible 

system. Based on the FMA, in [7] Grandhi and 

Zander suggested a distributed constrained PC 

(DCPC) scheme, in which an upper limit for 

transmitted power was considered. Their work, 

i.e. the DCPC algorithm, has become one of the 

most widely accepted algorithms by the academic 

community. Meanwhile, in [8], a framework on 

the convergence of the generalized uplink PC was 

provided by Yates and extended by Huang and 

Yates in [9]. The results of their work could 

present a framework for designing and analyzing 

new algorithms. Moreover, some second-order 

PC algorithms requiring power levels of current 

and previous iterations have been proposed in 

[10] and [11] to enhance the convergence speed 

of the PC. In [12], Uykan and Koivo developed a 

nonlinear distributed PC algorithm whose 

convergence toward the optimum power vector 

was twice as fast as the DCPC algorithm. Also in 

[13], they proposed an algorithm with similar 

formulation that established a connection between 

link gains and algorithm parameters. In 

continuation, they utilized the systems control 

theory with variable structures to solve the PC 

problem by designing a controller having 

minimum sensitivity to the unknown link gain 

variations; [see 14]. A statistical distributed PC 

algorithm proposed in [15] assumes noisy values 

for the measured SINR and minimizes the total 

variance of the mobiles transmitted powers and 

the SINR errors. The gain and interference 

variation issues have been considered in [16], 

wherein the corresponding algorithm estimates 

very small variations of the channel and achieves 

the desired SINR level for any user. 

Multiobjective optimization (MO) method with 

capability to optimize two or more objectives has 

been proposed in [17]-[18]. This method is 

applied to find the optimal solution, which is a 

compromise between multiple and contradicting 

objectives. It is noteworthy here to mention the 

differences between joint optimization and MO 

optimization. In joint optimization, it is not 

necessary for the objectives to be contradicting. 
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Furthermore, in joint optimization we are usually 

interested in one optimal solution which could be 

a global or a local extreme point of the combined 

objective function. In the MO method, we are 

more interested in the Pareto optimal set which 

containsallnon-inferior solutions. The decision 

maker can then select the most preferred solution 

out of the Pareto optimal set. The weighted sum 

method to handle the MO applied in this paper is 

structurally similar to the joint optimization. 

Here, the proposed algorithm aims to achieve 

three objectives by applying the MO method. The 

first is the minimization of transmitted power. 

Achieving an acceptable QoS (in terms of SINR) 

is the second objective and the third objective is 

to minimize the SINR fluctuations. Performance 

evaluation simulations confirm that our algorithm 

has the highest convergence speed and the lowest 

average transmitted power among other existing 

distributed algorithms. 

The rest of the paper is organized as follows: 

Section 2 describes the MO method and its 

application in the PC problem. Sections 3 and 4 

analyze the convergence characteristics of the 

original and the practical version of the proposed 

PC algorithm, respectively, and Section 5 deals 

with the numerical results and performance 

evaluation/ comparison of the proposed PC 

algorithm. The paper is concluded in Section 6. 

 

2. MIDPC Algorithm 

The MO optimization approach is a technique 

that is used to optimize a number (≥2) of different 

objectives which might, in general, be 

incommensurable. In this technique, we optimize 

a vector, rather than a scalar, of objective 

functions each of which is a function of a 

decision vector (variable) [20]. The mathematical 

form of the MO optimization is 

{ }1 2
min (x),  (x),  ... , (x)

subject to x
m

f f f

∈ S
                         (1) 

where m≥2 that is more than 2 objectives are to 

be optimized, :f ℜ → ℜn

i , 0, 1, 2, ...,i     m=  are 

the objective functions, and x  is the decision 

vector (variable) in feasible region S , which is a 

subset of the space nℜ  made by the decision 

vectors. The abbreviated min{•} represents the 

function whereby we aim to simultaneously 

minimize all the objectives. Since the objectives 

can generally be either conflicted or 

incommensurable, there will be no single 

solution, which means that there will be no single 

vector to optimize all objectives at the same time. 

As mentioned earlier, in solving the MO problem, 

we may have different optimal solutions from 

different points of view. They are called Pareto 

optimal solutions and the set containing all 

solutions is called Pareto optimal set. 

After generating the Pareto set, our attempt is 

usually to obtain one solution of the Pareto 

optimal set which is selected by the problem 

maker or a decision maker. There are different 

approaches to solve the MO problem. One is to 

exploit soft-computing methods such as genetic 

algorithms [21]. In this paper we concentrate on 

the analytical solutions of the MO problem. One 

interesting and useful method which is 

particularly applied to the MO optimization in 

radio resources management (RRM) is the 

method of weighted metrics [20]. In cases where 

the desired optimal solutions of the objectives are 

known in advance, the MO problem defined in 

(1) can be rewritten as 

( )

1
p p

1

m i n x

s u b j e c t  t o  x ,

f zλ
=

   −    
∈

∑

S

m

i i i
i

∗ (2) 

in which 1 p≤ ≤∞ , z
i

∗  is the desired solution 

of the objective i, e. g., the supremum SINR, 

which is denoted hereafter by supΓ
i

, and 0λ ≥
i

 is 

the tradeoff factor for the objective i, such that 

1

1λ
=

=∑
m

i
i

. The PC problem in this paper will be 

formulized by the following three objectives:  

1. Minimizing the transmitted powers of all 

transmitters. 

2.  Maintaining the SINR as close as possible 

to the supremum SINR for all transmitters. 

3. Reducing the SINR fluctuations (see [19]). 

It should be noted that the supremum SINR is 

not usually a fixed value and that it contains a 

margin which lies between the supremum and the 

minimum desired SINRs. Hence, any value of the 

SINR which falls inside the margin is considered 

as an accepted SINR. Fig. 1 illustrates this idea 

for a 2-user case. The solid lines correspond to 

the power values for which the SINR is equal to 

the minimum desired level while the dashed lines 

correspond to the power values for which the 

SINR yields its supremum level. 

The mathematical interpretation of the 

preceding three objectives for user i can be 
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defined as the following error function 

( ) ( ) ( ) ( ) ( )sup sup

1 2 3
-1e t p t p t t tλ λ λ β= − + Γ − Γ + Γ − Γ − Γ

i i, i i,min i, i i i, i i i

(3) 

in which 
1
λ
i,

, 
2
λ
i,

 and 
3
λ
i,

 are tradeoff factors 

such that 
1 2 3

1λ λ λ+ + =
i, i, i,

 and 

1 2 3
,  ,  0λ λ λ ≥

i, i, i,
, supΓ

i
 is the supremum SINR, 

( )p ti  and 
,min

p
i

 are user i's instantaneous and 

minimum transmitted powers, respectively. 

Generally, each user can have different values of 

tradeoff factors as well as the supremum SINR. In 

(3), ( )tΓ
i

 is the SINR of user i at a time slot t and 

is given by 

( )
( ) ( )

( ) ( ) ( )
1

1,2

+ 
Q

j=

j i

g t p t
t  ,     i = ,....,Q

g t p t tν

≠

Γ =

∑

ii i
i

ij j i

(4) 

where ( )g t
ij

 represents the channel gain between 

transmitter i and receiver j, Q is the number of 

active users,  and ( )tνi  is the average noise 

power, all at time slot t. It is assumed that the 

user i is assigned to the base station i. Also, 

transmitted data from a user is acceptable in a 

receiver as long as the received SINR is greater 

than the minimum SINR denoted by
,min

Γ
i

. 

Otherwise, that user is either disconnected from 

its base station or handed over to another base 

station. 

To generalize the optimization problem over all 

users for N time slots, we define the problem in 

terms of finding the minimum of the cost function 

as in [18] to be 

( )( ) ( )2

=1 =1

1 2
Q

J t e t , t = , ,...,γ
 

=  ∑ ∑
  

p
N

N-t

i
i t

N                            (5) 

with respect to the power vector 

1 2
, , ,

T

Q
p p p 
  

P = � , in which the superscript T 

stands for transpose and γ  is an adaptation 

factor. The problem stated by (5) is a nonlinear 

optimization problem due to the use of the 

absolute value function in (3). One advantage of 

using the cost function in  (5) is that it could be 

used for different purposes, such as reducing the 

transmitted power, achieving the supremum 

SINR, reducing the SINR fluctuations, increasing 

the system throughput, reducing the pocket delay, 

etc. 

The first term in (3) does not require the 

absolute value function since the transmitted 

power cannot be less than 
,min

p
i

. As a result, the 

error function is improved as 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )sup sup

,1 ,2 ,3
ˆ ˆ+ + -1

0  1  2   1  2   

= − Γ − Γ − Γ −e t p t p t t t t t

                                                        t = , , , ...  , i = , , ..., Q

λ λ λ βi i i i,min i i i i i i iΓ Γ

(6) 

where ( ) ( )( )sup

,2 ,2
ˆ t= Γ −t signλ λ
i i i i

Γ
 

and 

( ) ( ) ( )( )sup

,3 ,3
ˆ -1= Γ − Γ −t sign t tλ β λ
i i i i i

Γ . 

Assume that the power ( )p t
i

 is expressed by a 

linear autoregressive model [22], as shown in Fig. 

2. So, the transmitted power by the user i is given 

by 

( ) ( ) ( ) ( )
=1

X 0 1 2Tp t w k p t - k t t = , , ,...= =∑ w
n

i i i i i
k

,     ,     ,     ,     

in which 

( ) ( )[ ] ( ) ( ) ( )[ ]1 , 1
T T

w w n         t p t - p t - n= =w X… …i i i i i i
 

where w
i
 is the power adaptation weight vector, 

X
i
 contains all previously known transmitted 

powers, and n is the number of taps. Substituting 

(7) into (6), we obtain 

( ) ( )( ) ( )
( ) ( )

( )

( )
( ) ( )

( )

( ) ( )

( )

sup
,1 ,2

sup
,3

ˆ+

1ˆ         +

T
T

T T

g t t
e t t p t

I t

g t t g t t -
t

I t I t

λ λ

λ β

  = − − Γ   

  − − Γ   

w X
w X

w X w X

ii i i
i i i i i,min i i

i

ii i i ii i i
i i

i i

 

and by letting 

( )
( )

( )
( )

( )

( )
( )

( )

( )
1 ,1 ,2 ,3 2 ,3

ˆ ˆ ˆg t g t g t
t t t

I t I t I t
α λ λ λ          ,       α λ

 
 = + + = −
 
 

ii ii ii
t i i i t i

i i i

then, (9) can be rewritten as 
( ) ( ) ( ) ( ) ( )sup sup

1 2 ,1 ,2 ,3
ˆ ˆ+ 1T Te t t t - p t tα α λ λ λ β= − − Γ − Γw X w X

i t i i t i i i i,min i i i i

As a result, minimizing (5) with respect to p
i
 is 

equivalent to its minimization with respect to the 

vector w . The necessary condition for 

minimizing (5) for all i is 

( )
( )

=1

2 0
e t

e tγ
∂

=
∂

∑
w

N
iN-t

i
t

 

From (11) we have 

( )
( ) ( )1 2

1T T
e t

t t -α α
∂

= +
∂

X X
w

i

t i t i
 

Substituting (11) and (13) into (12), we obtain 

( )
( )

( ) ( )(

( ) ( ) ) ( ) ( )( )

1 2 ,1

=1 =1

sup sup
,2 ,3 1 2

+ 1

ˆ ˆ                        1 0

T T

T T

e t
e t t t - p

t t t t -

γ γ α α λ

λ λ β α α

∂
= −

∂

− Γ − Γ + =

∑ ∑ w X w X
w

X X

N N
N-t N-ti

i t i i t i i i i,min

t t

i i i i t i t i

 

and solving (14) for w
i
 results in 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))(

( ) ( )( ) ( ) ( )( )

2 2
1 1 2 2 1 2

=1

sup sup
,1 ,2 ,3 1 2

=1

1 1 1 1

ˆ ˆ 1 .

T T T T

T T

t t t t - t - t t - t -

p t t t t -

γ α α α α α α

γ λ λ λ β α α

   + + + 
   

= + Γ + Γ × +

∑

∑

X X X X X X X X w

X X

N
N-t

t i i t t i i t t i i t i i i

t

N
N-t

i i,min i i i i t i t i

t

To facilitate operations, we assume 1n =  (one 

time slot) in (7) and 0γ =  in (15). Using these 

assumptions in solving (15) we find 
( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

ˆ ˆ

ˆ ˆ ˆ1 1 2

0 1 2    1  2   

p t t

p t - t t t - t t -

                                  t = , , ,...; i = , , ..., Q

λ λ βλ

λ λ λ λ

+ + Γ
=

+ + Γ − Γ
w

i i,min i i i

i

i i i i i i i

and the transmitted power by the user i  at time 

slot t is given by 

( )
( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )
( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

ˆ ˆ
-1

ˆ ˆ ˆ1 1 2

0 1 2 1  2   

p t t
p t  p t

p t - t t t - t t -

                                                        t = , , ,...;   i = , , ..., Q .

λ λ βλ

λ λ λ λ

 + + Γ   =   + + Γ − Γ  

i i,min i i i

i i

i i i i i i i

 

Since ( ),2
ˆ tλ
i

 and ( ),3
ˆ tλ
i

 change rapidly with 

time, the transmitted power in (17) may take 

negative values, which is practically not feasible. 

To cope with this issue, only positive values of 

( ),2
ˆ tλ
i

 and ( ),3
ˆ tλ
i

 are taken into account, e.g. 

( ),2 ,2
ˆ tλ λ=
i i

 and ( ),3 ,3
ˆ tλ λ=
i i

. It is worth to 

mentioning that these assumptions can slightly 

lower the convergence speed of the proposed 

algorithm however, on the other hand, they 

simplify the algorithm significantly. Fig. 3 depicts 

the effects of these simplifications on the 

performance of the proposed algorithm. This 

figure is obtained from the numerical results of 

simulations for the static channel in Sec. V. 

Accordingly, the iterative form of the proposed 

distributed PC algorithm, called here as the 

Multiobjective Improved Distributed PC 

(MIDPC) algorithm, can be simplified as 

( )
( )

( ) ( ) ( ) ( )
( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

-1
1 1 2

0 1 2    1  2   

p
p t  p t

p t - t - t -

                                                t = , , ,...; i = , , ..., Q

λ λ βλ

λ λ λ λ

 + + Γ  =   + + Γ − Γ  

i i,min i i i

i i

i i i i i i i

 

It can be readily seen that the substitutions 

,1 ,3 ,2
=0, 1λ λ λ= =

i i i
 and 

,3
0λ =

i
 in (18) lead 

to the distributed power control (DPC) and the 

multiobjective distributed power control 

(MODPC) algorithms, respectively, i.e., the DPC 

and the MODPC algorithms are both special 

cases of our MIDPC algorithm. Moreover, for 

,2 ,3
0λ λ= =

i i
, 

,1
1λ =

i
 the mobiles will transmit 

with their minimum power regardless of their 

SINR values (no PC). 

With the consideration of constraint maximum 

power, the MIDPC algorithm defined by (18) can 

be modified as 

( )
( )

( ) ( ) ( ) ( )
( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

min , -1
1 1 2

0 1 2 1  2  

p
p t  p p t

p t - t - t -

                                                                t = , , ,...;   i = , , .

λ λ βλ

λ λ λ λ

   + + Γ   =     + + Γ − Γ     

i i,min i i i

i i,max i

i i i i i i i

  ..., Q

 

It is interesting to note that the transmitted 

power of the MIDPC algorithm in (18) is 

naturally upper- bounded by 

( )
( ),2 ,3 sup

,1

1 2p t p      , i = , , ..., Q
λ βλ

λ

+
≤ + Γ

i i

i i,min i

i

 

In the following section, we discuss the 

convergence characteristics of our proposed 

MIDPC algorithm. 

 

3.Convergence Analysis of the MIDPC 

algorithm 

To proceed with the convergence analysis of the 

MIDPC algorithm, we use the following 

definitions made by Yates [8] and important 

theories therein. 

Definition 1: The mapping function, ( )PI , of 

PC is called a standard interference function if, 

for any 0≥P , it satisfies the following 

conditions: 

1. Positivity, i.e., ( ) 0≥PI ; 

2. Monotonicity, that is if 
1 2
≤P P  then 

1 2
( ) ( )≤P PI I ; 

3. Scalability, which means that for all 1α >  

and α ∈ ℜ , ( ) ( )α α>P PI I . 

Any PC algorithm whose ( )PI  is standard, is 

called standard PC algorithm.  

Definition 2 (feasibility): The network 

configuration is said to be feasible if the largest 

eigenvalue of the normalized link-gain matrix H , 

( ) 1ρ <H . 

Theorem 1: For a network configuration, if the 

PC problem is feasible, then for any initial power 

vector (0)P , the synchronous/asynchronous 

standard PC algorithm converges to a fixed point 

(vector) ∗P . 

Now, we discuss the convergence analysis of 

the MIDPC algorithm by exploiting the following 

two propositions and their proofs: 

Proposition 1: In a static channel, for any non-

negative initial power vector, (0)P , the MIDPC 

algorithm specified by  (18) converges to a unique 

fixed point determined by the value of tradeoff 

factors. 

Proof: In order to prove this proposition, it 

suffices to prove that the MIDPC algorithm is a 

standard PC algorithm. The standard interference 
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function, ( )( )tPiI , of the MIDPC algorithm for 

the 

us

( )( )
( )

( ) ( ) ( ) ( )
( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

-1
1 1 2

0 1 2    1  2   

p
t P t

p t - t - t -

                                                    t = , , ,...; i = , , ..., Q .

λ λ βλ

λ λ λ λ

 + + Γ  =   + + Γ − Γ  
PI

i i,min i i i

i i

i i i i i i i

er i, is given by 

By defining the normalized interference function 

as 

( )
( ) ( )

( )
( )
( )1

Q g t p t t
I t

g t g t

ν

=
≠

= +∑ i j j i

i
j i i i i
j i

 

and eliminating t for convenience, we can rewrite 

(21) in the form 

( )
( )

( )
( )

sup

,1 ,2 ,3

aI

I
Iλ λ βλ

=

=

+ + Γ

P
P

P
P

P

i

i

i

i i i i i

i

I  

where ( ) sup

,1 ,2 ,3
a pλ λ βλ= + + Γ

i i,min i i i
 and 

p
=

=P
i i

. Moreover, from (22) it is apparent that 

for any 

( )0 0, 1 2I i = , ,...,Q≥ ⇒ ≥ ∀P P      
i

                     

Also if 

( ) ( )      1  2   I I i = , , ..., Q≥ ⇒ ≥ ∀P Z     P Z ,
i i

Since 
,1 ,2 ,3
, , 0λ λ λ ≥

i i i
 and 0β > , then from (23) 

and (24) we obtain 

( )0 0 1 2i = , ,...,Q≥ ⇒ ≥ ∀P      P ,     
i
I  

which concludes the positivity proof. 

The monotonicity criterion is proved here using 

contradiction. Suppose that for any ≥P Z , 

( ) ( )  1 2I < I i = , ,...,Q∀P Z  ,
i i

.  Then from (23) 

we find that 

or 

( ) ( )
( )

( )
( )

( )

( )
( )

sup

,1 ,2 ,3

sup

,1 ,2 ,3

I I
I

I
aI aI

I
I

λ λ βλ

λ λ βλ

=

=

 
 + + Γ 
  <

+ + Γ

Z Z
Z

PP
P P

Z
Z

Z

i i

i i i i i

ii

i i

i

i i i i i

i

 

where z
=

=Z
i i

. From (25), however, we have 

( )
( )
( )

( )

( )
( )

sup

,1 ,2 ,3

sup

,1 ,2 ,3

0 1

I I
I

I

I
I

λ λ βλ

λ λ βλ

=

=

 
 + + Γ 
  < <

+ + Γ

Z Z
Z

PP

Z
Z

Z

i i

i i i i i

ii

i

i i i i i

i

 

which contradicts with (28). As a result, (27) is 

not true. Then, for any 1α >  

( ) ( ) 1 2i = , ,...,Q≥ ∀ P Z ,     
i i
I I  

and the monotonicity condition has been proved. 

To prove the third condition, the following 

inequality should meet 

( ) ( ) 1α α α≥ ∀ >P P ,     
i i
I I  

From (22) we have 

( ) ( )1 1 2I I i = , , ...,Qα α α∀ > ⇒ ≥ ∀    P P ,     
i i  

and from (23) 

( )
( )

( )
( )

sup

,1 ,2 ,3

a I

I
I

α
α

λ λ βλ
=

=

+ + Γ

P
P

P
P

P

i

i

i

i i i i i

i

I  

or 

( )
( )

( )
( )

sup

,1 ,2 ,3

aI

I
I

α
α

α
λ α λ βλ

α
=

=

+ + Γ

P
P

P
P

P

i

i

i

i i i i i

i

I

If we substitute (33) and (34) into (31), we find 

( )

( )
( )

( )

( )
( )

sup sup

,1 ,2 ,3 ,1 ,2 ,3

a I aI

I I
I I

α α

α
λ λ βλ λ α λ βλ

α
= =

≥

+ + Γ + + Γ

P P

P P
P P

P P

i i

i i

i i i i i i i i i i

i i

or 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

sup

,1 ,2 ,3

sup

,1 ,2 ,3
.

I
a I I a I a I

I
a I I a I a I

α
αλ α αλ αβλ

α

α
λ α λ α βλ

=

=

+ + Γ

+ + Γ≥

P
P P P P

P

P
P P P P

P

i

i i i i i i i i

i

i

i i i i i i i i

i

 

Referring to (32), we can readily see that all the 

three terms in the left side of (36) are equal to or 

greater than their corresponding terms in the right 

side. Then, the scalability condition has also been 

proved. Now that we have all the three criteria 

satisfied, it can be said that our MIDPC algorithm 

is a standard interference function, i.e., it 

converges to a fixed point (vector) starting from 

any non-negative initial power vector. 

Proposition 2: If the environment is noiseless, 

then for any ( )0 0>P  and with appropriate 

selection of 
,1
λ
i

, 
,2
λ
i

 and 
,3
λ
i

 the proposed 

MIDPC algorithm converges to a balanced SINR 

such that 

( )

( )

lim 0 1 2 1 2

lim 0 1 2 1 2

t t = , , ,...;   i = , ,...,Q

t ,     t = , , ,...;   i = , ,...,Q

,        

µ

→

→

=

Γ =

P P
t

i
t

∗

∞

∗

∞

 

where µ∗  is called the maximum achievable 

SINR and P∗  is its corresponding eigenvector. 
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Proof: Since ( )
( )

( )
p t

t
I t,

Γ =
P

i
i

i

 where 

( )I t,P
i

 is the normalized interference in (22) 

with ( ) 0
i
tν =  for all users, then (18) can be 

expressed as 

( )
( )

( )
( )

( ) ( ) ( )
sup

,1 ,2 ,3

+1
a

p t I t t I t
I t

I t
p t

β

λ λ βλ

= =

+ + Γ

i i i i

i

i i i i i

i

 

which has the form similar to the distributed PC 

algorithm in [4] where the rest of the proof can be 

found. Since the transmitted power from each 

user is upper-bounded as in (20), then the 

interference ( )I t
i

 will also be upper-bounded for 

all t. Thus for convergence, the tradeoff factors 

should be appropriately selected so that to satisfy 

the following condition 

( )
( )

( )
( )

sup

,1 ,2 ,3

lim
t

k=0

a

I t
I t

p t

µ

λ λ βλ
→

        < ∞    + + Γ    

∏
t

t
i

i i i i i

i

∗

∞

 

in which µ∗  is the spectral radius of the channel 

gain matrix H . 

 

4. MITDPC Algorithm 

So far, we have assumed that the MIDPC 

algorithm, similar to other distributed algorithms, 

has a perfect estimation of the mobile’s SINR and 

updates the power using this information. In 

practical systems, however, only a quantized 

fraction (step) of the SINR in the form of one or 

two bits is available at the mobile stations in 

order to step up/down their transmitted power, 

accordingly. The practical replacement of the 

MIDPC algorithm, called Multiobjective 

Improved Totally Distributed PC (MITDPC) 

algorithm in this paper, improves the performance 

of the MIDPC algorithm even when the power 

update is accomplished based on a 1-bit 

command. We benefit from the 1-bit SINR 

estimation method used in [23] to evaluate the 

effects of quantization errors on our algorithm. 

Using the results of [23] we have 

( ) ( ) ( ) ( )sup

0 1 2 1 2

t-1

k=1

t t - k c t,k t

                             t = , , ,...;   i = , ,...,Q,

δ υ υ
 Γ = Γ − +   
∑�

i i i i i i  

where 

( ) ( )( ) ( )sup

pc,
t sign t E tυ = Γ −Γ

i i i i
 

and 

( ) ( ) ( )[ ]
1

0

1
1 - 1

2

k-

n=

c t,k t - n t - nυ υ= +∏i i ik
 

In (41) the value of ( )pc,
E t

i
 is 1 with probability 

,
( )

PCE i
P t  and –1 with probability 

,
1 ( )

PCE i
P t−  

where 
,
( )

PCE i
P t  is the bit error probability of the 

transmit power control (TPC) command. 

Therefore, the perfect SINR can be replaced in 

the MIDPC algorithm by the estimated SINR 

given by (40). The resulting MITDPC algorithm 

can then be stated by the following iterative 

expression for power as 

( )
( )

( ) ( ) ( ) ( )
( )

sup

,1 ,2 ,3

,1 ,2 ,3 ,3

-1
1 1 2

0 1 2 1 2

p
p t  p t

p t - t - t -

                                          t = , , ,...;   i = , ,...,Q ,

λ λ βλ

λ λ λ λ

 + + Γ   =   + + Γ − Γ  
� �

i i,min i i i

i i

i i i i i i i

 

in which ( )1t -Γ�
i

 and ( )2t -Γ�
i

 are calculated 

from (40). 

The MITDPC algorithm convergence analysis is 

presented in the following proposition and its 

proof. 

Proposition 3: Starting from any initial power 

vector ( )0 0>P  for a static channel, the 

proposed MITDPC algorithm converges to a 

fixed point. 

Proof: This proposition can be as easily proved as 

the proposition 1. Let’s assume that the estimated 

SINR in (40) could be represented by 

( ) ( ) ( )t t tεΓ = Γ�
i i i

 

where ( ) 0tε ≥
i

 is the estimated SINR error 

factor. Substituting (44) into (43), we obtain 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

sup
,1 ,2 ,3

,1 ,2 ,3 ,3

-1
1 1 1 2 2

0 1 2 1 2

p
p t

p t - t - t - t - t -

                                                                       t = , , ,...;   i = , ,...,Q.

λ λ βλ

λ λ λ ε λ ε

 + + Γ  =   + + Γ − Γ  
PI

i i,min i i i

i i

i i i i i i i i i

 

For a static channel, it may be assumed that ( )tεi  

remains unchanged during a PC time slot. In this 

case, we can improve and modify (23) for the 

MITDPC algorithm as 

( )
( )

( )
( )

sup

,1 ,2 ,3

aI

I
Iλ λ βλ

=

=

+ + Γ

P
P

P
P

P
� �

i

i

i

i i i i i

i

I  

where 
,2 ,2
λ ε λ=�
i i i

 and 
,3 ,3
λ ε λ=�
i i i

. Therefore, 

Proposition 3 can be proven in the same way as 

we did for proposition 1. 
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5. Numerical Results 

Two different channel scenarios have been 

considered in the performance evaluation of the 

MIDPC algorithm. The first scenario assumes a 

static channel with additive Gaussian noise. Each 

user is assigned a base station with minimum path 

loss and the handover is assumed to be perfect. In 

the second scenario, the channel is dynamic with 

slow and fast fading and having almost the same 

parameters as in first scenario. In order to have an 

acceptable environment of simulation, the 

environment in [18] has been used, in which the 

minimum allowed SINR is 3 dB less than the 

supremum SINR. The supremum SINR is –18 dB 

for all users. The number of users in both 

scenarios is 120, which are uniformly distributed 

in an area of 4 km
2
 with 4 base stations regularly 

distributed at (0.5, 0.5), (0.5, 1.5), (1.5, 0.5), and 

(1.5, 1.5) km coordinates. Moreover, the 

maximum transmitted power is limited and 

normalized to 30 dBm and the channel noise is 

Gaussian with zero mean and average power of –

90 dBm. 

The performance of the proposed algorithm 

with the other existing algorithms including the 

DCPC [7], FMA [5], CSOPC [10], and MODPC 

[18] algorithms have been evaluated in terms of 

error norm and outage percentage. The error norm 

is defined as the difference between the actual 

transmitted power in each time slot and the one in 

the optimized power vector obtained from the 

centralized PC algorithm. The outage percentage 

is obtained by calculating the time slots in which 

a user’s SINR is less than the minimum desired 

SINR. 

Results of the experiments indicate that 

with
,1

0.028λ =
i

, 
,2

0.97λ =
i

, 
,3

0.002λ =
i

, and 

=0.25β , for all i, our algorithm achieves a good 

performance in terms of the convergence speed 

for both scenarios and, as a result, we have used 

these parameter values throughout simulations of 

our algorithm. Results of simulations for the 

MODPC in [18] have been obtained with 

,1
0.01λ =

i
 and 

,2
0.99λ =

i
. 

Fig. 4 depicts the power convergence path 

trajectories corresponding to the DPC, MODPC, 

and MIDPC algorithms for a 2-user system. It is 

seen that the MIDPC algorithm is converging 

much faster than the two other algorithms toward 

feasible region. 

As it was mentioned in previous section, the 

MIDPC algorithm attempts to find a power vector 

with an SINR between Γ
i,min

 and supΓ
i

. This is 

also the case for the MODPC algorithm. Fig. 5 

illustrates the distinction between convergence 

points of the MODPC, the MIDPC, and the DPC 

algorithms. Although they all start from point (1), 

they converge to points (2), (3), and (4), 

respectively. The point (4) corresponds to supΓ
i

. 

In next simulation, we consider two mobiles 

that use the same channel. The average link gain 

g
ij

 is modeled as -4.g s d=
ij ij ij

, where s
ij

 is the 

shadow fading factor and d
ij

 is the distance 

between base station i and mobile j. The log-

normally distributed s
ij

 is generated according to 

the model used in [25]. The DPC algorithm in [4] 

is chosen as the reference algorithm. The values 

of supremum SINR and receiver noise are 

selected as in [10] and [12] to be sup 6Γ =  dB 

and 0.1ν = , respectively. We define each 

normalized link gain as 
sup( )h g g = = Γ  Hij i ij iiij

, 0h =
ii

, that changes 

with time around its mean value according to 

( ) ( ){ }max 0,h t h h t= +∆av

ij ij ij
 

in which hav
ij

 (known or estimated) is the mean 

value of the matrix H  and ( )h t∆
ij

 (unknown) 

changes randomly at each iteration according to a 

given distribution. Without loss of generality, let 

us define maximum ( )h t∆
ij

at time t as 

( )max h t∆ = ∆
t ij

 

In this simulation ( )h t∆
ij

 in (47) is modeled as 

a uniformly distributed random variable with zero 

mean between , −∆ +∆  
. The initial powers 

( )0p
i

 were randomly chosen from the closed 

interval [0, 1]. We define the following average 

cost function for mobile i as in [13], which has 

the form 

( )
S K

2S sup

1 1

1

KS
ε = Γ −Γ∑∑ i i

s= k=

 

where S is the number of snapshots (during each 

snapshot a different feasible matrix avH  is 

randomly produced), and K is the number of steps 
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for each snapshot. Fig. 6 shows the average costs 

(normalized with those of the MIDPC case) with 

respect to h∆ av

t ij
 over 300 steps for 1000 

different feasible average link gain matrices avH , 

i.e., S=1000 and K=300. The reason why, for very 

small link gain changes (i.e., 0.1h∆ <av

t ij
) , the 

SINR variance is smaller in the DPC than that in 

the MIDPC is that, in the former case, the SINR 

values converge to the supremum SINR value 

whereas in the latter case, they converge to the 

interval between 
min

Γ
i,

 and supΓ
i

. As expected, 

the MIDPC algorithm minimizes the SINR 

fluctuations. 

This can be apparently found from Fig. 6. 

Also, as ∆
t
 increases ( 0.1h∆ >av

t ij
), the 

MIDPC algorithm exhibits more robust results 

than the DPC algorithm. Fig. 7 shows the 

evaluation of all these algorithms for static 

channel scenario. Compared to all the other 

depicted algorithms, it is apparently seen that the 

MIDPC algorithm has a good performance in 

terms of power convergence speed and outage 

percentage. Fig. 8 represents the performance of 

totally distributed FSPC, MOTDPC, and 

MITDPC algorithms. Since there is no access to 

exact SINR information in quantized distributed 

PC algorithms, then their performances degrade. 

As can be seen from Fig. 8, however, the 

proposed MITDPC algorithm still has a 

comparatively low outage percentage as well as a 

much higher convergence speed. 

The average transmitted powers of the 

distributed PC and totally distributed PC 

algorithms are shown in Table 1. It is apparent 

that the proposed algorithm, in both the original 

(MIDPC) and the practical (MITDPC) versions, 

achieve lower average consumed power. For 

example, in the static channel scenario the 

average consumption power for the MIDPC 

algorithm is about 2.8 and 2 dBW less than the 

DCPC and the MODPC algorithms, respectively. 

Moreover, these power consumption 

improvements increase to about 8 and 2.5 dBW, 

respectively, for practical versions of these 

algorithms.  

As mentioned earlier, the second objective of 

the proposed algorithm is to maintain the SINR at 

the acceptable level. Fig. 9 depicts the QoS in 

terms of the achieved SINR for the best and the 

worst situated users with the MIDPC algorithm. It 

is easily understood that the SINR achieves a 

level between Γ
i,min

 and supΓ
i

. 

To evaluate the performance of the algorithms 

in the dynamic scenario, we have considered the 

same environment as in the static scenario. The 

multipath fading has a Rayleigh distribution that 

is generated by a correlated process [24]. Also, 

the carrier frequency is 2 GHz and all the 

simulated algorithms assume the same mobile 

speed of 30 Km/h, which is acceptable in urban 

areas. Fig. 10 illustrates the evaluation results of 

all the simulated algorithms in dynamic scenario. 

Similar to the static scenario mentioned earlier, 

the MIDPC algorithm still outperforms the other 

algorithms in terms of the convergence speed and 

the outage percentage. It should be noted that the 

fluctuations in the outage percentage profile are 

due to the channel being dynamic.  

Another performance characteristic of PC 

algorithms is the average power consumption in 

the dynamic scenario. Referring back to Table 1, 

we find that the MIDPC has apparently much 

lower average consumption power than that of 

other specified distributed algorithms. Besides, its 

practical version achieved best performance 

amongst others in terms of average consumption 

power. In dynamic channel analysis, it is 

convenient to characterize the power tracking 

capability of the distributed PC algorithms. Fig. 

11 represents typical transmitted power profiles 

for an arbitrary user when optimum (centralized), 

DCPC, MODPC, FMA, and MIDPC algorithms 

are used. The result of CSOPC algorithm has 

been omitted to enhance the visibility of the 

graphs because it contains high overshoots (the 

transmitted power falls close to zero at iterations 

4,5, and 8).Again, the MIDPC algorithm 

outperforms the other algorithms in tracking the 

optimum profile and reacts faster to its variations. 

As final step in the performance evaluation of 

the proposed MITDPC algorithm in this paper, 

we consider the error incurred in the TPC 

command. Fig. 12 shows the error norm power 

and the outage percentage for different levels of 

error probabilities (%0, %5, and 15%) in the 

TPC. It is seen that the proposed MITDPC 

algorithm has a near ideal convergence behavior 

even with 1-bit feedback TPC command. 

 

6. Conclusion 
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A new distributed PC algorithm based on 

optimization techniques was presented in this 

work. The three simultaneously optimized 

objectives were determined so as to reduce the 

SINR fluctuations as well as maintaining the 

SINR to an acceptable level and minimizing the 

average transmitted power. Based on snapshot 

analysis, it was proven that, starting from any 

initial power vector, the power vector sequence 

generated by the proposed algorithm converged to 

a fixed point. Simulation results also showed that, 

compared to other most known algorithms in the 

field of PC, our algorithm achieved a better 

performance in terms of both convergence speed 

and average transmitted power. Even with using a 

1-bit TPC command, the practical version of our 

algorithm still converged to a fixed point with 

superior performance compared to the FSPC and 

the MOTDPC algorithms. Finally, the MITDPC 

algorithm converged to a fixed point even with 

error in the TPC command. 
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Fig. 1 Convergence region of MIDPC algorithm 

 

 

 
Fig. 2 Autoregressive model of PC 
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Fig. 3 Effect of simplifications on the MIDPC algorithm 
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Fig. 4 Power convergence path trajectories for a 2-user system for 

different distributed algorithms 
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Fig. 5 Distinction of power convergence points for various 

distributed algorithms 
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Fig. 7 Error norm and outage percentage for various distributed 

algorithms in static scenario 
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Fig. 8 Error norm and outage percentage for various totally 

distributed algorithms in static scenario 
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Fig. 9 Received SINR (dB) for best and worst users 
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Fig. 10 Error norm and outage percentage for various distributed 

algorithms in dynamic scenario 
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Fig. 11 User's transmitted power for various distributed 

algorithms 
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Fig. 12  Convergence behavior of MITDPC algorithm in terms of 

error norm and outage percentage for gifferent error levels in TPC 

command 

 

 

Table1 Average transmitted power (dBW) comparisons for arious distributed PC algorithms 

 

 

 

 

 

 

 

 

 

 

MITDPC MOTDPC FSPC MIDPC MODPC CSOPC FMA DCPC PC Algorithm 

-18.35 -15.86 -9.97 -20.04 -18.07 -17.55 -15.00 -17.27 
Static 

Scenario 

-16.43 -13.84 -8.16 -17.97 -15.81 -15.48 -12.67 -14.09 
Dynamic 

Scenario 


