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Abstract
Non-fragile Hy observer design is the main

problem of this paper. Using continuous
frequency distribution, the stability conditions
based on integer order Lyapunov theorem are
derived for Lipschitz class of nonlinear
fractional order systems. The proposed
observer is stable beside the existence of both
gain perturbation and input disturbance. For
the first time, in this paper a systematic
method is suggested based on linear matrix
inequality to find an optimal observer gain to
minimize both the effects of disturbance on the
synchronization error and norm of the
observer gain. A comparison has done between
this observer and previous research on
resilient Hy observer design for nonlinear

fractional order systems based on fractional
order Lyapunov method. The comparison
shows a much broader range of feasble
response for the proposed method of this paper
besides simpler computing. After presenting
thediscussion, chaos synchronization is
simulated to show the effectiveness of the
proposed method in the end.

Keywords. Continues frequency distribution;
Hy fractional order observer; Linearmatrix
inequality;  Lipchitz nonlinear  systems;
Resilient observer.

1.Introduction

Inspite of ancient history for the fractional order
calculus, its applications to physics and
engineering have just started in the recent decades
[1,2].

Observers are dynamical systems that used to
estimate the states of the system from their inputs
and outputs, and play an important role in systems
control theory and fault detection on dynamical
systems. Although there are many researches on
the fractional order observer based control of the
fractional ordersystem [3-10] but to our best
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knowledge, amost al of the researches
mentioned above and many other existing
references mainly have ignored the nonlinearity
or linearized it by use of their controller.
Sometimes we have no control on the desired
system for observation which makes the
mentioned researches inadequate. Moreover, the
major difficulties in the design of practica
observers for dynamical systems are their
nonlinear dynamics and existing exogenous
disturbances.

According to what was said, observer design for
nonlinear fractional order dynamical systemsis a
widespread area of current researches [11-14].
Fractional algebraic observability property is
introduced in [11] as a main tool in the design of
an observer structure for a certain autonomous
Lipchitz nonlinear fractional order systems. In
reference [12] the problem of state estimation for
aclass of fractional

order nonlinear systems with uncertainty, using
sliding mode technique is investigated while [13]
presented observers design for continuous time
singular fractional order systems based on the
generalized Sylvester equations
solutions.Reference [14] has introduced a
nonlinear fractional order observer strategy with
unknown input disturbance. This paper has
considered a very special model and omitted the
disturbance by considering some constraints on
the observer coefficients which cause the result
don't be operational in many cases.

As introduced in [15], a fragile or non-resilient
observer is an observer in which the estimation
error diverges by a small perturbation in the
observer gain. Since the observer gains are
usually obtained from offline calculations, in
many practical applications the gain may have
slow drifts; thus, it is necessary that the observer
tolerates some perturbations in its coefficients
[16].

In [17] a specific Lyapunov function is defined
and the application of Lyapunov’'s method to
nonlinear Fractional Differential Equations
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(FDEs) is proposed. The key concept of this paper
is the frequency distributed fractional integrator
model which is the basis of a global state space
model of FDEs. Using the mentioned Lyapunov
in [17] an integer order Lyapunov based method
recommended for stability proof of the nonlinear
fractional order systems.Using this method for the
first time in reference [*®],resilient state estimator
introduced for the Lipschitz fractional order
systems.The result of [18] is extended to
uncertain nonlinear systems in [19] and [20]
while [19] has presented an observer based
control and a non-fragile observer design for a
class of fractional order one sided Lipschitz
nonlinear systems is expressed in [20].

Paper [21] is dealt with the design of non-fragile
dstate estimation problem for the Lipschitz
fractional order systems based on fractiona order
Lyapunov technique while [22] has extended the
results of [21] and introducedan iterative
algorithm to calculate the optimal non-fragile
H,observer gain for Lipschitz nonlinear

fractional order systems based on fractiona order
Lyapunov theorem.

In this paper we extend the result of [18] to
present H, non-fragile nonlinear fractional order

observer design for Lipschitz nonlinear fractional
order systems. The approach is using continues
frequency diffusion and presenting stability proof
based on the integer order Lyapunov method.
Sufficient conditions for robust stability with
existence of perturbation in the gain matrix and
input disturbance are derived in terms of linear
matrix inequalities formulation and unlike [22], a
systematic method is introduced to minimize both
the effects of disturbance on the synchronization
error and norm of the observer gain optimally.

The rest of the paper is organized as follows:
Section 2 provides preliminaries. In section 3, the
problem statement is given and the optimal gain
for the proposed observer is discussed.
Comparison between the proposed observer and
the results of [22] is investigated and an
illustrative simulation of chaos synchronization is
provided in section 4 and finally, the conclusion
remarks are given in section 5.

2.Preliminaries

In this part the most commonly used definitions
are introduced and then diffusive representation
that provides the theoretical basis for a time
approximation of _1f(t)is given. Finaly we
will present some useful Lemmas for our main
results.

Definition 1. [®], [*]: The qth-order
Riemann-Liouville fractiona derivative of
function f(t) with respect to t and the initial

valueaisgiven by:
1 ﬂt\ f(t)
&m- g a" Or- e @

D () =

where m is the first integer larger thangand G(.)
is the Gamma function which is defined by

G(z) = (‘Se"t“dt .
Remark 1.[22] The q th-order fractiona

derivative of function f (X(t))=x(t)*> with
respect tot isgiven by

,DI (x(t)) = X(t)oDIX(t) + p, @)
where
=8 (oot (3

& QLG k+0)
As introduced in [25] and [26], p, is bounded.

So we define the following boundedness
condition:

[P £ bfx* )
To have a smaller b , inequality (4) can modified
to(5)while p, T andp, £|p,| :

p. £b ] ©

Definition  2.[23], [24]:the (Qth-order
fractional integral of function f (t) with respect
tot and theinitial valueais given by

t ©)
DO, = i O e O

where g > 0and C isthe Gamma function.

Definition 3. (Diffusive Representation)[17]:
Let h(t)be the impulse response of a linear
system. The diffusive representation (or
frequency weighting function) of h(t) is
called nr(w) with following relation:

h(t) = gmw)e ™ dw (7)
0
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Remark 2. [17]: For the fractional order
integral .17 f (t) , Eq. (6) can be written as:

A =h)* f(t) 8
where * denote convolution operator and
g-1
h(t) = L . The diffusive representation of
€C)
ot
h(t) = isintroduced as:
€C)
) = S Pl ©

Definition 4.[17]: The nonlinear FDE:
Dix = f(X) (10)

due to the continuous frequency distributed model
of the fractional integrator, can be expressed as:

1 9z(w,t) _ -w z(w,t) + f(x(t))

b (11)

%x(t) = ¥dr(w)z(w,t)dw

WHILE IT(W) ISTHE SAME AS (9).

Lemma 1. (Schur Complement) [*]: for a

real matrix S=S', the followi ng assertions are
equivalent:

6Q() W
S=z ,

P00 Reof” W
DRX) <0, QUX)-W(OR W' ()<0

3Q(X) <0, R(x)-W' (x)Q(xW (x)<0
Lemma 2. [28]: Let X, y be real vectors of the
same dimension. Then, for any scalare >0, we
have:
Lemma 3. [*]: The design of the robust
proportional observer consists in finding a
H(t)

matrix L such as the estimation error,

satisfiesthefollowing ¥ performances:

L,

WHEREN IS THE GAIN FROM

DISTURBANCE,W (t) ,TO)%(t) TO BE
MINIMIZED.

3.Robust Resilient Nonlinear Fractional Order
Observer Design

Consider a nonlinear fractional order system
of the form:

DX =AX +j (x,u)+w (15)
y =Cx

where0<q<1 and x1 ", ul k.

yl Mare the state, input, and output
respectively. AT ""andCT ™" are constant
matrixes, W1 "is the input disturbance and
i " *]® "isnonlinear function which
is Lipschitz in x with Lipschitz constantg >0,
ie:

i G- () <alx, - x,) (19

Let the resilient nonlinear fractional order
observer be expressed as:

oDIX =AX +j (X,u)+(L +D(t))(y - CX) (17)

y =Cx

where X1 "is the sae estimation

andLT " ™isthe proportional observer gain

and the tems D(t)T "™ is additive

perturbation on the error gain with known bound

[D(t)| £ r . The observer error dynamic equation

is obtained as:

oD% =(A-LC- D{t)C)% (18)
+ (x,u)-j (X,u)+w

where % =X - X isthe state estimation error.

The following theorem provides sufficient
conditions for the stability of the resilient
fractional order observer (17).

Theorem: Consider the resilient observer
(17). This observer has a stable observation if

2x'y £ex'x +ely'y (13)

positive real numberse;,e,and matriceP >0

exist while the proportional observer gain is the
solution of the following constrained LMI:
!j@rlq)%(t)=0 forw(t)=0

(14)
O Enwe),  forw(t)* Oand %(0)=0
é P N
e 5 P Py
ng L,'I
e _ u 19
6, N0 0 <o (19)
&P 0 -2 0§
P 0 0 -2IH
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in

which
TpT TT 2

G:PA+A P _SC+C S L& CTC+igzl +l
2 2 2 2

his the L, gain from disturbance to error as

introduced in (14),g > Ois Lipschitz constant of

nonlinear function in system (15) whiler is the
known bound of the additive perturbation on the
error gain,S = PL . So the proportional observer

gainisequa toL =P'S .

Proof: Using definition 4, (18) can be written
as.

ﬂzfr\rltVt)_ wz(Wt)+(A- LC - DE)C)%
+ (X,u)-j (X,u)+w (20)

%)= (‘jr(w)z(w t)dw

—nl o — ——f— —

wherem(w) isthe same as (9).

Let us define two Lyapunov functions:
n(w,t) is the monochromatic Lyapunov function
corresponding to the elementary frequency w
andV (t) is the Lyapunov function summing all the
monochromatic N (w,t) with the weighting
function mw) . Now  we  define  our
monochromatic Lyapunov function such as:

av (t)

——01(W)(z (W.0)P.(-wzW,t)+(A- LC - DE)C)R+j (x,u)-] (X,u))+w dw

dt

2" (W,t)P z(w,t)

n(w,t)= 2 PT (21
this definition resultsin:
In(w,t) =2 WP (22)
1z (w,t)
and
ntwt) _Tin(w.t) fz(w.t)
Tt Tzwt) Tt
(23)

=z" W,H)P.(-wzWw,t)+ (x,u)-j (X,u)
+(A- LC - DE)C)% +w)

According to the definition of VV (t) we have:

¥ (29)
V(t) = (‘J'r(w)n (w,t) dw
Taking the derivative of Eq. (24) causes:
dV(t) _ 0"(  In(w.t) (w ) 4 (29)
Using Eq.(21) and (24) concludes that:
(26)

V () =%BT‘(W)ZT (W,1)P Z(w,t)dw

and substituting Eq. (23) into (25) follows that:

(27)

=61(W)2T (w,t)dw.P((A- LC - Dt)C)% +j (x,u)-j (X,u)+w)

¥
- Vmw)z" (w,t)Pz (w,t)dw
0
Using Eq. (20) simplifies (27) asfollow:

NO _yrpra- Le - DE)C )%
+j (x,u)-j (X,u)+w]

- Bv mw)z" (w,t)Pz(w,t)dw

According to the Lyapunov theorem, stability
conditions of the considered system areV (t) > Oand

av(t)
dt
(28) implies thatV(t)is positive ifP >0 and
dv (t)
Cdt
%" P[(A- LC - D{t)C)% (29)
+ (x,u)-j (X,u)+w]<0

< 0. Using (26) and

isnegative if
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or equivalently
#"P(A- LC - D(t)C)% (30)

+%"P[j (x,u)-j (X,u)]+%" Pw <0

Using Lemma 2 on the second term, with e, result in:

31
)%TP(A—LC—D(t)C))%+é)%TPTB%+>%TRN (3D

+%(j (x,u)-j (Ru)' G (x,u)-j (x,u)

£X"P(A- LC- D(t)C)>%+2el>%T P"PY

+%(]|j u)-j (Ru)f* +%"Pw <0

Applying inequality (16) to inequality (31) concludes
that:

X" P(A- LC- DE)C)% +— (32)
%

>%T P"PY%
S g7 ] +57 P

£X"P(A- LC - Dt)C)% +2el)%T P’ P%

+%gz>%T>% +%"Pw <0
The inequality (32) can be rewritten as bellow.

£TP(A- LC)% - %" PD(t)CH (33)
+i>%TPTP>%+e—Zng>%T>%+>%TPw <0
e,

Again using Lemma 2 on the second term, with e,
result in:

T 1 o7
" P(A- LC)%+£>< P Pk 4
eZ)%TCT[D(t)]T D(t)0%+2el>%TPTFb%

+%gz)%T)%+)%TPW <0

While |D(t)||£ r inequality (34) can be written as
follow:

%TP(A- LC) +—— X" P" P
2e,
2 35
+ & yTCTCk+ L ATPT PR (
2 2e,

+e—zlgz>%T>% +%"Pw <0

Using Lemma 3, when w =0 the sufficient
conditions for observer convergence can be obtained
by setting:

%' [P(A - LC)+(2i+2i)PTP

2 1

(36)

2
S92+ & e <o
2 2

Inequality (36) is not necessarily a symmetric matrix.

Thus it cannot be converted to LMI by using Lemma

1. To overcome this problem we introduce

Q =PA- SC inwhich S =PL and rewrite (36)as:

K[+ PP+ 2g] ¢
2,

2

+)%T[Q+Q +Q'Q ])%<0
2 2

& e
2

Since %'Q%T  and('Q%) =X'Q"H¥ , we
have:
KTQH) =X"QR =%"Q" % (39)
Thisimpliesthat:

-0O7 39
)%T(—Q 2Q W =0 (39)

Substituting (39) into  (37) follows that:

g
& (2 T+ LypTp
2 2e, 2e

(40)

2
+Sg2 + 5 ook
2 2

T
£X' [ﬂ+(i+i)pT P
2 26, 2¢

2
+Sg21 + & cTew <o
2 2
Therefore the new conditions of our Lyapunov
candidate are as bellow:
P>0, (42)
\T 2
%4_( )PTP+e_I_ 2 % CTC<0
2 x, 231 2

Using lemma 3 for H, observer we have:
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*T(E)R(E)-hw' tw(t)£0 (42)

On the other hand, for stability of the observer it is

dv (t)
dt

<0 which causes:

necessary to have

dv (t
X% - hw'w + dt() (43)

Using
(28) and  ((35)we have:

VO _y P(A- LC)% ES (44)
d %,

ez & T+~ %TPTH%+621 257 %

+4" A - @m(w)zT (Wt)Pz(w;t)dw
0

Inequality (43) can be rewritten as:
%% - hw'w +%" P (A - LC))% (45)

s L TP+ & yrcTon
2e, 2
1 TpT e1 2 ¢T T

+— X P Pb+2g % X+X% Pw
2e, 2

¥

- Qvmw)z" (w,t)Pz(w,t)dw <0

0

Using Error! Reference source not found. for
symmetrization, (45) can be replaced by:

QL Ly )pr+el 2| (46)
2 2 T 2e

ezr2 T T T
+TC C+I¥-hw w +% Pw

- BV”(W)ZT (w,t)Pz (w,t)dw <0

Summarizing (46), the sufficient condition can be
offered as:

. Q+Q7 —) (47)
o 2 +(2e2 2e1)P P2 gI

2
+%CTC +1]% - hw™w +%" Pw <0

or

é P U (48)
é o u
XTé  “ X <0
P U
g2 s
Where
:
p=Q*rQ" (1, Liop, &g & oy
2 2, 2e 2 2

X =[% wl'ad #"Pw=(¥"Pw) 1 .This
can be altered to LMIs by using Schur compliment as
follow:

<G P opr pr O

2 .
QPT N
S h 0 0 i<o
<2 i (49)
P 0 -2 0 -
SP 0 0 -2,lg4

+0O7 2

while G=2 2Q © e2192| +1 and

P >0. Notethat (41)and (47)are included in(49). o
Remark 3. The proposed LMI is consist of h.

Thus, depend on this parameter, which can be a fixed
constant or an optimization or minimization variable,
the observer design is an optimization or
minimization problem or an LM feasibility problem.
Remark 4. To solve LMI (19) optimaly, a

tradeoff between amount ofh and|L| should be

considered.WhileL =P'S | we have
||L||£||P'l||>ﬂS||andwe should minimize ”P'l”and

|S| to decrease||L | The inequality (50) is introduced
to determine the upper bound of ||L || .

Is|<k.p £ S gl (50)
eS KSIO T
o P ek
-1 < ”
"P ||<kpl3 gl K, H>O{)

Using min W, >h +w, X +w > ) subject to
(19) will minimize bothh and|L | besides solving
inequality (19) by considering weight coefficients.

4., SIMULATION RESULTSAND DISCUSSION

Robust and non-fragile observer design for
nonlinear fractional order systems is recently
presented in [22] based on fractional order Lyapunov
theorem. In continue; we present the result of this
paper and compare the result of designing robust non-

6
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fragile observer based on fractional and integer order
Lyapunov theorem.

According to [22], the non-fragile nonlinear
observer (17) has a robust observation; regardless the
disturbance affects the system (15), if positive real
numbers e,,e,, and Bl "exists while the
proportional observer gain is the solution of the
following optimization problem:

Optimizeh , and L,

subject to P,>0 and

é P U (51)
gPT u

> u
&y -h,l 0 0 g<0
&P, 0 -2, 0
gp, 0 0 -2,

Whiles, = P,L,and the
propo

TpT TaT 2

@‘PZAJ? i sﬁcf > +‘3122r CTC+%92I +oP, + rti

onal observer gain L,=R'S, stabilizes the state

estimation error (18) for all gain perturbation
satisfying||D(t)| £ r . Parameter bis defined in (4)and

as it has explained in [22], inequality (51)should be
solved in an iterative agorithm to find a proper
b besides solving (51).

Comparing inequality (51)which is the result of
the designing fractional order Lyapunov based non-
fragile robust observer and inequality (19) which
indicate the result of this paper in stability proof of
robust nonfragile H, with the help of integer order

Lyapunov; it shows the similar results for both
methods. The only differenceisin column 1, row 1 of
the main inequality which appears with existence of
bP, and caused due to simplification of continuous

frequency distributed model of the fractiona
integrator. Although existence of bP, >0shows the

more accuracy of fractional order Lyapunov based
method, but feasibility region becomes less. In
continue, we design and simulate  non-

fragileH, observer(17) for a chaotic system to

illustrate the performance of the integer order
Lyapunov based design of robust non-fragile observer
and compare it with fractional order Lyapunov based
one.

Consider a Lipschitz nonlinear fractional order
system with four scroll attractors as introduced in

7

[xxx] ~ where X =[x,,X,,X;]', =085,

(@ab,c,d,h)=(4,27,35,4) and gis chosen equal
t00.6.

éa 1 00 &0
gy — € a, . é u
D x—eo (o 1@x (f)xlxagJ
@0 0 'hH ng1X2H
€0.5() (52)
o
+§2@sm(4t)
g34d
y=[1 0 0]x

Using YALMIP toolbox [xxxi], Ninteger toolbox
[xxxii] and LMI control toolbox [xxxiii] in MATLAB
and solving LMI (29 besides
consideringe,,e, >0,P =P" >0and r =0.3,
solution for different W, ,i =1,2,3is derived as table
I

Tablel. solution of LMI (19) for different W, ,i =1,2,3.

W, Ky K]

6.9254 | 3.0802 | 2.9647
1 0 |0 | 628

e+006 | et007 | e+008

1.2340
1 1 |1 | 6459 | 1880 | 70.072

e+003

2.5297
10 |1 |1 | 3403 | 38.01 171.72

e+003

6.0536
100 |1 | 1 | 1629 | 8241 | 687.86

e+003

1.0449
300 |1 |1 | 1272 | 1226 | 1269.1

e+004

The first row of table | show the results of usual
minimization solution of LMI (19) forh. As it has

shown,h has the minimum amount equal to 6.28 to
make LMI (19) feasible for system (52). Because of
the big amount of L in the minimization method, it
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is better to use optimal method which has shown in
subsequently rows.

According to remark 4, eguation
wh +w, Xk +w ;%  should be minimized. We use

trial and error to choose the best w; due to the
importance of h besids logical amount of L | .
Choosing w, =300,w, =1Lw, =1 causes the

solution to be derived as:

S =[12684, 40.8, -14.5]T,e1 =10.4283 e, =14/0,
§165.4137 -5.7969 —0.3911[‘:|

, P=5-57969 02113 -0.0185; - Hence, the
g-0.3911 -0.0185 58.1251j

observer gan is
asL =[374, 10442, 6] .

To simulate the proposed observer, gain
perturbation is considered equal to
D(t) =[0.24, 1.5, 0.3]" .sin(4t)  while input
disturbance is equivalent to

w (t) =[0.25sin(3t), 0.1u(t), ﬁr and  initial

obtained

values for master chaotic system are considered
as[0,2,8].-
Real and estimated values of statesare plotted in

fig 1 and estimation errors for the proposed non-
fragileH , fractional order nonlinear observer is

shown infig 2.

10 T T T T T T

20
’ NL_/\JL/M
0 ~

10 I I I I
0

X3

time(s)

Figure 1. Red vaue of states (solid line) and
estimated value of states (dashed ling).

Error on xy
=) -

o
o

=)

Erroron x,

o
o
o

Error on xg
Frd
o =
E

S
=
o

time(s)

Figure 2. Reslient H, nonlinear observer estimation's
error.

It can be seen that using the proposed observer, the
slave system can effectively track master chaotic
system.Due to existance of disturbance and gain
perturbation and h =12.7262, the estimation error is
proper.

To have a comparison with the result of [22], we
tried to solve (51) with an iterative algorithm for
system (52). Figure 3 shows the feasible region of
LMI (51) for system (52) with the norm of observer
gainin terms of b . Asit can be seenb should be less

than 3.1 to make (51) feasible which is not accessible
for system (52) with iterative algorithm mentioned in
[22].

r 10 Feasibility region of LMI

T \*. |
+ x31
55 * ¥:5.903e+004

s
5,
2"
e

IS
(3,1
;%*s.‘s%%'

gy
*

L

1 I I I
0 05 1 15 2

25 3 35

Figure 3. The feasible region of LMI (51) for system (52).
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Asit was explained before, fractional order
Lyapunov based design is more accurate than integer
order Lyapunov based design but it has more
restrictions which causes less feasible region for this
method.

5.Conclusion
This paper presentsa systematic algorithm for designing an
optimal H, resilient fractional order observer for a class

of nonlinear fractiona order systems.Using
continuous frequency distribution, the stability
conditions based on integer order Lyapunov theorem
are derived and converted to LMIs to systematically
minimize both the effects of disturbance on the
synchronization error and norm of the observer
gain.This observer ensures the state estimates
converge to its true value in the presence of
exogenous disturbances input and observer gain
perturbation.

A comparison has done between this observer and
fractional order Lyapunov based resilient Hy observer

design for nonlinear fractional order systems. This
investigation showsbigger feasibility region for the
integer order Lyapunov based design besides simpler
computing.The effectiveness of the proposed observer
has indicated through chaos synchronization.
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