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Abstract 
 Non-fragile H ∞ observer design is the main 
problem of this paper. Using continuous 
frequency distribution, the stability conditions 
based on integer order Lyapunov theorem are 
derived for Lipschitz class of nonlinear 
fractional order systems. The proposed 
observer is stable beside the existence of both 
gain perturbation and input disturbance. For 
the first time, in this paper a systematic 
method is suggested based on linear matrix 
inequality to find an optimal observer gain to 
minimize both the effects of disturbance on the 
synchronization error and norm of the 
observer gain. A comparison has done between 
this observer and previous research on 
resilient H ∞ observer design for nonlinear 
fractional order systems based on fractional 
order Lyapunov method. The comparison 
shows a much broader range of feasible 
response for the proposed method of this paper 
besides simpler computing. After presenting 
thediscussion, chaos synchronization is 
simulated to show the effectiveness of the 
proposed method in the end. 
 
Keywords: Continues frequency distribution; 
H ∞ fractional order observer; Linearmatrix 
inequality; Lipchitz nonlinear systems; 
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1. Introduction 
Inspite of ancient history for the fractional order 
calculus, its applications to physics and 
engineering have just started in the recent decades 
[1,2]. 

Observers are dynamical systems that used to 
estimate the states of the system from their inputs 
and outputs, and play an important role in systems 
control theory and fault detection on dynamical 
systems. Although there are many researches on 
the fractional order observer based control of the 
fractional ordersystem [3-10] but to our best 

knowledge, almost all of the researches 
mentioned above and many other existing 
references mainly have ignored the nonlinearity 
or linearized it by use of their controller. 
Sometimes we have no control on the desired 
system for observation which makes the 
mentioned researches inadequate. Moreover, the 
major difficulties in the design of practical 
observers for dynamical systems are their 
nonlinear dynamics and existing exogenous 
disturbances. 

According to what was said, observer design for 
nonlinear fractional order dynamical systems is a 
widespread area of current researches [11-14]. 
Fractional algebraic observability property is 
introduced in [11] as a main tool in the design of 
an observer structure for a certain autonomous 
Lipchitz nonlinear fractional order systems. In 
reference [12] the problem of state estimation for 
a class of fractional 

 order nonlinear systems with uncertainty, using 
sliding mode technique is investigated while [13] 
presented observers design for continuous time 
singular fractional order systems based on the 
generalized Sylvester equations 
solutions.Reference [14] has introduced a 
nonlinear fractional order observer strategy with 
unknown input disturbance. This paper has 
considered a very special model and omitted the 
disturbance by considering some constraints on 
the observer coefficients which cause the result 
don't be operational in many cases.  

As introduced in [15], a fragile or non-resilient 
observer is an observer in which the estimation 
error diverges by a small perturbation in the 
observer gain. Since the observer gains are 
usually obtained from offline calculations, in 
many practical applications the gain may have 
slow drifts; thus, it is necessary that the observer 
tolerates some perturbations in its coefficients 
[16]. 

In [17] a specific Lyapunov function is defined 
and the application of Lyapunov’s method to 
nonlinear Fractional Differential Equations 
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(FDEs) is proposed. The key concept of this paper 
is the frequency distributed fractional integrator 
model which is the basis of a global state space 
model of FDEs. Using the mentioned Lyapunov 
in [17] an integer order Lyapunov based method 
recommended for stability proof of the nonlinear 
fractional order systems.Using this method for the 
first time in reference [18],resilient state estimator 
introduced for the Lipschitz fractional order 
systems.The result of [18] is extended to 
uncertain nonlinear systems in [19] and [20] 
while [19] has presented an observer based 
control and a non-fragile observer design for a 
class of fractional order one sided Lipschitz 
nonlinear systems is expressed in [20]. 

Paper [21] is dealt with the design of non-fragile 
state estimation problem for the Lipschitz 
fractional order systems based on fractional order 
Lyapunov technique while [22] has extended the 
results of [21] and introducedan iterative 
algorithm to calculate the optimal non-fragile 
H∞ observer gain for Lipschitz nonlinear 
fractional order systems based on fractional order 
Lyapunov theorem. 

In this paper we extend the result of [18] to 
present ∞H non-fragile nonlinear fractional order 
observer design for Lipschitz nonlinear fractional 
order systems. The approach is using continues 
frequency diffusion and presenting stability proof 
based on the integer order Lyapunov method. 
Sufficient conditions for robust stability with 
existence of perturbation in the gain matrix and 
input disturbance are derived in terms of linear 
matrix inequalities formulation and unlike [22], a 
systematic method is introduced to minimize both 
the effects of disturbance on the synchronization 
error and norm of the observer gain optimally. 

The rest of the paper is organized as follows: 
Section 2 provides preliminaries. In section 3, the 
problem statement is given and the optimal gain 
for the proposed observer is discussed. 
Comparison between the proposed observer and 
the results of [22] is investigated and an 
illustrative simulation of chaos synchronization is 
provided in section 4 and finally, the conclusion 
remarks are given in section 5. 

2. Preliminaries 
In this part the most commonly used definitions 
are introduced and then diffusive representation 
that provides the theoretical basis for a time 
approximation of )(tfI q

ta is given. Finally we 
will present some useful Lemmas for our main 
results. 

Definition 1. [23], [24]: The q th-order 
Riemann-Liouville fractional derivative of 
function )(tf  with respect to t and the initial 
value a is given by: 

∫ +−−−Γ
=

t

a
mqm

m
q
ta d

t
f

dt
d

qm
tfD ,

)(
)(

)(
1)( 1 τ

τ
τ  (1) 

where m is the first integer larger thanqand (.)Γ  
is the Gamma function which is defined by 

1

0
( ) t zz e t dt

∞ − −Γ = ∫ . 

Remark 1.[22] The q th-order fractional 
derivative of function 2( ( )) ( )f x t x t=  with 
respect to t is given by 

x
q
t

q
t ptxDtxtxfD += )()())(( 00  

(2) 

where 
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=
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 As introduced in [25] and [26], xp is bounded. 
So we define the following boundedness 
condition: 

 
2xp x β≤  

(4) 

To have a smaller β , inequality (4) can modified 
to (5) while xp ∈   and x xp p≤  : 

2
xp xβ≤  

(5) 

Definition 2.[23], [24]:the q th-order 
fractional integral of function ( )f t  with respect 
to t and the initial value a is given by 

∫ −
−

−Γ
==

t

a
q

q
ta

q
ta d

t
f

q
tfItfD ,

)(
)(

)(
1)()( 1 τ

τ
τ

 

(6) 

 

 

where 0q > and Γ  is the Gamma function. 

Definition 3. (Diffusive Representation)[17]: 
Let )(th be the impulse response of a linear 
system. The diffusive representation (or 
frequency weighting function) of )(th  is 
called )(ωµ with following relation: 

∫
∞

−=
0

)()( ωωµ ω deth t

 

(7) 
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Remark 2. [17]:  For the fractional order 
integral )(tfI q

ta , Eq. (6) can be written as: 

)(*)()( tfthtfI q
ta =  (8) 

where * denote convolution operator and 

)(
)(

1

q
tth

q

Γ
=

−

. The diffusive representation of 

)(
)(

1

q
tth

q

Γ
=

−

 is introduced as: 

qq −= ω
π

π
ωµ

)sin()(  (9) 

Definition 4.[17]: The nonlinear FDE: 
)(xfxDq

ta =  (10) 

due to the continuous frequency distributed model 
of the fractional integrator, can be expressed as: 










=

+−=
∂

∂

∫
∞

0

),()()(

))((),(),(

ωωωµ

ωω
ω

dtztx

txftz
t

tz

 (11) 

WHILE )(ωµ IS THE SAME AS (9). 

Lemma 1. (Schur Complement) [27]:  for a 
real matrix TΣ = Σ , the following assertions are 
equivalent: 

1

1

( ) ( )
1) 0

( ) ( )

2) ( ) 0, ( ) ( ) ( ) ( ) 0
3) ( ) 0, ( ) ( ) ( ) ( ) 0

T

T

T

Q x W x
W x R x

R x Q x W x R x W x
Q x R x W x Q x W x

−

−

 
Σ = < 

 
< − <

< − <

 
(12) 

Lemma 2. [28]: Let x, y be real vectors of the 
same dimension. Then, for any scalar 0>ε , we 
have: 

Lemma 3. [29]: The design of the robust 
proportional observer consists in finding a 

matrix L such as the estimation error, ( )x t% , 

satisfies the following H ∞  performances: 

WHEREη  IS THE 2L
 GAIN FROM 

DISTURBANCE, ( )w t ,TO ( )x t%
TO BE 

MINIMIZED. 

3. Robust Resilient Nonlinear Fractional Order 
Observer Design 

Consider a nonlinear fractional order system 
of the form:  

( , )q
a tD x Ax x u w
y Cx

ϕ= + +
=

 (15) 

where 0 1q< <  and nx ∈  , ku ∈ , 
my ∈  are the state, input, and output 

respectively. n nA ×∈  and m nC ×∈   are constant 
matrixes, nw ∈ is the input disturbance and 

:[ ]n k nϕ →    is nonlinear function which 
is Lipschitz in x with Lipschitz constant 0γ > , 
i.e. :  

1 2 1 2 1 2( , ) ( , ) ,x u x u x x x xϕ ϕ γ− < − ∀ ∈
 

(16) 

 

Let the resilient nonlinear fractional order 
observer be expressed as: 

0 ˆ ˆ ˆ ˆ( , ) ( ( ))( )
ˆ ˆ

q
tD x Ax x u L t y Cx

y Cx
ϕ= + + + ∆ −

=
 

(17) 

 

where ˆ nx ∈  is the state estimation 
and n mL ×∈  isthe proportional observer gain 
and the terms ( ) n mt ×∆ ∈   is additive 
perturbation on the error gain with known bound 

( )t r∆ ≤ . The observer error dynamic equation 
is obtained as: 

0 ( ( ) )
ˆ( , ) ( , )

q
tD x A LC t C x

x u x u wϕ ϕ
= − − ∆
+ − +

% %
 

(18) 

 

where ˆx x x= −%  is the state estimation error. 

The following theorem provides sufficient 
conditions for the stability of the resilient 
fractional order observer (17). 

Theorem: Consider the resilient observer 
(17). This observer has a stable observation if 

positive real numbers 1 2,ε ε and matrice 0P >  
exist while the proportional observer gain is the 
solution of the following constrained LMI: 

1

2

2

0 0 0
2

0 2 0
0 0 2

T T

T

P P P

P I

P I
P I

η

ε
ε

 Γ 
 
 − < 
 

− 
 − 

 (19) 

12 T T Tx y x x y yε ε −≤ +  (13) 

2 2

2 2

lim ( ) 0 ( ) 0

( ) ( ) ( ) 0 (0) 0
t

x t forw t

x t w t forw t and xη

→∞
= =

≤ ≠ =

%

% %
 (14) 
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in 
which

2
22 1

2 2 2 2

T T T T
TrPA A P SC C S C C I Iε ε

γ
+ +

Γ = − + + +  

η is the 2L  gain from disturbance to error as 
introduced in (14), 0γ > is Lipschitz constant of 
nonlinear function in system (15) while r is the 
known bound of the additive perturbation on the 
error gain,S PL= . So the proportional observer 
gain is equal to 1L P S−= . 

Proof: Using definition 4, (18) can be written 
as: 

0

( , ) ( , ) ( ( ) )

ˆ( , ) ( , )

( ) ( ) ( , )

z t z t A LC t C x
t

x u x u w

x t z t d

ω
ω ω

ϕ ϕ

µ ω ω ω
∞

∂ =− + − −∆
∂ + − +


 =


∫

%

%

 

(20) 

where ( )µ ω  is the same as (9).  
Let us define two Lyapunov functions: 

( , )tν ω is the monochromatic Lyapunov function 
corresponding to the elementary frequency ω  
and )(tV is the Lyapunov function summing all the 
monochromatic ),( tων with the weighting 
function )(ωµ . Now we define our 
monochromatic Lyapunov function such as: 

( , ) ( , )( , ) ,
2

T
n nz t P z tt Pω ω

ν ω ×= ∈ 

 

(21) 

this definition results in:  
( , ) ( , )
( , )

Tt z t P
z t
ν ω

ω
ω

∂
=

∂
 

(22) 

 

and 
( , ) ( , ) ( , ).

( , )
ˆ( , ) .( ( , ) ( , ) ( , )

( ( ) ) )

T

t t z t
t z t t
z t P z t x u x u
A LC t C x w

ν ω ν ω ω
ω

ω ω ω ϕ ϕ

∂ ∂ ∂
=

∂ ∂ ∂

= − + −
+ − −∆ +%

 

(23) 

According to the definition of )(tV  we have:  

∫
∞

=
0

),()()( ωωνωµ dttV  
(24) 

 

Taking the derivative of Eq. (24) causes: 

∫
∞

∂
∂

=
0

),()()(
ω

ων
ωµ d

t
t

dt
tdV

 
(25) 

 

Using Eq.(21) and (24) concludes that:  

0

1( ) ( ) ( , ) ( , )
2

TV t z t P z t dµ ω ω ω ω
∞

= ∫  
(26) 

 

and substituting Eq. (23) into (25) follows that: 
 

 

( )
0

0

0

( ) ˆ( ) ( , ) .( ( , ) ( ( ) ) ( , ) ( , ))

ˆ( ) ( , ) . (( ( ) ) ( , ) ( , ) )

( ) ( , ) ( , )

T

T

T

dV t z t P z t A LC t C x x u x u w d
dt

z t d P A LC t C x x u x u w

z t Pz t d

µ ω ω ω ω ϕ ϕ ω

µ ω ω ω ϕ ϕ

ω µ ω ω ω ω

∞

∞

∞

= − + − − ∆ + − +

= − − ∆ + − +

−

∫

∫

∫

%

%  

(27) 

 

 

 

 

 
Using Eq. (20) simplifies (27) as follow: 

0

( ) [( ( ) )

ˆ( , ) ( , ) ]

( ) ( , ) ( , )

T

T

dV t x P A LC t C x
dt

x u x u w

z t P z t d

ϕ ϕ

ω µ ω ω ω ω
∞

= − − ∆

+ − +

− ∫

% %

 

 

(28) 

 

 

According to the Lyapunov theorem, stability 
conditions of the considered system are 0)( >tV and 

0)( <
dt

tdV
. Using (26) and  

(28) implies that )(tV is positive if 0P >  and 

dt
tdV )(

is negative if  

[( ( ) )
ˆ( , ) ( , ) ] 0

Tx P A LC t C x
x u x u wϕ ϕ

− − ∆
+ − + <

% %
 

(29) 
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or equivalently 
( ( ) )

ˆ[ ( , ) ( , )] 0

T

T T

x P A LC t C x
x P x u x u x Pwϕ ϕ

− − ∆

+ − + <

% %

% %
 

(30) 

 

 

Using Lemma 2 on the second term, with 1ε  result in: 

1

1

1

21

1( ( ) )
2

ˆ ˆ( ( , ) ( , ) ( ( , ) ( , ))
2

1( ( ) )
2

ˆ( ( , ) ( , ) 0
2

T T T T

T

T T T

T

x P A LC t C x x P Px x Pw

x u x u x u x u

x P A LC t C x x P Px

x u x u x Pw

ε
ε

ϕ ϕ ϕ ϕ

ε
ε

ϕ ϕ

− −∆ + +

+ − −

≤ − −∆ +

+ − + <

% % % % %

% % % %

%

 

(31) 

 

 

 

 

 

 

Applying inequality (16) to inequality (31) concludes 
that:  

1

221

1

21

1( ( ) )
2

2
1( ( ) )

2

0
2

T T T

T

T T T

T T

x P A LC t C x x P Px

x x Pw

x P A LC t C x x P Px

x x x Pw

ε
ε

γ

ε
ε

γ

− −∆ +

+ +

≤ − −∆ +

+ + <

% % % %

% %

% % % %

% % %

 

(32) 

 

 

 

 

 

The inequality (32) can be rewritten as bellow. 

21

1

( ) ( )
1 0

2 2

T T

T T T T

x P A LC x x P t Cx

x P Px x x x Pwε
γ

ε

− − ∆

+ + + <

% % % %

% % % % %
 

(33) 

 

 

Again using Lemma 2 on the second term, with 2ε  
result in: 

2

2

1

21

1( )
2

1[ ( )] ( )
2 2

0
2

T T T

T T T T T

T T

x P A LC x x P Px

x C t t Cx x P Px

x x x Pw

ε
ε

ε
ε

γ

− +

+ ∆ ∆ +

+ + <

% % %

% % % %

% % %

 

(34) 

 

 

 

 

While ( )t r∆ ≤  inequality   (34) can be written as 
follow: 

2
2

2

1

21

1( )
2

1
2 2

0
2

T T T

T T T T

T T

x P A LC x x P Px

r x C Cx x P Px

x x x Pw

ε

ε
ε

ε
γ

− +

+ +

+ + <

% % %

% % % %

% % %

 
((35 

 

 

Using Lemma 3, when 0w =  the sufficient 
conditions for observer convergence can be obtained 
by setting: 

2 1
2

21 2

1 1[ ( ) ( )
2 2

] 0
2 2

T T

T

x P A LC P P

rI C C x

ε ε

ε ε
γ

− + +

+ + <

%

%

 

(36) 

 

 

Inequality (36) is not necessarily a symmetric matrix. 
Thus it cannot be converted to LMI by using Lemma 
1. To overcome this problem we introduce 
Q PA SC= − in which S PL=  and rewrite (36)as: 

2
21 2

2 1

1 1[( ) ]
2 2 2 2

[ ] 0
2 2

T T T

T T
T

rx P P I C C x

Q Q Q Qx x

ε ε
γ

ε ε
+ + +

+ −
+ + <

% %

% %

 

   (37 

 

 

 

Since Tx Qx ∈% %   and ( )T T T Tx Qx x Q x=% % % %  , we 
have: 
( )T T T T Tx Qx x Qx x Q x= =% % % % % %   (38) 

This implies that: 

( ) 0
2

T
T Q Qx x−

=% %  
 (39) 

 

Substituting  (39) into    (37) follows that: 

2 1
2

21 2

2 1
2

21 2

1 1( ) [( )
2 2 2

]
2 2

1 1[ ( )
2 2 2

] 0
2 2

T
T T T

T

T
T T

T

Q Qx x x P P

rI C C x

Q Qx P P

rI C C x

ε ε

ε ε
γ

ε ε

ε ε
γ

+
+ +

+ +

+
≤ + +

+ + <

% % %

%

%

%

 

 (40) 

 

 

 

 

 

Therefore the new conditions of our Lyapunov 
candidate are as bellow: 

2
21 2

2 1

0,
1 1( ) 0

2 2 2 2 2

T
T T

P
rQ Q P P I C Cε ε

γ
ε ε

>

+
+ + + + <

 
(41) 

 

 

Using lemma 3 for H ∞ observer we have: 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.1, SPRING   2012 

6 

( ) ( ) ( ) ( ) 0T Tx t x t w t w tη− ≤% %  (42) 

 

On the other hand, for stability of the observer it is 

necessary to have
( ) 0dV t

dt
<  which causes: 

( ) 0T T dV tx x w w
dt

η− + <% %  (43)

 

Using  
(28) and       ((35)we have:  

2
2

22 1

1

0

( ) 1( )
2

1
2 2 2

( ) ( , ) ( , )

T T T

T T T T T

T T

dV t x P A LC x x P Px
dt

r x C Cx x P Px x x

x Pw z t Pz t d

ε

ε ε
γ

ε

ωµ ω ω ω ω
∞

= − +

+ + +

+ −∫

% % %

% % % % % %

%

 

(44) 

 

 

 

 

Inequality        (43) can be rewritten as: 

2
2

2

21

1

0

( )
1

2 2
1

2 2

( ) ( , ) ( , ) 0

T T T

T T T T

T T T T

T

x x w w x P A LC x
rx P Px x C Cx

x P Px x x x Pw

z t Pz t d

η

ε
ε

ε
γ

ε

ω µ ω ω ω ω
∞

− + −

+ +

+ + +

− <∫

% % % %

% % %

% % % % %
 

(45) 

 

 

 

 

 

 

Using Error! Reference source not found. for 
symmetrization, (45) can be replaced by: 

21

2 1
2

2

0

1 1[ ( )
2 2 2 2

]
2

( ) ( , ) ( , ) 0

T
T T

T T T

T

Q Qx P P I

r C C I x w w x Pw

z t Pz t d

ε
γ

ε ε

ε
η

ω µ ω ω ω ω
∞

+
+ + +

+ + − +

− <∫

%

% %  

(46) 

 

 

 

Summarizing (46), the sufficient condition can be 
offered as: 

21

2 1
2

2

1 1[ ( )
2 2 2 2

] 0
2

T
T T

T T T

Q Qx P P I

r C C I x w w x Pw

ε
γ

ε ε

ε
η

+
+ + +

+ + − + <

%

% %

 

(47) 

 

 

or 

2 0

2

T
T

P

X X
P Iη

 Π 
< 

 −  

 

(48) 

 

 

Where 
2

21 2

2 1

1 1( )
2 2 2 2 2

T
T TrQ Q P P I C C Iε ε

γ
ε ε

+
Π = + + + + +

[ ]TX x w= % and ( )TT Tx Pw x Pw= ∈% %  .This 

can be altered to LMIs by using Schur compliment as 
follow: 

1

2

2

0 0 0
2

0 2 0
0 0 2

T T

T

P P P

P I

P I
P I

η

ε
ε

 Γ 
 
 

− < 
 

− 
 − 

 (49) 

 

while 
2

22 1

2 2 2

T
TrQ Q C C I Iε ε

γ
+

Γ = + + +  and 

0P > . Note that (41)and (47)are included in(49). □ 
Remark 3. The proposed LMI is consist of η . 

Thus, depend on this parameter, which can be a fixed 
constant or an optimization or minimization variable, 
the observer design is an optimization or 
minimization problem or an LMI feasibility problem. 

Remark 4. To solve LMI (19) optimally, a 
tradeoff between amount ofη  and L  should be 

considered.While 1L P S−= , we have 
1L P S−≤ ⋅ andwe should minimize 1P − and 

S to decrease L . The inequality (50) is introduced 

to determine the upper bound of L . 

1

0

0

T
s

s
s

p s

p
p

K I S
S k

S K I
L k k

P I
P k

I K I
−

 
< ⇒ >  

  ⇒ ≤ ⋅
  < ⇒ >  
  

 

(50) 

 

  

 
Using 1 2 3min ( )p sw w k w kη⋅ + ⋅ + ⋅  subject to 

(19) will minimize bothη  and L besides solving 
inequality (19) by considering weight coefficients. 

4. SIMULATION RESULTS AND DISCUSSION 

Robust and non-fragile observer design for 
nonlinear fractional order systems is recently 
presented in [22] based on fractional order Lyapunov 
theorem. In continue; we present the result of this 
paper and compare the result of designing robust non-
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fragile observer based on fractional and integer order 
Lyapunov theorem. 

According to [22], the non-fragile nonlinear 
observer (17) has a robust observation; regardless the 
disturbance affects the system (15), if positive real 
numbers 21 22,ε ε  and 2

n nP ×∈ exists while the 
proportional observer gain is the solution of the 
following optimization problem: 

Optimize 2η and 2L  
subject to 2 0P >  and  

2
2 2 2

2
2

2 21

2 22

2

0 0 0
2

0 2 0
0 0 2

T T

T

P P P

P I

P I
P I

η

ε
ε

 Γ 
 
 − < 
 

− 
 − 

 

(51) 

 

 

 

 

  

While 2 2 2S P L= and the 
propo

2
22 2 2 2 22 21

2 22 2 2 2

T T T T
TPA A P S C C S r C C I P Iε ε

γ β
+ +

Γ = − + + + + rti

onal observer gain 1
2 2 2L P S−=  stabilizes the state 

estimation error (18) for all gain perturbation 
satisfying rt ≤∆ )( . Parameter β is defined in (4)and 
as it has explained in [22], inequality (51)should be 
solved in an iterative algorithm to find a proper  
β besides solving (51). 

Comparing inequality (51)which is the result of 
the designing fractional order Lyapunov based non-
fragile robust observer and inequality (19) which 
indicate the result of this paper in stability proof of 
robust nonfragile H ∞ with the help of integer order 
Lyapunov; it shows the similar results for both 
methods. The only difference is in column 1, row 1 of 
the main inequality which appears with existence of 

2Pβ  and caused due to simplification of continuous 
frequency distributed model of the fractional 
integrator. Although existence of 2 0Pβ > shows the 
more accuracy of fractional order Lyapunov based 
method, but feasibility region becomes less. In 
continue, we design and simulate non-
fragile H ∞ observer(17) for a chaotic system to 
illustrate the performance of the integer order 
Lyapunov based design of robust non-fragile observer 
and compare it with fractional order Lyapunov based 
one. 

Consider a Lipschitz nonlinear fractional order 
system with four scroll attractors as introduced in 

[xxx] where 1 2 3[ , , ]Tx x x x= , 0.85q = , 

( , , , , ) 4 2.7 3 5 4a b c d h ( , , , , )=   and γ is chosen equal 
to 0.6 . 

[ ]

2 3

1 3

1 2

1 0
0 1
0 0

0.5
2 sin(4 )
3

1 0 0

q

a bx x
D x c x x x

h dx x

t

y x

−   
   = + −   
   −   

 
 +  
  

=
 

(52) 

Using YALMIP toolbox [xxxi], Ninteger toolbox 
[xxxii] and LMI control toolbox [xxxiii] in MATLAB 
and solving LMI (19) besides 
considering 1 2, 0, 0TP Pε ε > = > and 0.3r = , 
solution for different , 1, 2,3iW i = is derived as table 
I: 

Table I. solution of LMI (19) for different , 1, 2,3 .iW i =  

1W  
 

2W
 

 

3W
 

η  pK  sK  L  

1 0 0 6.28 
6.9254 

e+006 

3.0802 

e+007 

2.9647 

e+008 

1 1 1 64.59 18.80 70.072 
1.2340 

e+003 

10 1 1 34.03 38.01 171.72 
2.5297 

e+003 

100 1 1 16.29 82.41 687.86 
6.0536 

e+003 

300 1 1 12.72 122.6 1269.1 
1.0449 

e+004 

The first row of table I show the results of usual 
minimization solution of LMI (19) forη . As it has 
shown,η  has the minimum amount equal to 6.28 to 
make LMI (19) feasible for system (52). Because of 
the big amount of L in the minimization method, it 
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is better to use optimal method which has shown in 
subsequently rows. 

According to remark 4, equation 
1 2 3p sw w k w kη⋅ + ⋅ + ⋅  should be minimized. We use 

trial and error to choose the best iw due to the 

importance of η  besids logical amount of L . 

Choosing 1 2 3300, 1, 1w w w= = =  causes the 
solution to be derived as: 

1 2[1268.4,   40.8,   -14.5] , 10.4283, 1470,TS ε ε= = =

, 
165.4137   -5.7969   -0.3911
 -5.7969     0.2113    -0.0185   
 -0.3911    -0.0185   58.1251

P
 
 =  
  

. Hence, the 

observer gain is obtained 
as [374,    10442,    6]TL = . 

To simulate the proposed observer, gain 
perturbation is considered equal to 

( ) [0.24,  1.5,   0.3] .sin(4 )Tt t∆ =  while input 
disturbance is equivalent to 

1( ) [0.25sin(3t),    0.1u(t),    ]
1

Tw t
t

=
+

and initial 

values for master chaotic system are considered 
as [ ]0, 2,8 . 

 Real and estimated values of statesare plotted in 
fig 1 and estimation errors for the proposed non-
fragile H ∞  fractional order nonlinear observer is 
shown in fig 2.  
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Figure 1. Real value of states (solid line) and 
estimated value of states (dashed line). 
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Figure 2. Resilient H ∞ nonlinear observer estimation’s 
error. 
 

It can be seen that using the proposed observer, the 
slave system can effectively track master chaotic 
system.Due to existance of disturbance and gain 
perturbation and 12.7262η = , the estimation error is 
proper. 

 To have a comparison with the result of [22], we 
tried to solve (51) with an iterative algorithm for 
system (52). Figure 3 shows the feasible region of 
LMI (51) for system (52) with the norm of observer 
gain in terms of β . As it can be seen β should be less 
than 3.1 to make (51) feasible which is not accessible 
for system (52) with iterative algorithm mentioned in 
[22]. 
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Figure 3. The feasible region of LMI (51) for system (52). 
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As it was explained before, fractional order 
Lyapunov based design is more accurate than integer 
order Lyapunov based design but it has more 
restrictions which causes less feasible region for this 
method. 

 
5. Conclusion 
This paper presentsa systematic algorithm for designing an 
optimal H∞ resilient fractional order observer for a class 
of nonlinear fractional order systems.Using 
continuous frequency distribution, the stability 
conditions based on integer order Lyapunov theorem 
are derived and converted to LMIs to systematically 
minimize both the effects of disturbance on the 
synchronization error and norm of the observer 
gain.This observer ensures the state estimates 
converge to its true value in the presence of 
exogenous disturbances input and observer gain 
perturbation. 

A comparison has done between this observer and 
fractional order Lyapunov based resilient H ∞ observer 
design for nonlinear fractional order systems. This 
investigation showsbigger feasibility region for the 
integer order Lyapunov based design besides simpler 
computing.The effectiveness of the proposed observer 
has indicated through chaos synchronization. 
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