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Abstract 
In this paper, stabilization conditions and 
controller design for a class of nonlinear systems 
are proposed. The proposed method is based on 
the nonlinear feedback, quadratic Lyapunov 
function and heuristic slack matrices definition. 
These slack matrices in null products are derived 
using the properties of the system dynamics. Based 
on the Lyapunov stability theorem and Sum of 
Squares (SOS) decomposition techniques, the 
conditions are derived in terms of SOS. This 
approach has two main advantages. First, using 
the polynomial model, the proposed method uses 
the polynomial state space matrices in the model 
description. Therefore, it does not need any 
existing modeling methods such as the Takagi 
Sugeno (T-S) fuzzy model which can be a source of 
conservativeness in the control design conditions, 
because the membership function information 
cannot be used completely in the derivation of the 
controller design conditions. Second, using slack 
matrices, one can find the matrices that leads to 
applicable controller design which this means it 
provides extra degrees of freedom. To show the 
effectiveness of the proposed method, a PMSM is 
considered in the numerical simulation. 
  
Keywords: Nonlinear feedback control; 
Permanent Magnet Synchronous Motor (PMSM); 
Polynomial model; Quadratic Lyapunov function; 
Sum of Squares (SOS). 
 
1. Introduction 
The synchronous machine is one of the most familiar 
machine categories which is generally used in the 
high power range [1]. The major plus of utilizing 
synchronous machines is their high efficiency, 
robustness and good controllability [2].  According to 
their non-linear dynamics, the problem of control of 
them is well identified to be demanding [3]. To 
prevail this challenging problem, different control 

approaches such as neural network control [4], [5], 
fuzzy logic control [6], [7] artificial intelligence [8], 
back stepping control [9], sliding mode control [10], 
[11] and adaptive control [12], [13] are studied. 
In the recent years, many researchers have done some 
studies towards the nonlinear systems control. This 
studies mostly are based on the Lyapunov function 
and storage function techniques [14], [15]. These 
approaches are known as a difficult problem in many 
studies. To overcome these difficulties the numerical 
solutions have been proposed. One of the most 
studied approach is Linear Matrix Inequalities (LMI) 
method. In some cases, the problem of finding the 
Lyapunov function using LMI is an infeasible 
problem. However, it doesn’t state that the desired 
system is unstable. It just informs that the LMI 
conditions cannot prove the stability. In this situation, 
there is another approach that may help to analyze the 
system. Sum of Squares (SOSs) decomposition [16] is 
a new approach which proposes a new direction to 
challenge these difficulties. Through this approach, 
stability analysis and control design of nonlinear 
systems can be performed efficiently via Lyapunov 
function. Actually, SOS approach takes advantages of 
polynomial matrix inequalities to design the controller 
and analyze the stability of the system. Feasible 
solutions for the controller design considering 
constraints can be calculated numerically [17]. Lately, 
many researchers pay attention to stability analysis 
and control synthesis of nonlinear systems via SOS 
approach [18]–[22]. In [23], using some constraints 
on the Lyapunov function, a static output controller is 
designed using the SOS approach. Generally 
speaking, the constraints make Lyapunov function to 
be only a function of states whose corresponding rows 
in the control matrix are zeroes, and its inverse have a 
specific form. By considering these constraints, the 
control design conditions evade the non-convexity of 
the static output feedback design. Recently, in [24], a 
static feedback controller has been suggested which 
implements an iterative SOS method, which increases 
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conservativeness due to the iterative procedure. In 
[19] with applying a restricted region for the 
Lyapunov matrix, the feedback controller design 
conditions are solved using non-iterative algorithm. 
Though, this approach increase the conservativeness.  
In [18], the global stability using the feedback 
controller is discussed, in spite of many cases which 
the global stability is inaccessible. 
In this paper, we show that the existence of a 
nonlinear static state feedback control law can be 
proposed in terms of the polynomial matrix 
inequalities. Furthermore, in spite of many researches, 
a non-iterative algorithm based on the SOS 
decomposition is suggested to solve the above-
mentioned polynomial matrix inequalities so as to 
attain an appropriate controller gain. The proposed 
approach uses some heuristic slack matrices based on 
the dynamic of the system to relax the control design 
conditions. These slack matrices can provide degrees 
of freedom in designing the controller and it causes 
that the controller can be selected with different 
structure and degrees according to the application. 
The rest of this paper is organized as follows. In 
Section 2, notations and preliminaries are proposed. 
Section 3 presents SOS-based Lyapunov stability 
conditions for the polynomial control system. In 
Section 4, the permanent magnet synchronous 
machine will be studied and the simulation using the 
proposed approach will be considered. Finally, in 
Section 5, a conclusion is drawn. 
 
2. Notations and Preliminaries 
2.1. Notations 
In the rest of the paper, the following notations are 
examined. A monomial in  is a 
function of the form , where 

 are nonnegative integers. The degree of 
the monomial is defined as . A polynomial 

 is defined as a finite linear combination of 
monomials with real coefficients. A polynomial 

 is considered to be SOS if it can be 
represented as where 

 is a polynomial and  is a positive integer. 
Thus, if it is an SOS. The expressions of 

, ,  and demonstrate the 
positive-, semipositive-, negative-, seminegative-
definite matrices , respectively. 
2.2. Semidefinite and SOS programming 
Convex optimization have some different types and 
one of them is semidefinite programming (SDP). The 
goal of semidefinite programming is to minimize a 
linear objective function over the intersection of the 
cone formed by positive semidefinite matrices with an 
affine space. A sum-of-squares problem is an 
optimization problem with a linear objective function 
and specific polynomial constraints on the decision 
variables, which satisfies the sum-of-squares property. 

If the polynomial constraints are affine in decision 
variables, the SOS optimization problem can be 
indicated as a semidefinite-programming one [18]. 
2.3. Sum of squares 
The common SOS problem is to study the non-
negativity of a polynomial , stated by powers of  
and its related coefficients. The idea is to change the 
non-negativity by the corresponding condition of 
being SOS polynomials and attempt to explore for 
such decomposition. The essential ideas of the SOS 
decomposition are now briefly discussed in the 
following. 
• Sum of Squares polynomials 

 
The major point in the SOS approach is exploring for 
an expression of a polynomial as the sum of squares 
of simpler polynomials. 
 
Definition 1: The set of Sum of Squares polynomials 
in the variables " ", stand for , is the set defined 
by 

 (1) 
with  [24]. 
 
• SOS matrices 
In the following proposition, the SOS programming 
can study the positiveness of matrices with 
polynomial elements. 
Proposition 1 [18]: Let be an  symmetric 
matrix of degree  in . Moreover, let  be a 
column vector whose entries are all monomials in  
with degree no greater than  and consider the 
following conditions: 

a)  
b)  is SOS, where  
c) There exists a positive semidefinite matrix  

such that  

 
Where  denoted the Kronecker product. 

Then  and  
 
 
 
2.4. System description 
Consider the following polynomial state space 
representation: 

 (2) 
where  and  

are the state and control input 
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vector,  is a vector of 

monomials in ,  and  are the polynomial 

system and polynomial input matrices, respectively. 
Since  is a vector of monomials in , therefore, there 

exists a matrix  which is polynomial in , 

such that  (3) 
where matrix  is calculated by 

 (4) 

Based on the nonlinear plant (2), a nonlinear static 
state feedback controller is utilized as:  (5) 
where  is a polynomial matrix in . By 

replacing the control law (5) in the open-loop system (2), the closed-loop polynomial system is achieved: 
 (6) 

The objective is to derive stabilization conditions in 
terms of polynomial matrix inequalities which can be 
solved efficiently by SOS techniques. 
3. Relaxed Stability Analysis Conditions 
In this section, the more relaxed stability conditions 
using some slack matrices which are solvable using 
SOS approaches, will be proposed. 
Consider the following null product which will be 
used for the later purposes in stability analysis: 

(7) 

  (7) 
where  and  are 
polynomial slack matrices. Furthermore * denotes the 
transpose of the former term. 
In order to achieve the control design conditions for 
the closed-loop system, we use the following 
quadratic Lyapunov function: 

 (8) 
where  and  are defined as the 
following remark. 
Remark 1: To assist the controller design using SOS, 
the row indices that the entries of the entire row of 

 are all zero are denoted by 
. 

Lemma 1: The closed-loop system (6) is 
exponentially stable with the given decay rate  
if it fulfills the following inequality: 

 
(9) 

Theorem 1:  Consider the polynomial state feedback 
controller (5) and the polynomial model (2). The 
closed-loop system is exponentially stable with a 
known , if the following SOS constraints are 
satisfied: 

 
 

(10) 
.  (11) 

where  

 
which the entries are 

 
 

 

  
 

Where , 
, , . 

Furthermore,  is complement of ,  is an SOS 
polynomial matrix with the suitable dimension and 

 denotes the kth row of . In this condition, 
the controller gain will be calculated via  . 
Proof. Considering Lemma 1 and the Lyapunov 
function (8), one can obtain: 

Recalling the following properties 

 

 
Equation (12) can be rewritten as: 

 
(13) 

 
Adding the null term (7) yields: 

 

(14) 
Defining the vector  , one can have 

 
(15) 

 
where 
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which  
, 

  
and 
 . 
Pre- and post-multiplying both sides of the  by 

 
yields: 

 
which the entries are 

 
 

  
 

where , 
, , . 

Furthermore,  is complement of . In this condition, 
the controller gain will be calculated via  .  
This completes the proof. ■ 
4. Simulation Study: Permanent Magnet 

Synchronous Motor  
A surface-mounted PMSM can be represented by the 
following nonlinear equation [25]:  

 

(16) 

where the parameters and their definitions are given 
in [25]. Suppose that time derivative of load torque 
can be neglected (i.e. ) [26], [27]. By 
considering (  and 
employing a procedure as discussed in [26], the 
following new system representation is obtained: 

  (17) 

 
The main advantage of dynamic (17) compared to 
(16) is to eliminate the unknown load torque . In 
this paper, it is assumed that , ,  and  are 
known. If  is not available, one may calculate it 
using the formulation ( ). 

Therefore,  should be estimated [28]. The electrical 
rotor angular speed  must be kept at the stable 
value . Suppose that  [25], [26].  Dynamic 
equations (17) can be transformed in such way that 
the equilibrium point will be in the origin and can be 
rearranged in form of non-linear state space equation 
as follows: 

                                    (18) 

 

 

There is one non-linear term in                                     
(18) (i.e. ). Therefore, the usual approaches like 
LMI cannot deal with this problem. Therefore, one of 
the available solutions is to use the T-S modelling 
which has the conservativeness. However, using the 
polynomial modeling we can deal with this situation.  
In continue of this section, the objective is to design 
the controller for the PMSM using the polynomial 
modeling and the SOS approach. 
To simulate the system and its controller, the 
parameters  are needed. These parameters 
are as follows: , , , 

, , , where , 
, , , 

, . 
Using Theorem 1, the Lyapunov matrix which is 
obtained using the SOS solver will be as follows 

  
Comparison to the controllers utilized in  [25] and 
[26], implementing the controller based on Theorem 1 
of this paper is more applicable. Also, comparison 
with [18] showed that the stability region or the 
proposed approach in this paper is much more than 
one proposed in [18].   
The desired electrical rotor angular speed is set 
as . Figs. 1-6 indicate the states’ evolution 
and control input of the closed-loop PMSM using 
degrees of 0 and 2 for N and L matrices, respectively.  
Fig. 1 shows that the PMSM successfully converges 
to its desired equilibrium point. Also, Fig. 2 
demonstrates that the rotor angular acceleration  
varies between , which is completely 
acceptable and applicable compared to[25] and [26] 
which   is obtained in order of . Fig. 3 and Fig. 4 
denotes the PMSM d-axes current  and the PMSM 
d-axes current , respectively. Furthermore, Fig. 5 
and Fig. 6 are the PMSM voltage  and , 
respectively. 
Since one of the advantages of the proposed method is 
the ability to change the degree of the slack matrices. 
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Therefore, in the second part of the simulation, the 
degree of 2 and 4 are chosen for the N and L matrices, 
respectively. Using this degree, one can have a 
tradeoff between the speed of the convergence of the 
states and the amplitude of the control signals. Figs. 
7-9 demonstrate that the states of the PMSM 
converges to their equilibrium point quicker than the 
former simulation. 
As a third part of the simulation study, the aging 
problem is considered for PMSM. Aging change ,  
and  around 5% of their initial value. With 
changing these parameters, the feasibility of the 
Theorem 1 was checked and the result was that the 
Theorem 1 can handle all the range of the changes in 
these parameters.  
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Figure 1. PMSM electrical rotor angular speed  
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Figure 2. PMSM electrical rotor angular acceleration  
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Figure 3. PMSM d-axes current . 
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Figure 4. PMSM q-axes current . 
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Figure 5. PMSM voltage  
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Figure 6. PMSM voltage  
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Figure 7. PMSM electrical rotor angular speed  with 

degrees of 2 and 4 for the N and L matrices 
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Figure 8. PMSM electrical rotor angular acceleration  

with degrees of 2 and 4 for the N and L matrices 
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Figure 9. PMSM d-axes current  with degrees of 2 and 4 

for the N and L matrices 
 
5. Conclusions 
In this paper, a new relaxed stabilization condition in 
terms of SOS is proposed. The proposed approach 
uses some null matrix along the nonlinear modeling 
and quadratic Lyapunov function to relax the 
stabilization conditions. The stabilization conditions 
obtained in the term of SOS and solved efficiently 
using the SOSTOOLS. Then the proposed method 
applied for a PMSM. The result shows that the 
selection of the null matrices in the proposed method 
can handle the complexity and precision of the 
designed controller. More development of the current 
study is ongoing, such as calculation of the stability 
region which is forgotten in many control design 
researches. Furthermore, the study of disturbance 
using the robust control approaches and also limiting 
the amplitude of the control input are the interesting 
topics which can be considered for this problem. 
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