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Abstract

In this paper, stabilization conditions and
controller design for a class of nonlinear systems
are proposed. The proposed method is based on
the nonlinear feedback, quadratic Lyapunov
function and heuristic dack matrices definition.
These slack matrices in null products are derived
using the properties of the system dynamics. Based
on the Lyapunov stability theorem and Sum of
Squares (SOS) decomposition techniques, the
conditions are derived in terms of SOS. This
approach has two main advantages. First, using
the polynomial model, the proposed method uses
the polynomial state space matrices in the model
description. Therefore, it does not need any
existing modeling methods such as the Takagi
Sugeno (T-S) fuzzy model which can be a sour ce of
conservativeness in the control design conditions,
because the membership function information
cannot be used completely in the derivation of the
controller design conditions. Second, using slack
matrices, one can find the matrices that leads to
applicable controller design which this means it
provides extra degrees of freedom. To show the
effectiveness of the proposed method, a PMSM is
considered in the numerical simulation.

Keywords: Nonlinear feedback control;
Permanent Magnet Synchronous Motor (PMSM);
Polynomial model; Quadratic Lyapunov function;
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1.Introduction

The synchronous machine is one of the most familiar
machine categories which is generally used in the
high power range [1]. The maor plus of utilizing
synchronous machines is their high efficiency,
robustness and good controllability [2]. According to
their non-linear dynamics, the problem of control of
them is well identified to be demanding [3]. To
prevail this challenging problem, different control
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approaches such as neural network control [4], [5],
fuzzy logic control [6], [7] artificial intelligence [8],
back stepping control [9], sliding mode control [10],
[11] and adaptive control [12], [13] are studied.

In the recent years, many researchers have done some
studies towards the nonlinear systems control. This
studies mostly are based on the Lyapunov function
and storage function techniques [14], [15]. These
approaches are known as a difficult problem in many
studies. To overcome these difficulties the numerical
solutions have been proposed. One of the most
studied approach is Linear Matrix Inequalities (LMI)
method. In some cases, the problem of finding the
Lyapunov function using LMI is an infeasible
problem. However, it doesn’t state that the desired
system is unstable. It just informs that the LMI
conditions cannot prove the stability. In this situation,
there is another approach that may help to analyze the
system. Sum of Squares (SOSs) decomposition [16] is
a new approach which proposes a new direction to
challenge these difficulties. Through this approach,
stability analysis and control design of nonlinear
systems can be performed efficiently via Lyapunov
function. Actually, SOS approach takes advantages of
polynomial matrix inequalities to design the controller
and analyze the stability of the system. Feasible
solutions for the controller design considering
constraints can be calculated numerically [17]. Lately,
many researchers pay attention to stability analysis
and control synthesis of nonlinear systems via SOS
approach [18]-22]. In [23], using some constraints
on the Lyapunov function, a static output controller is
designed using the SOS approach. Generally
speaking, the constraints make Lyapunov function to
be only afunction of states whose corresponding rows
in the control matrix are zeroes, and itsinverse have a
specific form. By considering these constraints, the
control design conditions evade the non-convexity of
the static output feedback design. Recently, in [24], a
static feedback controller has been suggested which
implements an iterative SOS method, which increases
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conservativeness due to the iterative procedure. In
[19] with applying a restricted region for the
Lyapunov matrix, the feedback controller design
conditions are solved using non-iterative algorithm.
Though, this approach increase the conservativeness.
In [18], the globa stability using the feedback
controller is discussed, in spite of many cases which
the global stability isinaccessible.

In this paper, we show that the existence of a
nonlinear static state feedback control law can be
proposed in terms of the polynomial matrix
inequalities. Furthermore, in spite of many researches,
a non-iterative algorithm based on the SOS
decomposition is suggested to solve the above-
mentioned polynomial matrix inequalities so as to
attain an appropriate controller gain. The proposed
approach uses some heuristic slack matrices based on
the dynamic of the system to relax the control design
conditions. These slack matrices can provide degrees
of freedom in designing the controller and it causes
that the controller can be selected with different
structure and degrees according to the application.
The rest of this paper is organized as follows. In
Section 2, notations and preliminaries are proposed.
Section 3 presents SOS-based Lyapunov stability
conditions for the polynomia control system. In
Section 4, the permanent magnet synchronous
machine will be studied and the simulation using the
proposed approach will be considered. Finally, in
Section 5, aconclusion is drawn.

2. Notationsand Preliminaries

2.1. Notations

In the rest of the paper, the following notations are
examined. A monomial in x(t) = [xy(t)....x,(E)] isa
function of the form =xit(£)...x%"(f), where
4, i = 1.....n are nonnegative integers. The degree of
the monomial is defined as d = £, d;. A polynomial
o{x(t)) is defined as a finite linear combination of
monomials with real coefficients. A polynomial
o(x(t)) is considered to be SOS if it can be
represented  as  p(x(t)) = L, g;(x(£))*, where
7;(x(#)) is a polynomial and = is a positive integer.
Thus, p(x(#) ) = €.if it is an SOS. The expressions of
M=0 Mz0 M=<0 and M = (demonstrate the
positive-, semipositive-, negative-, seminegative-
definite matrices M, respectively.

2.2. Semidefinite and SOS programming

Convex optimization have some different types and
one of them is semidefinite programming (SDP). The
goal of semidefinite programming is to minimize a
linear objective function over the intersection of the
cone formed by positive semidefinite matrices with an
affine space. A sum-of-squares problem is an
optimization problem with a linear objective function
and specific polynomial constraints on the decision
variables, which satisfies the sum-of-squares property.
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If the polynomial constraints are affine in decision
variables, the SOS optimization problem can be
indicated as a semidefinite-programming one [18].
2.3.Sum of sguares

The common SOS problem is to study the non-
negativity of a polynomial #x), stated by powers of
and its related coefficients. The ideais to change the
non-negativity by the corresponding condition of
being SOS polynomials and attempt to explore for
such decomposition. The essential ideas of the SOS
decomposition are now briefly discussed in the
following.

- Sum of Sguares polynomials

The mgjor point in the SOS approach is exploring for
an expression of a polynomial as the sum of squares
of simpler polynomials.

Definition 1: The set of Sum of Squares polynomias
in the variables "x", stand for X_, is the set defined

by

r
Exz{pERﬂp:Zﬁ:sﬁ'ERr} 1)

with ¢ € 2+ [24].

- SOS matrices

In the following proposition, the SOS programming
can study the positiveness of matrices with
polynomial elements.

Proposition 1 [18]: Let Lix} bean N x N symmetric
matrix of degree 2d in x € B™. Moreover, let z(x) bea
column vector whose entries are all monomials in »
with degree no greater than 4. and consider the
following conditions:

a) L(x) =0,vx € R"

b) vTL(x)vis SOS, where v € R™
¢) There exists a positive semidefinite matrix ¢
such that

vTL(x)v= [1:1 & z(x])rQ(v ® z(x))
Where (% denoted the Kronecker product.
Then {a) —= (&) and (&) = [c).

2.4. System description
Consider the following polynomial state space
representation:

%(t) = A(x(8))2(x(£)) + B (£) Ju(r) @

I xp . xh T €R™Y and u e R

where x = [x] x5 ...

are the state and control input
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vector, # =[] #I .. #I]Te R™ is a vector of

monomials in x, A{x) and E(x) are the polynomial

system and polynomial input matrices, respectively.
Since i is avector of monomialsin x, therefore, there

exists a matrix T £ ®R™ " which is polynomia in x,

such that
¥(x) =T(x)% ©))
where matrix T is calculated by
X (x
re = 22 @

Based on the nonlinear plant (2), a nonlinear static
state feedback controller is utilized as:

u(t) = K(x(£)e(x(2) (5)
where K(x(t)) is a polynomia matrix in x. By

replacing the control law (5) in the open-loop system
(2), the closed-loop polynomial systemis achieved:
(1) = [A(x(D)) + B(x(D) ) K(x(N]E(x(2))  (6)
The objective is to derive stabilization conditions in
terms of polynomial matrix inequalities which can be
solved efficiently by SOS techniques.

3. Relaxed Stability Analysis Conditions

In this section, the more relaxed stability conditions

: RELAXED STABILIZATION CONDITIONSVIA SUM OF SQUARES APPROACH FOR THE ...

Theorem 1: Consider the polynomial state feedback
controller (5) and the polynomial model (2). The
closed-loop system is exponentialy stable with a
known p = 0, if the following SOS constraints are
satisfied:

(Bl —g 1)z ez, (10)

XT(—H + e;(x)DX € T, (11)

where

_(H(11) H(12)
H ‘( ! H(zz})
which the entries are

o o 8B (x)
HLiUzZpPLx}+Z aix-

KEK
—[Alx)N{xz) + B(x)L ++]

Ay (x)x(x)
k

H(12) — a(x ) P(x) + T (XN (x g )e(xy) —
NT AT (%) — 1T ()BT (x)

H(22) = [T ()N (xg)er(x,) ++]

Where M7 H(x) = T M;  (x)erlxy ),
P(x) = M;TPM;Y, L=KM;', M;'=N(xg).
Furthermore, K is complement of K, a(x;) isan SOS
polynomial matrix with the suitable dimension and
A, (x) denotes the k" row of A(x]. In this condition,
the controller gain will be calculated via K = LV ~L.
Proof. Considering Lemma 1 and the Lyapunov
function (8), one can obtain:

using some slack matrice &P 658 K64 abie dsHT) () £(x) +

SOS approaches, will be pr&pieedoP(#)x(x) < 0
Consider the following null product which will be
used for the later purposes in stability analysis:

(7
{[e0) - a(e(e) #3(le)) X GlERG ())] €

[ (008 = ()] 4 =

where My (x(t)) £ R™*" and M,(x(t)) e R™*
polynomial slack matrices. Furthermore * denotes the
transpose of the former term.

In order to achieve the control design conditions for
the closed-loop system, we use the following
quadratic Lyapunov function:
Vix) = 2T (x)P(F)2(x)
where ¥ = [xk,_,xh, ...,xkq} and k; are defined as the
following remark.

Remark 1: To assist the controller design using SOS,
the row indices that the entries of the entire row of
B(x(t)) ae dl zero are
K= {kj__. k:_...._. kq}

Lemma 1. The closed-loop system (6) is
exponentially stable with the given decay rate g = 0
if it fulfills the following inequality:

dv(t)
+ 2ty =0
o TP (t)

(8)

denoted by

9)

Recalling the following properties

b=y B D aie
£(x) = ﬂx(x}x =T(x)x @)

Equation (12) can be rewritten as:

FEBTT(x)P(£)5(x) ++] + 3T (x)[20P(D)Z(x) +Z P@) AKX <0 (13)
Adding the null term (7) yields:
aplE .
T Sj—(a i
; e (14)
—[.T:q(xnzi-?#‘(\r() AT (AT - £ (A (e iel)
TR (M it - f[‘:{‘(cE‘(cJ 4] <
Defini ng the vector & = [¥(x) %]" , one can have
d;g ) +2pV(t) = &TH & <D (15)
where
F_ (A HA2)
*® H(ZT}
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which ) Therefore, T; should be estimated [28]. The electrical

A1) = 2070 + T 24,0809 - (i s 0 s e bt e ol
T T g, g = y .

[AT (M2 () + M3 (OB K (2) ++] equations (17) can be transformed in such way that

the equilibrium point will be in the origin and can be

[ B . T _ r _
H(12) = P(R)T(x) + M (x) — AT(x)M; (x) rearranged in form of non-linear state space equation

RT(x)D7 (x)My () asfollows:
" z 0 1 01z
iy ﬁ = |—kqk _k: —k.z ﬁ
H(22) = [M,(x) +4]. o 0 0 —kyllias
Pre- and post-multiplying both sides of the H by “’E o (18)
(M;l{xj 0 I PR [klkGVqs —hikaige — kikgwg — kiwgigs]
0 M (x) 0 1 keVas + (Z + wgigs
yields: _ There is one  nonlinear  term  in
F_(H (11) H(12) (18) (i.e.—k,z). Therefore, the usual approaches like
N * 7022) LMI cannot deal with this problem. Therefore, one of
which the entries are the available solutions is to use the T-S modelling

. R B 1 - ~which has the conservativeness. However, using the
H(LL) = pif; (9P ()t ) M (.!)fMEI(.Z:JAQ(.E}.!'(.!]-[A(.!]HEIU)+B(.'§)h’(:g]ﬂn'!'1(.'{) polynomial modeling we can deal with this situation.
L Ity In continue of this section, the objective is to design

i)

+ the controller for the PMSM using the polynomial
modeling and the SOS approach.
FT(iZ} _ ME—T(I} P(T(x) Ml—lix} + Ml—l,[x} _ To simulate the system and its controller, the
M;T(x} AT(%) — M;T(x} KT (x)57 (x) parameters kq, .., kg ar(E needed. These parameters
_ are as follows: k1=(%ﬂ, k,=B/], k3=(§}ﬂ.
H(22) = [My *(x) ++] ks=R./L,, ks=A/L,, ks=1/L,, where P =12,
where M) = T7H00MS (D), R.=0.99, L, =5.82, 1 = 0.079153,
P=MTPM;"  L=KM;',  M;'=N(xz)  J_D0.00120754, D — 0.0003.
Furthermore, K is complement of K. In this condition, Using Theorem 1, the Lyapunov matrix which is
the controller gain will be calculated via K = LN L. obtained using the SOS solver will be as follows
This completes the proof. m V(x] = 0.00288x] + 0.00018xyx, +
4.Simulation  Study: Permanent M agnet 0.00058x,x3 + 0.0058x3 + 0.000006x %3 +
Synchronous M otor 0.0039x3

A surface-mounted PMSM can be represented by the
following nonlinear equation [25]: Comparison to the controllers utilized in [25] and
W= Kylg;— ko — k3T [26], implementing the controller based on Theorem 1
i.;s = —kyigs— ksw + kW, — wig, (16) of this paper is more applicable. Also, comparison

. _ _ with [18] showed that the stability region or the
fae = —Ralae + kaVao + wige proposed approach in this paper is much more than
where the parameters and their definitions are given one proposed in [18].

in [25]. Suppose that time _derivative of load torque The desired electrica rotor angular speed is set
can be neglected (i.e. T, =0) [26], [27]. By aswy = 100. Figs. 1-6 indicate the states evolution
considering (B = kyigs— kaw —k3Ty) and and control input of the closed-loop PMSM using
employing a procedure as discussed in [26], the degrees of 0 and 2 for N and L matrices, respectively.

following new system representation is obtained: Fig. 1 shows that the PMSM successfully converges
w=p _ to its desired equilibrium point. Also, Fig. 2
I kiR — ko —Rykalg — 1 demonstrates that the rotor angular acceleration 5
a= —kyeig, + kbW, a7 varies between [0 125] rad/s2, which is completely
P = Wigs— kalgs + KgVis acceptable and applicable compared to[25] and [26]

which g isobtained in order of 10*. Fig. 3 and Fig. 4
The main advantage of dynamic (17) compared to denotes the PMSM d-axes current i ;. and the PMSM

(16) is to eliminate the unknown load torque T;. In d-axes current i, respectively. Furthermore, Fig. 5
this paper, it is assumed that 8, w, iz andi,. are and Fig. 6 are the PMSM voltage v, and vy,
known. If g is not available, one may calculate it respectively.

using the formulation (B = ki, —kqw—ksTy). Since one of the advantages of the proposed method is

the ability to change the degree of the slack matrices.
27
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Therefore, in the second part of the simulation, the
degree of 2 and 4 are chosen for the N and L matrices,
respectively. Using this degree, one can have a
tradeoff between the speed of the convergence of the
states and the amplitude of the control signals. Figs.
7-9 demonstrate that the states of the PMSM
converges to their equilibrium point quicker than the
former simulation.

As a third part of the simulation study, the aging
problem is considered for PMSM. Aging change 4, R,
and L. around 5% of their initidl value. With
changing these parameters, the feashility of the
Theorem 1 was checked and the result was that the
Theorem 1 can handle al the range of the changes in
these parameters.
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5.Conclusions

In this paper, a new relaxed stabilization condition in
terms of SOS is proposed. The proposed approach
uses some null matrix along the nonlinear modeling
and quadratic Lyapunov function to relax the
stabilization conditions. The stabilization conditions
obtained in the term of SOS and solved efficiently
using the SOSTOOLS. Then the proposed method
applied for a PMSM. The result shows that the
selection of the null matrices in the proposed method
can handle the complexity and precision of the
designed controller. More development of the current
study is ongoing, such as calculation of the stability
region which is forgotten in many control design
researches. Furthermore, the study of disturbance
using the robust control approaches and also limiting
the amplitude of the control input are the interesting
topics which can be considered for this problem.
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