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Abstract

In this paper, an optimal adaptive fuzzy integral
sliding mode control is presented to control the
robot manipulator position tracking in the
presence of uncertainties and permanent magnet
DC motor. In the proposed control, sliding
surface of the diding mode control is defined
according to the information of position tracking
error, derivatives, and error integral. In order to
estimate bounds of the existing structured and
unstructured uncertainties in the dynamics of the
robot manipulator and the permanent magnet DC
motor, a MIMO fuzzy adaptive approximator is
designed. This helps to overcome the undesired
chattering phenomenon in the control input by
using fuzzy logic. Mathematical proof shows that
the closed-loop system with the adaptive fuzzy
integral sliding mode control in the presence of all
the uncertainties has the global asymptotic
stability. Furthermore, modified harmony search
optimization algorithm is used to define the input
coefficients of the proposed control and also to
reduce the control input amplitude. In order to
validate performance of the proposed controller,
a case study on the SCARA robot manipulator is
conducted in the presence of permanent magnet
DC motor. Results of the Simulation show desired
per formance of the proposed controller.

Keywords: Raobot Manipulator, Structured and
Unstructured Uncertainties, Integral Sliding
Mode Control, Optimal Adaptive Fuzzy Integral
Sliding M ode Contral, Electrically Driven.

1. Introduction
Robot manipulator is a nonlinear system

Thus, dynamic control of the robot manipulator is
very important. Large numbers of couplings are used
between the joints in structure of the robot
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manipulator. Respectively in coupling of the
actuators to the joints, coupling of the joints to the
interfaces, dynamic and static frictions in each joint
requires accurate and complex modeling to control of
robot manipulator with high precision. However,
there are many problems in the practica
implementation of the controllers, based on the
actual model of the system. Moreover, even if this
ability exists in the model, actua model of the
system is too complicated that makes it difficult to
design the controller. These problems cause
imprecision in the model. Such imprecision in the
model aso causes structured and unstructured
uncertainties. Thus, to overcome the structured and
unstructured uncertainties, robot manipulator control
requires a robust controller [1].In recent years,
different controllers have been presented to deal with
these uncertainties. Sliding mode control is a robust
controller that has been used to control the systems
which consists of uncertainties. However, there is a
damaging factor in sliding mode controller, which is
called chattering. This phenomenon appears due to
nature of the sliding mode controller which is a
switching controller [2]. Although, this factor
endangers performance of the robot manipulator
control, it has been applied widely [3-6]. To reduce
damaging effects of the chattering in the dliding
mode control some methods have been presented.
Among these methods, there have been some
applications of saturation function, low- pass filter
[3-6] and fuzzy systems[7-8], that each one has some
problems. Saturation function and low-pass filter
cause the reduction of chattering in control input. To
some extent, steady-state error is increased in the
position of the robot manipulator joints and it is not
easy to prove the asymptotical stability of the sliding
mode controller. This phenomenon is reduced
through the use of fuzzy systems. However,
researchers have used too many rulesin fuzzy system
rule base for further reduction of chattering and
steady-state error in the robot manipulator position
tracking control in the presence of structured and
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unstructured uncertainties. This leads to a massive
computational load. Consequently, for practical
implementation of these controllers, applications of
high-speed processors are inevitable and in many
cases, application of these fuzzy systems is
impractical.To overcome the mentioned problems,
the researchers have presented the adaptive fuzzy
sliding mode controllers. However, all the adaptive
fuzzy dliding mode controllers have different
behaviors due to the design type of sliding mode
agorithm, the type of fuzzy system, the
approximation of fuzzy system factor, and the
adaptive law. In general, the adaptive fuzzy sliding
mode controllers are divided in two categories, direct
adaptive  fuzzy dliding mode control and
indirectadaptive fuzzy dliding mode control. In the
direct adaptive fuzzy diding mode control, control
input coefficients are tuned by using online adaptive
law to reduce the tracking error [9-10]. In the indirect
adaptive fuzzy diding mode control, the system
parameters could be tuned according to
approximation of the system dynamics and by
adaptive law to reduce the tracking error [11-16]. In
adaptive fuzzy dliding mode controller [12], the
MIMO fuzzy system is used to approximate the
uncertainties existing in the dynamical equations of
the robot manipulator by using position, velocity, and
acceleration information of the robot manipulator
joints. This controller has high computational load
and due to nonlinear switching function in control
input, has difficulties to encounter with chattering
phenomenon. Thus, practical implementation of the
proposed control is impossible. Using the MIMO
fuzzy system in adaptive fuzzy dliding mode
controller [16], existing uncertainties in the robot
manipulator dynamic equations is approximated.
Additionally, according to dliding surface
information, dynamic of inertial matrix is presented
and a the same time approximates the switching
function with SISO fuzzy system. This controller due
to the use of several adaptive lawsin its control input
has high computational load and by occurrence of
delay in calculation of the control input, it is
impossible to guarantee the closed-loop system
stability.

In adaptive fuzzy sliding mode controller [14], an
approximate of the switching function by using SISO
fuzzy system based on dliding surface information
has been presented. The presented control has a low
computational load. This factor has a suitable
influence on the operation processing pace of robot
manipulator. However in the design of SISO fuzzy
system, interaction influence of robot manipulator
joints in the robot manipulator position tracking
control has not been considered. For this reason,
robot manipulator control in high-speed operations is
difficult.
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Adaptive law has been obtained based on Lyapunov
stability proof for al the presented adaptive fuzzy
dliding mode controllers for tracking the position of
the robot manipulator. For practical implementation
of these controllers, dliding surface information must
be available. To determine the dliding surface of
these controllers only information of error and its
derivatives have been used, tracking error converges
toward zero dowly. Hence, the tracking accuracy in
robot manipulators that have high speed is reduced.
On the other hand, in all adaptive fuzzy sliding mode
controllers of robot manipulator, the control input
has been designed in torque space. Additionally, the
control of robot manipulator joints is performed
through the drivers, especialy electrical drivers.
However, to design such controllers, the dynamic
effects of these drivers are not considered. Thus the
stability of the closed-loop system using the
proposed controller cannot be easily guaranteed.In
this paper, to overcome the problems in the adaptive
fuzzy diding mode position tracking control for a
robot manipulator, the following solutions are
available:
* Increase accuracy of the robot manipulator position
tracking by increasing the speed of tracking error
toward zero.
* Prevent occurrence of chattering phenomenon in
the control input.
* Remove influence of the robot manipulator joint
interactions in adaptive fuzzy sliding mode position
tracking contral.
« Overcome the existing uncertainties of the robot
manipulator driving dynamics.
* Prevent saturation of the driving robot manipulator.
« Choose optimized coefficients for input control.
Sliding surface, which is a function of the
tracking error, derivative, and error integral, is used
to achieve the mentioned aims. In this case, there is
an extended control for the robot manipulator
position tracking error. Furthermore, to remove the
robot manipulator joints interaction in the position
tracking control and to prevent the occurrence of
chattering in the control input, a MIMO fuzzy system
is used. Finaly, to overcome the existing
uncertainties in the robot manipulator and the
permanent magnet DC motor dynamic, using
Lyapunov stability theory, the adaptive fuzzy dliding
mode control is presented. This control makes the
closed-loop system in the presence of all the
uncertainties to have global asymptotic stability. In
the proposed control, there is a coefficient that
prevents increment of the control input amplitude.
This causes elimination of saturation of the robot
manipulator drivers. Furthermore, to achieve an
optimized control input, al the control input
coefficients are defined through the modified
harmony search optimization agorithm. In the
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proposed control design strategy, some solutions are
presented that makes the proposed control more
robust against the existing uncertainties.

2. The Dynamic Equations of The Raobot
Manipulator in The Presence of a Permanent
Magnet DC Motor

The dynamic equation of the robot manipulator in the
presence of Permanent Magnet DC Motor (PMDC) is
asfollows[17]:

M(g)g + Clg,¢)g + Glg) + Fzg + Bq +
F+1q=KV()

D

whereg = R™ is vector of the robot manipulator joint
position; § = R™ is vector of the robot manipulator
joint velocity and ¢ e R™ is the robot manipulator
joint acceleration. M{g)eR™*" is the positive
definite inertia matrix, ¢{g,§)eR™*™ is the coriolis
matrix and centrifugal forces, {g)}eR™ isthe gravity
vector, F;eR™ ™ is the diagonal matrix of dynamic
friction, BeR™*" is the diagonal matrix of effective
damping PMDC motor, F.eR™ is the vector of static
friction, T4 eR™ is the vector of disturbance and un-
modeled dynamics, V{t)eR™ is the vector of
amplifiers input voltage and K eR™"" is the matrix of
diagonal transfer that transfers the actuators input to
torque space of the robot manipulator.
Remark 1: In Eq. (1),tz is the total existing
disturbance in the robot manipulator dynamic and
existing disturbance in the robot manipulator driving
motor dynamic. In other words, we have:

Ty = Tg + dm(2)
wherer ;™ is the vector of existing disturbance and
un-modeled dynamics in robot manipulator and
1,€R™ is the vector of existing disturbance and un-
modeled dynamic in PMDC motors.

3. Integral Sliding Mode Control

Initially, Eq. (1) based on the acceleration vector 4 is
arranged as follows:

j= Mg ~c(q ¢)g 1 Glg) 1 Faq

Bq +F,+14] + M(g) 'KV(L)

©)
To simplify, Eq. (3) is shown asfollows:
4 =F(gq) +D{gu(t) (4)
The parameter of u{t), D{g,q) and F(g§) ae
defined as follows:
ult) = KV(t) (5)
D(g) =M(g ™ (6)
F(g.q) = —M(g)~[Clg,4)q + G(q) +
Fag + BG +F +14]
(7
In fact by Eg. (4), inverse dynamic of robot
manipulator is described in the presence of dynamic
motor. For designing the controller, tracking error
vector as e = g — g, is defined, which g € BR™ isthe
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actual joints position vector and g; € B™ is the
desired joints position vector. Additionally, sliding
surface vector is defined based on the tracking error,
the derivative and the integral tracking error as
follows[2]:

s@) = (S+D"fjeat  (8)
wherel is the diagonal matrix with constant and
positive entries. Considering Eq. (4) is a second
order equation, so in Eg. (8), nis selected equal to 2
resulted the sliding surface vector to become as
follows:

s(t) = é+ 2de + A2 [ edt (9)
Remark 2: In design of sliding mode control, the
purpose is to design the control input in such way
that the sliding surface s{t) converges toward zero.
In this case, according to Eg. (9), there is a
homogenous second order differential equation with
constant coefficients due to error. Thus, transient
robot manipulator position tracking error converges
toward zero in a short time by selecting a suitables.
Remark 3:Since robot manipulators are engaged in
doing their assignments involving with the
workspace, there will be no available exact
information about parameters and dynamics. Thus, in
controller design for robot manipulators, overcoming
against existing structured and unstructured
uncertainties have a very important role. Therefore,
in controller design for robot manipulators,
approximated values of parameters and their
dynamics are used. Then, for controller design,
known or approximated values from Equation (4) can
be defined asfollows: N

§=Flgq) + D(q}uaq (10)
wherew..,, is the equivalent control; F(g,§)<R™ and
D(g)eR™" are the estimates of F(g,4) and D(g),
respectively. To design the sliding mode control for
tracking the position of the robot manipulator,
control input is chosen as follows:

1' 'L[(I.'} = uaq(t} _u-;:u(t} - us(t}
: ) (11)
WO =)y )y -~ u@®),]
Remark 4: In Eq. (11), u.(t) and u,(t) are chosen
in a way to converge sliding surface s(t) toward
zero. However, u..(f) is designed to keep the
sliding surface s{t) unchanged at the zero value.
Thus, the task of the control inputs u,(t) and u,(t]
are different from control input i, (£).
According to the mentioned points for
designingi.q (), derivative of Eq. (9) in respect to
timeisasfollows:
Ht)=E+ 226+ 2% (12
Equation (12) can be rewritten as follows:

Ht)=g—Ga+21é+ 1% (13)
By substitution of the Equation (4) into Equation
(13):
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igt} = Flg, q) +D{qiul(t) — gz + 24é+
A=e
(14)
To designu,,(t), siding surface is assumed to be
equal to zero, souys(t) = u,(t)=0. To make the
control input 1, (t) maintains the sliding surface
s(t) at zero value, 5(t) = 0 must be considered in
the Eq. (14):
0=F(g,q) — D(qlug(t) —is +21& + A%
(15)
From Eq. (15), u.4(£) becomes as follows:
uaﬁ(t} = D(q}_liﬁ'd_ F("-?J t?j' — 2.1é _Aze}
(16)
Since dl the dynamics F{g,4) and D{g} are not
completely known, the Eg. (16) is modified as
follows: B -
Ugq(t) = D(Q) ™ (ga— Fq,q) —218 — %)
. . (17)
whereF{g,4) and I'{g) are known dynamics of
F{g,§) and D{g), respectively.
Furthermore, for designing control inputu({t}, inputs
u.(t) and u,.(t) are chosen as follows:

u,(t) = nsign(s)

M1 0
p=|: -
0 - g (18)
sign(s)T =
[sign(sy) sign(s2) sign(s,)]
Ugs(t) = P3
Py = 0
P =[ o ] (19)
C B

sT=[51 352

wheresign(+) is the sign function and » c R™" and
P=R™ " are diagonal matrices. Thus, according to
Equations (11), (17), (18), and (19), the control input
u(t)isasfollows:
u(t) = Blg) 1[4, — Flg,q) — 21é — A%¢] —
Ps —nsign{s)

(20)
For designing diagonal matricess and F and aso
proving the stability of the closed-loop system,
Equation (20) is arranged as follows:
ig=Flg, ) +21é + AZe + D(q)[Ps +
gsign(s) +ult]]

(21)

From Equations (4), (13), and (21):
§ = pp + ppu(t) — D(g)Ps — D(g)ysign(s)
(22)
In Eq. (22), pr and g, vaues are defined as follows:
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Pr= F(q: ?} - FE?J f:‘} (23)
po=Nlg) —Nlg) (24)
Remark 5: According to Equations (23) and (24), g
andpp are estimation error of F(g,g) and D{g),
respectively.
Simplifying Eq. (22):
_ 8=Pg + ppu(t) (25)
i =p—D(g)Ps— D(qlnsign(s) (26)
Remark 6: Equation (25) shows that 7 contains all
the existing structured and unstructured uncertainties
in robot manipulator dynamics. In other words, if al
the dynamics of the robot manipulator are completely
known, thus g = 0.
Additionally, for proving stability of the closed-loop
system, Lyapunov function candidate is presented as
follows:
1.7

{ V=-5's
sT — 5 =2 = =5,]

Take the derivative of the Lyapunov function in
respect to time:

(27)

V=25Ts4+25Ts =573
Then Eqg. (26) isinserted in Eq. (28):
V =sT[p—D(g)Ps — D(qinsign(s)] (29)
In this section, the inverse inertial matrix of the robot
manipulator, matrixD(g), is expressed as follows:
_ lﬁ(!?)-n ' ﬁ(ﬂ)m
Dlgy=|_: :

(28)

D@~ D(gun
H(Q); =X, 5;0(@);;
j=1..n

(30)

. E:!:_T_SM ﬁ(a)m]
H(q).]

H(g) = [hysiD(@)y T2, 5,D(q)y:

H(g) = [H(g), H(g)x -~
And consider that, H{g)eR1*".
From Equati ons (29) and (30):
V = sTp—s7D(q) Ps — H(q)nsign(s)
= X (sjpj. — Hlg) nj;si gn{sj}) -
sTD(g)Es

(31)
shows ifs;= 0 by

Equation (31)

hooS | sie;
choosingr;; = |-

5P; — H(g);m;;si gn{.s'}-:} = 0. On the other hand, if

, then

jp;
T}}.}. - J.I'l':.-r:)_l.-

thens;p; — H(q)m;;s1 gn(s)=0. Thus through
selection of the mentioned parameter, the following
equation is resulted:

V=% (SJ'P;' —H (‘?}f"?i}'“g“(%)) B
sTD(q)Fs = —s"D(q)Ps <0

choosing

’

;=<0 by

(32)
If the matrix D(g) and the diagonal matrix P are
positive definite, the Eg. (32) is established.
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Researchers have proved that the dynamical
characteristic of the robot manipulator is in such a
way that causes matrix D(g) aways becomes
positive definite matrix [1]. Thus, if diagonal
matrix F is chosen as a positive definite matrix, EQ.
(32) is made and the closed-loop system in the
presence of all the uncertainties will have the global
asymptotic stahility.

4, Adaptive Fuzzy Integral Sliding Mode Control

Although the robot manipulator with the proposed
control (from the previous section) has the global
asymptotic  stability in the presence of al
uncertainties, occurrence of the undesired chattering
phenomenon in the control input is inevitable.
Occurrence of the chattering phenomenon causes
stimulation of high rank nonlinear dynamics of the

robot manipulator. In this case, guaranty of the
closed-loop system stability becomes impossible. To
prevent occurrence of the chattering phenomenon,
usng a MIMO adaptive fuzzy approximator,
nsign(s) is approximated in the control input of Eq.
(20). Therefore, the structure of this adaptive fuzzy
approximator is described as follows:

In Fig. 1, main modules of a fuzzy system are
demonstrated. According to this figure, a fuzzy
system consists of the following sections modules
[11]:

- Fuzzification

Fuzzy interface engine
Fuzzy rules base
Defuzzification

Fuzzy rules hase

§1
' s . A
.V ——s! Furihcalion

A4

Fuzzy interface
engine

—_—| Defuzification f—

Figurel.Schema of aMIMO fuzzy system.

In design of this fuzzy system, singleton
fuzzification, Mamdani fuzzy interface engine,
and center average defuzzification are used.
The input of fuzzy system is diding surface
vector and the output of fuzzy system is neR™
vector. In fact, to prevent occurrence of
chattering phenomenon in the control input, by
using fuzzy system, approximation of nes™ is
provided. In this case, due to elimination of
discrete part nsign(s) in the control input,
occurrence of undesired chattering
phenomenon is prevented.Generally, the fuzzy
rules of this fuzzy system can be expressed as
follows:
RU:IfsyisAl, s,isAL, .. 5, is A, then

1, is B{.n, is B;,...,n _is By (33)
where R! shows " rule,s; is j™ input fuzzy
system, A} is j" membership function of " rule
premise part, n; is j output and B} is ;"
membership function of ["rule result part.
Then, the input vector with s = (sy, ..., 5,)"
and output vector with 7 = (n,,...,n, )7 are

shown. The output of fuzzy system, neR™
vector, can be expressed as follows:

h

EJE'_E,E]_.( n?::f-lﬁilisj:l
| L
n=————L =67 H(s)(34)
EJE_( nj}:-_#;,;':fﬂ ) '
.

Whereu:?j;_ is the vector of membershi p function

centers at result part and £(s) is the height of
this membership function centers. Ej::andf(s}

vectors can be shown as follows:
6T =(8_,...6_)° (35)
m; M, M

) = (& ()t (5))7 (36)
[T=1k4 (s5)

Ei 1( H_?=1 P"Aj_- '[31} )

G=1,..,n) (37)
In order to make the MIMO fuzzy system
membership functions differentiable, they are
chosen to be Gaussian:

p—
by ()= epl-CL 2]
G=1,..,n)39)
whereajis the center of membership
function A and o‘}iis the standard deviation of
membership function AJ In this fuzzy system,

according to Table 1, seven linguistic
variables are considered for inputs s; and

rf:[s} =

35
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outputsy;. Membership functions of these To design the adaptive fuzzy system that can
linguistic variables are shown in Figure 2. provide approximated n vector and to prove
closed-loop system stability, Eg. (40) is

Table 1. MIMO fuzzy system output and input arranged as follows:

vector linguistic variables. §g=F(g,q) +21é + Ale+ D(g)[Ps +n +
NB Negative Big u(®)] (41)
NM Negat!ve Medium From Equations (4), (13), and (41):

NS Negative Small a';'=§_§d+zﬂé+A2€=PF+Pﬂu(t}_

Z0 Zero D(q)Ps — D(q)n

PS Positive Small (42)

PM Positive Medium where p;, pp, and g are presented as follows:

i "3.\.' F“ . :':: .F'"E'., I,::I - pp=(q) —D(g) (43)
ool |II | III II|I | lll Iﬂ | { || III|l ! 2 =,1EF+..lpDu£t}
st TRERYREE |II N - s=p D(g)Ps Digy
a7 '| |i' i | ||I |' II [ || \| ! In Eq. (43), n vector corresponds with
ash I I“| | I|| l‘l' | ) Equation (34). Additionally, it is assumed that
a A P Iil l 1 ] 8,, is the desirable value which causes
a4 i f Ir'I ,"|I {Ii. |I n; = 6,';:_._{{.5} to approximates;o; in such a

ad
03[ |,' ||| .'I ] I.' I|I II | I|' I|I \ 1 way thats; > 0 (according to Wang theory
oz I '. \ .’lll Il. [ [11]). Thus, the following equation is
a1 IR \ V) provided:
/ A N . -

L % 0E rk 5 R TI SiP; HI"q}}.H%}df(‘g} =05 (44)
Figure 2. Membership function regarding the Whagsj is the -smallest posmv.e constant.
linguistic variables of MIMO fuzzy system output Equation of adaptive fuzzy approximator error
and input vector. should be described as below:

Linguistic variable membership functions PE 5,“. =0y — 6, (45)
. ad

and NB are expf&eciasm”ows- If Eq. (34) is described as scalar and Eq. (45)

e {3}.}= : is subgtituted in it, the following equation is

Aj 1+ [exp {3,1' - fﬂf}]: obtained:

o] HT Hs) + HT cf(s} (46)

G-—1,..,n) (39) Furthermore, to prove the closed Ioop system
According to mentioned points, the adaptive stability, Lyapunov candidate function is
fuzzy integral dliding mode controller is as presented as bellow:
follows: v =1eToylyn ig g (47)

=RE ST oL

u(®) = D(@)*[da— F(q,q) — 226 — 2% - 2T,
Ps

(40)
WhereZ is the positive constant. Derivative of the Lyapunov function in respect to time is as
foIIows

1 1 1 1 5. 1. s =1 s
V:EETS+EST§+E (Z_H{IEP?J-FZ_H?{IH J==5 S+ZZ—I9 3_:
=1 K] =1 %
1 “ 1 5
=T |p — D(g)n — D(g)Ps| + Zz_ = .(S}-p}- - H(q}}-?};) + Z—ﬁ',;}ﬂnj- —sTD(g)Ps
=1 7 =1 P

- S5 () — H(@),859)) + 5, %ﬁ,ﬂﬁ -~ sTB(@)Ps @8)

I

36
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T T
- 1 ..z =
=) (50, = H@,8,55) ~ H@,05,80)) + } 7= 8o, =5 TD@Ps
=1 =100

_ o1 s _
= > (536, = 1@ 1053,8)) + ) 7= 07,By; — 2, 11D () = 57 Bla)Ps
=1 =1 ’

The adaptive law is chosen as bellows:

By inserting Eq. (49) in Eq. (48):
V=S (50, — H(@),83,59)) -
s'D(q)Ps

(50)
From Equations (44) and (50):
V=X, 86— sTDlg)Ps = 57, (8; —
H(g) P gi

(51)

In Eq. (51), if ¥ =0, the main diagonal
entries of matrix P are chosen in such ways
that fulfill the following equation:

-Llr(‘i'}j%j%z =4 (52)
Thus, closed-loop system with adaptive fuzzy
integral  diding mode controller in the
presence of all the structured and unstructured
uncertainties and aso disturbances has the
global asymptotic stability. Robot manipulator
with the proposed control in the presence of
al uncertainties has the global asymptotic
stability. However, 3, P (matrices entries),
?.'qj_coefficimts, and existing membership

functions in part of fuzzy approximator rules
base assumption must be chosen by trial and
error. Defining these parameters has a direct
relation with control input amplitude and robot
manipulator tracking error bound. Hence, in
the next section of the paper, the modified
harmony search optimization algorithm will be
presented for choosing optimal value of these
parameters.

5. Optimization Technique

5.1. Original Harmony Search Algorithm
The Harmony Search (HS) algorithm has been
inspired by the music improvisation process. It
is a relativly recent meta-heuristic
optimization technigque and has been used to
solve various optimization problems. This
algorithm was first introduced by Geem et al.
[22]. The main idea behind the HS algorithm
is to achieve the most harmony among the
musicians when they are playing a note. Most
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important characteristics of HS algorithm are
asfollows[23]:

1. Simplicity in concept.

2. Capability of solving both continuous and
discontinuous optimization problems.

3. Few adjusting parameters.

4. Easy to implement.

5. Proper trade-off between local and global
exploration.

The HS dgorithm is a population based
optimization algorithm. The first step in this
algorithm is to generate a matrix known as
Harmony Memory (HM) matrix. Each
individual entries of this matrix represent a
note which is played by a musician to be
improved (improvisation) to achieve the most
harmony with the other players. To implement
the improvisation process, three rules need to
be followed:

1. Memory consideration.

2. Pitch adjustment.

3. Random search.

5.2. Improvisation Through Memory
Consideration and Random Research

At this stage, a constant value known as
Harmony Memory Considering Rate (HMCR)
is defined. Then, a new harmony is created by
using HM and HMCR:

o (xBM ;. rand() < HCMER
PR
k xzf-'“i :  Otherwise
wHM _ [ HM HM
= [x:',i T

rand __ [,.rand rand
X [":‘,1 pes Xy g

whereX™ s the i ** individual in the HM
matrix and X7 %"% shows a random harmony
generated in the acceptable range. A large
value of HMCR causes the algorithm to form a
new harmony from the HM matrix whereas a
low value of HMCR causes the algorithm to
perform arandom exploration.

5.3.Improvisation Through Pitch
Adjustment and Random Resear ch

The new harmony constructed in the last step
(Harmony Consideration) is checked to decide
whether its pitch should be adjusted or not. A

parameter known as Pitch Adjusting Rate
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(PAR) is defined as follows to simulate the
process of pitch adjustment:

mnew __
7-':;._,:'

{x;&:" + rand x bw ; rand < PAR
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x[#4 ;  Otherwise 4

Fesanghary et al. shows that the capability of
the HS algorithm can be significantly improve
by updating the value of bw[24]. Thus, the
value of bw is updated as follows during the
optimization process:
-FSW":'-’J'-"'} = IF-:"""‘rrm'.z:r X EXIJ(E': X fﬂ}
d — Ln(bw i/ bW oo )/ NI

In Equation (34), bwip) represents the
bandwidth corresponding to " iteration.
Similarly, performance of HS algorithm can
also be improved by updating the PAR value
[24] asfollows:
PAR(Iter)=

PAR, i+ (PAR . — PAR .., )/ NI (56)
The HM matrix is updated by using these
steps. The improvisation process will be
repeated until the stopping criterion is met.

(55

5.4. Modified HS Algorithm (MHSA)
In this section, a new modification approach is
introduced in order to improve the total
capability of the algorithm in both local and
global exploration. The proposed modification
approach increases both the diversity of the
HM matrix and the convergence speed of the
HS adgorithm. The proposed modification
method is applied to the HS agorithm after
each improvisation step. In this regard, for
each solution in the HM (X;), three different
solutions (X1, X4z, and X3) are chosen from
HM such that g2 = g2 = g3 = i. Then, anew
improved solution is constructed as follows:
Kimp = Xq1+ B X (Xg2 — Xq3)(57)
At this stage, using Xy, X;,and Xy,.., three

different promising test solutions are
generated as follows:
. Ximpj * Jﬁl = JHZ
HewW —
FTest1j = {thm ; Otherwise (58)
. Ximp,j i B2 = B:
new —
FTesttj = {xi-.}- ; Otherwise (59)
Xresrs = Ba ¥ Xpoor + Bz %
(Xbasr —HM Urrznri}j (60)

TheX; in HM is replaced with the best
individual among Xr..r1, X7eee2r Xresep and
X;. The HMCR parameter plays an important
role in the HS algorithm; especialy for
increasing speed of the convergence. Asit was
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mentioned before, a high value of HMCR
causes the HS agorithm to move towards
selected value from the HM. Whereas a low
vaue is approached toward random
movement. Thus, in order to adaptively update
the HMCR, after the algorithm is iterated for
several times, a new heuristic formulation is
defined asfollows:

HMCR®*1 = (1/2NI) VYN HMCR® (61)
In Eq. (61), @ is the iteration number.
Generally, a heuristic algorithm like MHSA
only requires checking the cost function and
no longer requires information about the
system. Hence, in this paper, the Mean-Root-
Squared Errors (MRSE) is considered as
follows:

MRSE=E(k) = 1/y T, le()] + [u()I(62)
wherev represents the number of sample, i is
the iteration number, e(i) denotes the
trgjectory error of ith sample for the object,
and u(i)is the control signal.

6. Advantages of The Proposed Control
Significant innovations in the proposed
control design are listed as follows:

1. To define the proposed control sliding
surface, error information, error derivative
and error integral are used. In this case,
according to Eg. (9), by choosing suitable
coefficient A, it is possible that the transient
position tracking error of the robot
Manipulator converges toward zero in a
shorter time. This feature is very important
in controlling the position of the welding
and assembling robots.

2.In many articles, the robot manipulator
position tracking control in torque space
has been presented. In design of these
controllers, the dynamic equations of the
robot manipulator actuators have not been
considered. Thus, guarantee of the closed-
loop stahility system in the presence of
actuators is difficult and in some cases
might be impossible [14,16,19]. However,
in design of the proposed method,
dynamics of actuators have been included.

3.In many adaptive fuzzy dgliding mode
controllers, presented for tracking the robot
manipulator, to reduce the tracking error,
some coefficients have been considered.
The controllers can reduce the tracking
error by increasing these coefficients,
however an increase in these coefficients
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causes an increase in the amplitude of
control input. This causes saturation of
actuators [11,13,14]. In the adaptive law of
the proposed method, the coefficient Z,;,J_.

has been wused. Increasing of this
coefficient causes reduction of tracking
error, while it does not have anyinfluence
in increasing of control input amplitude.
This advantage is shown in the simulation
section.

4.In SISO adaptive fuzzy sliding mode control
that is presented for robot manipulator
position tracking, the influence that robot
manipulator joints apply on each other is
disregarded [14]. However, if the robot
manipulator intends to operate with high
speed, influence of the joints on each other
exists significantly. Thus, it is possible to
make the stability of closed-loop system
very difficult. In design of the proposed
adaptive fuzzy approximator, MIMO fuzzy
rule has been used. Thus, reciproca
influence of robot manipulator joints can
be reduced by choosing suitable fuzzy
rules.

5.In most papers which are presented for
robot manipulator controller, there is no
proving for stability of closed-loop system
[20, 21]. However, in this paper, it is
proved that the closed-loop with purposed
controller system has the globa asymptotic
stability in the presence of all uncertainties.

6. The use of the inverse dynamic technigque
causes the uncertainty bounds to be
reduced. Hence, the amplitude of the
control input can be performed in a desired
range for determination of the contral input
coefficients[25,26].

7.1n the proposed control design, to define the
control  input parameters, modified
optimization algorithm has been used. In
this case, increment of the control input
amplitude is prevented and implementation
of the proposed control becomes much
more cost-efficient.

7. Case Studies

In 1981, Sankyo Seiki, Pentel and NEC
presented a completely new concept for
assembly robots. The robot was developed
under the guidance of Hiroshi Makino, a
professor at the University of Y amanashi. This
robot was caled Sdective Compliance
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Assembly Robot Arm (SCARA). Its arm was
rigid in the Z-axis and pliable in the XY -axes,
which allowed it to be adapted to holes in the
XY-axes [18]. By virtue of the SCARA's
parallel-axis joint layout, the arm is dlightly
compliant in the X-Y direction but rigid in the
‘Z' direction. Hence the term: Selective
Compliant was applied for the system. Thisis
advantageous for many types of assembly
operations, i.e., inserting a round pin in a
round hole without binding. The second
attribute of the SCARA is the jointed two-link
arm layout similar to our human arms, hence
the often-used term, Articulated. This feature
allows the arm to extend into confined areas
and then retract or “fold up” out of the way.
This is advantageous for transferring parts
from one «cell to another or for
loading/unloading process stations that are
enclosed.In this section, Fig. 3 is used as a
case study to examine performance of the
proposed controllers of the SCARA robot
manipulator. Considering Eg. (1), dynamic
equations of the robot manipulator in the
presence of PMDC motor’s dynamics, are as

follows[1]:
Myy My; Mg
Mig) = May Mi; My
-Mﬂi Irfﬂﬂ M33

. M
M, = IJ‘_(T1+m2+m3)+
Iy1(mq + 2mg)cos(gq) +

5 M2 mi
N—=—+my)+—
22 ma)+

1
Ll 2

Myz = May = —l4l5 (?"‘ ma)CGs(ﬂ?:) - 3%(72 + g)
-~ M4 =
M:: = EE( 3‘ +m3} +l2‘
.-Fr:l'l.a ]
Mo =mq+—
33 3 2
Myz = Myz = M3y =Mz =0
o Cq1 Ciz Gy
C(g,q) = l1135in(g;)|C21 C2z Ca3
Cﬂi CEQ CEE
€11 = —4z(mz + 2my)

Ma
Cio=0Cop = _‘?:(T"‘ mg)
Cia =0 =0p=033=C3;=C33=0

Byy Byz By
B =|B;. By Ba
Hi: Bz Bag

Byy = (B, + Hz-._f{m._le}fo
Ban = (Emz + thf{msz:'-]'fT':z
B3z = (B, + Ky K /R3) /73
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Bz =By =By =By =By =0 (63) :
Kiy Kip K Gl@=] 0
K =|Kz Kz Ki —Mad
K3, Kgz Kaa 200 1
Kyy=Kp, /(Ri+7 4) Fa=10 2 01, &£=|1
Kz =K J(Ra+7 3) S !
21 = By U2 TT 2 Ssin(t)| |[sin(t)
K33 = Kp /(Rz3+7 3) 14 = | 5sin(t) | + |sin(t)
Ki: =Ky3=Ky3=K33=K3:=10 Ssin(t) sin(t)
I
qi qz
— >
’——\ A 13
qs3
< \

Figure 3. The SCARA robot manipulator.

SCARA robot manipulator and PMDC motor parameters are shown in Table 2.
Table 2. SCARA robot manipulator and PMDC motor parameters.

Parameter Value Parameter Value
iy 073 m e 1x 107
I, 0.5 m - 1% 10°C
iz 1m Ky, 1% 1072 voit/(rad fsec)
my Skg Ky, 1 % 10~ 2volt/ (rad [ sec)
My kg Ky, 1% 107% voit/(rad/sec)
g 2kg K, 1% 10-2 Nm/A
Jmy 13 10~* kgm? Ko, 1% 10-2 Nm/4
T 13 10 ~*kgm? Ky, 1% 102 Nm/4
T 13 10* kgm? R, 10
r . 1x 1072 R, 10
¥ 4 1x 1077 R, 10
r 1% 1072 g 9.8 N /kg
B, 1% 107

where 4, 15, and [jare the length of the links;
my, m,, and mgare the mass of the first,
second and third link, respectively; g is the
acceleration of gravity; [, jm,and J,,,_ arethe
inertial of the Motors, r, 1, and ry are the
gears rétio; B, , B, and B, are the friction
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of the motors; K;,, K, and K, ae emf
constant of motors recursive; K,,,, K, and
K, are constant of motors torque; and Ry, R
and Hgare the motors armature resistance.

Desirable trgjectory is introduced by Eq. (54)
and desirable positions of joints 1, 2 and 3 are
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shown in Fig. 4. Fuzzy rules base systems are
adjusted thesameas Fig. 1, according to Eq.

(33) and membership functions of these rules.
The initial conditions of the robot manipul ator

joints are considered equal
to
[g:(0)  g.(0) g.(0)]T =
[01 01 o01]F
-E?';I'l"_ —4 0 0 t;llf'_
fiidz=[{] —4 ﬂ“xf-i'dz+
| e 0 n -4 s
—4 0 0 Qa,
0 —4 0|x|%:]|+
L 0 0 - qas
3 00 1-046
0 3 0|=x 1-08T
lo o 31 _ 1-127]

Ga, Ga, dy
'Iqiri = Ilqil'l'z H Iq.'r:é = q.‘fl'z P g = Fdz](64)
Ga, Ga, 9az
In the mentioned equation, values g, 44 and
g are desirable acceleration vector, desirable
velocity vector, and desired positional vector of
robot manipulator joints, respectively. Fuction
T aso is a square pulse with 1 amplitude, 2
second period, pulse width 50 %of period and O
second phase delay.

0.7

0.6

0.5

0.4

0.3

Desired Position

0.2

0.1

f —qdl
oLy qd2 [
—— qd3

0.1 ‘
0 5 10 15 20 25 30

Time (s)
Figure 4. Desired position of the first, second and
third joints of the SCARA robot manipulator.

In this part the proposed controller, five-staged
examination is performed. In these stages, the
proposed controller encounters with various
challenges. Additionally, robustness of the

proposed controller is evaluated against
structured and unstructured uncertainties.
Simulation 1: In this simulation, the integra
diding mode position tracking controller is
applied to the SCARA robot manipulator. In
this simulation, it is assumed that accurate
information of SCARA robot manipulator
dynamics is available. In other words, the
controller is not encountered with uncertainty.
To adjust the values of the controller
coefficients, the Table 3is used.

Table 3.Coefficients of integral diding mode
controller.

Parameter Vadue Parameter Vaue

i, 10 Py 30
2 12 N 30
s 10 ., 50
P, 50 e 80
P, 20

After running the simulation, according to Fig. 5,

the first, second and third joint position tracking
errors have converged from initial value of 0.1
towards zero in a short time. As expected, due to
lack of uncertainty, the closed-loop system does
not have steady-state error. Motor input voltage
amplitude of the first, second and third of robot
manipulator are shown in the Figs. 6, 7 and 8,
respectively. From these figures, the amplitude
of input controls are situated in an acceptable
limit. However, due to occurrence of undesired
chattering phenomenon, practical
implementation of this controller becomes
problematic.
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Figure 5. Tracking errors of the first, second and
third joint due to applying the integral sliding mode
controller.
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Figure 6. The first motor input voltage due to
applying the integral sliding mode controller.
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Figure 7. The second motor input voltage due to
applying the integral diding mode controller.
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Figure 8. The third motor input voltage due to
applying the integral diding mode controller.

Simulation 2: In this stage of the simulation,
the integral sliding mode control is confronted
with a more serious challenge. In this part, it is
assumed that the information regarding the
dynamics of static friction, dynamic friction,
disturbance and dynamics of SCARA robot
manipulator PMDC motors are not available.
Additionally, known parameters of the robot
manipulator are shown in Table 4. In other
words, in this part of simulation, the integral
dliding mode controller is encountered with
structured and unstructured uncertainties.
Moreover in this simulation, coefficients of the
integral sliding mode controller are adjusted
according to Table 3.

Table 4. Known parameters of SCARA robot
manipulator.

Parameter  Vaue  Parameter Vaue
# L& m g 28kg
I 0.4 m g 1.8 kg
I 0.8 m g 9.5 N fkg
N 4.8 kg
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After running the simulation according to Fig.
9, position tracking errors of the first, second
and third joints are converged toward zero in a
limited time. However, Figs. 10, 11, and 12
show that the motors input voltages have high
chattering phenomenon. Thus, the integral
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diding mode controller is compelled to
increase the chattering in control input in order
to maintain the stability of the closed-loop
system against structured and unstructured
uncertainties. Hence, in this case, practica
implementation of this controller becomes even
more problematic.
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Figure 9. Tracking errors of the first, second and
third joint due to the integral sliding mode controller

in presence of structured and unstructured
uncertainties.

200 9% L~ ut

150 90

85
- 4
100 0 0.2 04 06 0.8
50

oH

Control Input

-50

-100

-150

-200

-250

0 5 10 15 20 25 30
Time (s)
Figure 10. The first motor input voltage due to
applying the integral dliding mode controller in the
presence of sructured and  unstructured
uncertainties.
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Figure 11. The second motor input voltage due to
applying the integral sliding mode controller in the
presence of  structured and  unstructured
uncertainties.
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Figurel2. The third motor input voltage due to
applying the integral sliding mode controller in the
presence of structured and unstructureduncertainties.

Simulation 3: In this part, optimal adaptive
fuzzy integral sliding mode position tracking

controller is applied to SCARA robot
manipulator. Governing condition of this
simulation is the same as Simulation 1.

According to Table 5, optimal adaptive fuzzy
integral sliding mode controller coefficients are
adjusted.

Table 5. Coefficients of optimal adaptive fuzzy
integral diding mode controller.

Parameter Vaue Parameter Vaue
Ay 8.7 P, 28.26
Aq 11.35 Z"Ji 101.14
Ag 293 Zn; 186.89
Py 43.87 an 30041
F, L19.04

43
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Comparing Tables 3 and 5, values for matrix A

and P are not chosen the same in both
controllers. The parameters of Table 5 also are
defined through modified HS optimization
algorithm. After running the simulation, Fig. 13
shows the proposed controller performs
desirably and joint position tracking errors of
the first, second and third converge toward zero
in a short time. Figure 14 shows that undesired
chattering effects are eliminated in motor input
voltage of the first, second and third by using
adaptive fuzzy approximator. Additionally,
maximum amplitude of motor input voltage
first, second and third, are 45.16, 51.89 and
46.06 volts, respectively. Maximum input of
the motor voltages are not increased compared
to the previous simulations. Figure 15
illustrates that the optima adaptive fuzzy
approximator performs desirably and the values

ofxn,, n,, and n, are approximated in such a

way that can guarantee the closed-loop systems
stability.
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Figure 13. Tracking errors of the first, second and
third joint due to applying the optima adaptive
fuzzy integral sliding mode controller.
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Figure 14. The input voltages of the motors due to
applying the optimal adaptive fuzzy integral diding
mode controller.
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Figure 15. Then,, n,, and 5, are outputs of optimal

adaptive fuzzy approximator. The symbol n is

representing Eta.

Simulation 4: In this part, position tracking
controller of optima adaptive fuzzy integral
diding mode is situated under a great
challenge. Thus, in this stage, the proposed
control in the SCARA robot manipulator
controlling is confronted with the structured
and unstructured uncertainties. The proposed
control coefficients are adjusted according to
Table 6. The existing parameters of Table 6 are
defined by modified HS optimization
algorithm.
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Table 6. Coefficients of optimal adaptive fuzzy
integral sliding mode controller in the presence of
structured and unstructured uncertainties.

Parameter Vaue Parameter Vaue
Ay 0.82 F 31.56
Az 13.74 El,h 103.04
Aq 8.36 E‘n: 1010.78
P 32.43 E‘ng 600.41
P, 22.08

After running the simulation, the proposed
controller performs desirably (Fig. 18) and the
position tracking errors of the first, second and
third joint converges toward zero. However, due
to existence of the structured and unstructured
uncertainties with large bound, tracking errors
are partialy increased in comparison with the
third ssimulation. In Fig. 17, undesired chattering
phenomenon effects in input voltage of the first,
second and third motor are eliminated by optimal
adaptive fuzzy approximator. Additionaly,
maximum amplitude of input voltage of first,
second and third motor are 97.08, 53.14, and 137
volts, respectively. In comparison with
Simulations 1 and 2, the maximum inputs of
motor voltages are not increased. There is just a
partial increment that can be seen in comparison
with Simulation 3. Moreover, Figure 18 shows
that the optimal adaptive fuzzy approximator
performs desirably. Additionally, it approximates
values 1, 11, and 7, in such a way that can
guarantee stability of the closed-loop systemis
spite  of the structured and unstructured
uncertainties.
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Figure 16.Tracking errors of the first, second and
third joint due to the optimal adaptive fuzzy integral
diding mode control in the presence of structured
and unstructured uncertainties.
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Figure 17. The input voltages of the motors due to
applying the optimal adaptive fuzzy integral sliding
mode controller in the presence of structured and
unstructured uncertainties.
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Simulation 5. In this section, the adaptive
fuzzy dliding mode controller [15] is simulated
in order to position control of SCARA
manipulator. It should be noted that this
simulation is only performed and presented in
order to consider and compare with the
proposed controller. In order to present a fair
comparison, similar to Simulation 4, there are
no available information about the existing
disturbances, dtatistical friction dynamics,
PMDC motor dynamics, and dynamica
friction. Thus in design of the controller [15],
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these dynamics are not considered. The known
parameters of robot manipulator (that are used
in design of the controller) are determined
accordingto Table4 and 7.

Table 7. Coefficients of adaptive fuzzy diding mode
controller[15] in the presence of structured and
unstructured uncertainties.

Parameter Vaue  Parameter Vaue
A, 14 P, 34
R 14
As 14
B 51
P 23

After performing the simulation, tracking error
of the joints from initial condition 0.1 are
converged to zero according to Figure 19. It
can be concluded from comparing Figures (16)
and (19) that converging speed of joints
tracking errors, in the first 5 seconds of
simulation is slower in comparison with
Simulation 4. However, it has less steady-state
error. It should be noted that after spending 15
seconds, steady-state error of joints converges
to zero according to Figure (16). However,
according to Figure (20), the controller [15]
cannot eliminate effects of undesired chattering
phenomenon in first, second, and third motors
input voltage. Additionally, maximum input
voltage amplitude of motors 1, 2, and 3 are
77.08, 152, and 350 volts, respectively.
Through comparison of Figures (17) and (20),
the proposed control input amplitude is much
less than controller [15]. Thus, in case of using
controller [15], applying motors with higher
power are inevitable. Therefore, practica
implementation of this controller with motors
are very difficult. Additionaly, due to
appearance of chattering phenomenon in the
controller input [15], the life time of these
motors will be less. According to Figure (21),
the adaptive fuzzy approximator estimates the
values of iy, 12, and 55 in such a way that the
stability of the closed-loop system is
guaranteed in the presence of al the structured
and unstructured uncertainties. Table (8) is
presented in order to clarify performances of
Simulations (4) and (5).
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Table 8.Comparison of performance of the proposed controller and adaptive fuzzy sliding mode controller[15].

Adaptive | Maximum | Maximum | Maximum | Maximum | Chattering
fuzzy of control of of control of steady effects
dliding input transient input tracking
mode bound tracking steady error with
controller error with | amplitude 1073
1073 pr eciseness
pr eciseness
Proposed 137 0.006 67.4 0.0022 eliminate
[15] 350 0.04 72.8 0.0018 remained

Table (8) shows the performance of the proposed
controller is more desirable in comparison with
controller [15] except in steady tracking error, that
controller [15] is dightly more desirable. Amplitude
of the proposed controller is much less than controller
[15] and thereis no trace of chattering in the proposed
control input. Thus the practical implementation of
the proposed controller is simpler and much more
cost-efficient in comparison with controller [15].

8. Conclusions

In this paper, using the inverse dynamic technique and
dliding mode control, an integral sliding mode
controller was presented to position tracking of the
robot manipulator in the presence of motor dynamics.
The inverse dynamic technique reduced uncertainties
bound. However, due to the application of sliding
mode control, the control input was accompanied with
occurrence of undesired chattering phenomenon. To

a7

overcome the chattering phenomenon, a MIMO
adaptive fuzzy approximator was designed to
approximate bound of the remaining uncertainties.
Using the integral sliding mode control causes the
robot manipulator position tracking error converges
toward zero in a very short time. Using MIMO fuzzy
system causes reduction of interactions between robot
manipulator joints in position tracking of robot
manipulator control. Analytical results showed that
the closed-loop system with the proposed control has
the global asymptotic stability in the presence of all
the uncertainties. To prevent increment in the control
input amplitude, choosing the coefficients of the
control input was performed by modified harmony
search optimization agorithm. Simulation results
showed desired performance of the proposed control
in the position tracking control of SCARA robot
manipulator.
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