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Abstract
This paper introduces an indirect adaptive fuzzy
sliding mode controller as a power system
stabilizer for damping local and inter-area modes
of oscillations of multi-machine power systems.
This controller is designed based on the
combination of sliding mode controller and the
fuzzy logic systems. The fuzzy systems are used to
approximate the unknown functions of power
system model. Generator speed deviation and
accelerator power are selected as fuzzy logic system
inputs. A new sliding mode control law achieved by
changing the sliding condition and the undesirable
chattering has been removed by using of a
continuous function. Based on the Lyapunov
synthesis, adaptation laws are developed.
Performance of the proposed stabilizer is studied
for a two-area four-machine power system.
Simulation results show the effectiveness of the
proposed controller in comparison with multi-band
power system stabilizer (MB-PSS), classical
adaptive fuzzy sliding mode stabilizer and adaptive
fuzzy sliding mode stabilizer with a proportional
integral function (PI).

Keywords: Sliding mode control, chattering
elimination, adaptive fuzzy control, multi-machine
power system, power system stabilizer

1. Introduction
Power systems become larger and more complex,
every day. Their behavior is nonlinear and the
occurrence of disturbances such as a short circuit
and load change causes the electromechanical
oscillations in the synchronous generators. These
low-frequency oscillations are an inherent
problem in the power systems that can lead to
instability and Loss of synchronism and
separation of interconnected networks. Power
system stabilizer provides an auxiliary control
signal for synchronous generator excitation
system to increase the stability and performance
of the power system.

Conventional power system stabilizer (CPSS)
is the first type of power system stabilizer which
includes Lead-Lag Phase controllers with fixed
structure and parameters [1]. These parameters
are calculated based on the mathematical model
of the power system and operating point. Due to
the nonlinear behavior of the power system and
the uncertainty of parameters, the stabilizers
cannot achieve good results in a wide range of
operating points and need to be reorganized.
Multi-band stabilizer (MBPSS) is the latest and
best stabilizer of this type which has more
appropriate response, described in [2] and [3].

To track the changes in the power system,
adaptive stabilizers such as [4], [5] and [6] have
been proposed. These stabilizers require
identification of power system parameters and its
states estimation. The sliding mode controllers
are some of the most robust control methods for
nonlinear systems that can make a good
stabilization even with changes in the system
parameters. This type of stabilizers is presented in
[7], [8] and [9]. This control method requires
mathematical model, but it is complicated to
provide this model for the power systems.

For years, fuzzy logic systems  are used in the
controller design. Fuzzy logic systems can
perform controlling act without having any
knowledge of the non-linear functions of the
system. In recent years, there have been attempts
to use fuzzy logic systems in the power system
stabilization. Implementation of a fuzzy logic
based power system stabilizer is described in
[10]. It is a model-free approach and its
parameters considered fixed. Therefore, changes
in the characteristics of the power system, causes
the decrease in stabilizer efficiency. The Design
of a type of fuzzy PID-like controller with a
mechanism to predict error and adjust the
coefficients of the controller as a power system
stabilizer is presented in [11]. In [12], a self-
learning fuzzy PD controller is presented which
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uses steep decrease algorithm to identify system
and make changes in input and output of
membership functions and fuzzy rules in order to
adaptation. The model-free controllers have
limited ability in control of nonlinear systems.
Direct adaptive fuzzy controller in [13] and [14]
has been used as the power system stabilizer. This
means that the fuzzy logic system is used to
approximate the feedback control law. Indirect
methods will be obtained if the fuzzy
approximation be used to approximate unknown
system functions. Indirect adaptive fuzzy power
system stabilizers using feedback linearization
control law have been proposed in [15],[16] and
[17]. The main difference is in the mechanism of
adaptation and robustness of controller. They
have attempted to make the controllers robust,
because the approximation error always exists in
them.

The sliding mode control (SMC) is an
effective robust control to deal with parameter
uncertainties and disturbance for nonlinear system
[18], it is widely used for the nonlinear control
scheme. The combination of sliding mode
controller and fuzzy approximation creates an
indirect adaptive fuzzy sliding mode controller.
However, there is severe chattering in the output
of classical sliding mode controller. The cause is
the existence of sign function in its control law,
and it makes the implementation and practical
application of this type of stabilizer hard or
impossible. In the [19], [20] and [21] some
methods have been proposed to chattering
elimination. The proposed adaptive fuzzy sliding
mode controller in [21] used a proportional
integral (PI) control law instead of switching
section of sliding mode controller. According to
this method a power system stabilizer is provided
in [22] and [23]. The steady state error of PI
controller can reach to zero. By using of PID
control function on sliding surface ( S(t) ) instead
of switching term of sliding mode control law,
finally the states of the system is placed on the
sliding surface and the steady state error becomes
zero, without chattering in control signal.
Nevertheless, if there is a disturbance in the
system, the steady state error would not be zero.
In the power systems, small and large
disturbances such as faults, load and generator
operating point changes, continuously occur. In
this system, the goal of the controllers is reducing

the stabilization time and amplitude of rotor
speed error into an acceptable range.

An idea to remove chattering by making
changes in the sliding condition is discussed in
[20]. However, the obtained control law is
incorrect. In this paper, the considered idea in
[20] to eliminate the chattering of sliding mode
controller output, is corrected, and an indirect
adaptive fuzzy sliding mode stabilizer for multi-
machine power systems is presented base on it. In
Section 2, a generator dynamic model for sliding
mode control law is given, and in Section 3, the
sliding mode control law with different sliding
condition is studied. In Section 4, an adaptive
fuzzy system applied to approximate unknown
functions of the power system, and the adaptive
fuzzy sliding mode control law is obtained. In
Section 5, a description of the test power system
is given, and in Section 6, the effectiveness of the
proposed stabilizer in damping of oscillations
under various disturbances and simulation results
are shown. Conclusions are stated in Section 7.

2. Power system model
In order to use of the sliding mode controller for
second order systems, system equations must be
expressed as the follow [18]:

      

 

 






n ux f x g x

y x
(1)

Speed deviation and electrical power are easily
measurable directly. By choosing of speed
deviation and power accelerator of synchronous
generator as the state variables,

1 2[ , ] [ , ]   x x P , and speed deviation as the
output of power system,  y  , the equation set
for thi generator is represented as follow [23],
[24]:
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where iu is output of stabilizer and the control
signal that will be designed in later sections, if

and ig are uncertain nonlinear functions of
power system. 1 0  i i ix    is the speed
deviation and 2   i i mi eix P P P is the
accelerating power, i is the rotor angular speed,
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0 is the synchronous speed, miP is the input
mechanical power of synchronous generator
which is assumed constant in the controller
design, eiP is the output electric power and iH is
the machine inertia constant. The positive values
of the stabilizer signal ( 0iu ) lead to an increase
in generator output voltage and therefore positive
change in the output power ( 0eiP ) which sign
is opposite to  iP . In other words, ig is a
negative function [23], [24].

3. Indirect adaptive fuzzy sliding mode
controller for power system stabilizer
3.1. Sliding mode control design
The goal of sliding mode control is to force the
output of system ( y ) to track a bounded desired
trajectory ( dy ), under uncertainties and
disturbances, so that all signals in the closed-loop
system and system states are bounded. For a
second order system, the tracking error defined as

 ,     T

de y y e e and sliding surface is:

s e e  (3)
If  , 0s e t , then the error moves toward zero,

exponentially. For this purpose, in the sliding
mode control the Lyapunov function defined as:

21
V

2
 s (4)

and the derivative of the Lyapunov function is
generally considered as follow:
V     ss s  (5)

where  is a strictly positive constant. Inequality
(5) is called the sliding condition. The discrete
control function ( sign( ) su K s ) exists in
classical sliding mode control law which causes
chattering in the control output signal. The
frequency and the time constant of controller are
limited in the implementation of sliding mode
control. Therefore, the error of the system output
will not become zero, and even the chattering
may appear in the system output. The chattering
could be eliminated through a continuous
approximation of the discontinuous control
(  sat su K s  ) in a boundary layer around the

sliding surface
(     : | x, tB t x s     ) [18], where  is

boundary layer thickness which determines the
accuracy of the controller, and 0 1  . In this
paper, the sliding condition is defined as:

2V     ss s



  (6)

If the sliding condition (6) is satisfied outside the
boundary layer, then it is guaranteed that after
finite time   e t  , where 1 n   is width

of the boundary layer. Derivative of the sliding
surface is:
 

( ) ( )

  

   
d

d

s e x x e

f x g x u x e





  

 
(7)

Eq. (6) is written as follow:

  2  . ( ) ( )    ds f x g x u x e s





     (8)

where ( )f x and ( )g x are unknown functions.
The sliding mode control law for the second order
system is proposed as follow:

 

1
  ( )

( )

1

(

ˆ

)

ˆ

ˆ
ˆ

      

 

d s

s

u f x x e u
g x

u u
g x

 

(9)

where ˆ( )f x and ˆ ( )g x are estimations of
nonlinear functions of system, and equivalent

control law is as ( )ˆˆ   du f x x e  , and su will
be designed in the below.

Assumption. The estimation error of system
functions is limited to ( )F x and  x , and sign

of ( )g x and ˆ ( )g x are known and same. In other
words:

( ) ) (  ˆ( ) f x f x F x (10)

1 ˆ ( )
0          

( )
  

g x

g x
  (11)

Substituting (9) into (8) leads to:
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s d
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


  (12)

ˆ ˆ( ) ( ) f x f x is added and the inequality (12) is
written as below:

2
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and so:
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 

2( )
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( ) ( )
(

ˆ

ˆ ˆˆ) ˆ( ) 1    
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In order to satisfy (15) we proposed su as:

    ˆ  ( ) 1    

 

s

s
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s
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



(16)

So, substituting (16) into (15) leads to:

 

 

2

2 2

2

( ) ( )
( ) ( )

( ) ( )

( ) 1 1
1 ( )

( )

ˆ ˆ ˆ

ˆ

1 ˆ1

ˆ

 

 
    
 

 

g x g x
s s f x f x

g x g x

g x
s u s s F x

g x

s u




 
 




(17)

If s  (out of boundary layer) then  2s s  ,

and according to (10) and (11):
2 2( ) 1

( )

ˆ


g x
s s

g x




 
(18)

  2( ) 1
( ) ( ) ( )

( )

ˆ ˆ 
g x

s f x f x s F x
g x



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 2ˆ ˆ( ) 1
1

)
ˆ1

(

 
   
 

g x
s u s u

g x



(20)

Therefore, the sliding condition (6) for s  is

satisfied. The (17) shows the boundary layer is
attractive. The proposed control law is similar to
the sliding mode control with the saturation
function, in the boundary layer ( s  ). If the

system affected by unknown disturbances, the
system states get out of the boundary layer and
the error increases in the system output. The
saturation function for out of boundary layer
( s  ) is constant (  su K ), but the control

function in (16) increases proportional to the
distance of the system states from the sliding
surface (   su K s  ) and therefore the

amplitude of the error and time to reach the
boundary layer after removing the disturbance,
reduce. This feature discussed in below.

The reacht is the time required to reach the
sliding surface ( 0s ) or the boundary layer, and
by integration of the sliding condition between

0t and  reacht t , is calculated [18]. For classical
sliding mode control with the sliding condition
(5), and  0 0 s t :

0 0
     

reach reacht t
s dt dt (21)

 
   

( ) 0

0 0 0

   

    
reach

reach

s t t s t

s t t
(22)

In conclusion,  0 reacht s t  . A similar result

for  0 0 s t can be obtained. Finally,

 0 reacht s t  for all  0s t . If the boundary

layer is considered, ( ) reachs t t  , then the time

required to reach the boundary layer is:
 0 

reach

s t
t




(23)

However, in this paper, the sliding condition is
defined as (6). Thus:

0 0
     

reach reacht ts
dt dt

s





(24)

 ln ln 0  s s t t



(25)

and therefore:

 0


 
t

s s t e

 (26)

In other words, s decreases exponentially. As a
result:

 0
ln
 
   
  reach

s t

t






(27)

It is clear that:

 
 

0
ln

0

 
       

s t

s t



 

 
(28)

In other words, the new sliding condition reduces
time to reach the boundary layer.

3.2. Fuzzy Logic System
Fuzzy logic system consists of a set of IF–THEN
rules as:
  1 1  :    If          is        and and        is      ,

    Then        is   

  

 

l l
n n

l

R l x A x A

y B

      
(29)

A fuzzy logic system contains rules base,
fuzzifier inference engine and defuzzifier. It can
be viewed as a nonlinear mapping from inputs to
outputs. By using the singleton fuzzifier, product
inference and center average defuzzification, the
output value of the fuzzy logic system can be
formulated as [25]:

 
  
  

1 1

1 1

   

 

 

 


 
 

l
i

l
i

m n

l iAl i

m n

iAl i

x
y x

x

 


(30)
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where  l
i

iA
x is the membership function of the

linguistic variable ix , and y R is output of the

fuzzy logic system,  i
lA and  lB are the input and

output fuzzy sets, respectively.   1, , i n denotes
the number of input of fuzzy logic system and

1,  ,  l m denotes the number of fuzzy IF–THEN
rules. l is the point that the maximum value of
output of thl rule, achieves in. Eq. (30) can be
rewritten as:

     
1

 


 
m

T
l l

l

y x W x W x  (31)

Based on the universal approximation theorem
in [26], unknown functions ( )f x and ( )g x can
be approximated by (31) as:

   ˆ    T
f ff x W x  (32)

   ˆ   T
g gg x W x  (33)

where 1 ,..., ][ m T
ff f   and 1 ,..., ][ m T

g g g   are the

parameters vectors of the fuzzy approximations,
and      1 , ...[ , ]   T

mW x W x W x is the fuzzy

basis functions vector that:

 
 
  

1

1 1

 
     

 



 



 

l
i

l
i

n

iAi
l m n

iAl i

x
W x

x




(34)

3.3. Indirect adaptive fuzzy sliding mode
control design

Because the system functions ( )f x and ( )g x are
unknown, so we replace ( )f x and ( )g x by the

fuzzy estimates  ˆ  ff x  and  ˆ  gg x  which are

in the form of (32) and (33). These functions are
used for implementation of sliding mode control
law. Adaptive fuzzy sliding mode control law,
according to (9) defined as:

   ˆ
ˆ

1
           f d s

g

u f x x e u
g x

 


  (35)

The above equation is rewritten as:
      ˆ ˆ     f d s ge f x x u g x u   (36)

Substituting (36) into (7) leads to:

    
    ˆ  

ˆ  

   

f

g s

s f x f x

g x g x u u






(37)

Definition. *
f and *

g are defined as optimal

parameters vectors for fuzzy approximation that
conclude the smallest estimation error.

   * arg  min sup  ˆ
 

    
 nf f

f f
x R

f x f x


  (38)

   * arg  min su ˆp    
 

    
 ng g

g g
x R

g x g x


  (39)

where f and g are constraint sets for f and

g , respectively. Assuming that the fuzzy

approximation parameters are bounded. The
difference between optimal values and real values
of parameters are defined as:

*

*

  

 

f f f

g g g

  

  
(40)

The fuzzy approximations (32) and (33) can be
separated based on the optimal value and the
approximation error (40) as follow:

     
   

*

*

ˆ

ˆ
  

  

T T
f f f

T
f f

f x W x W x

f x W x

  

 
(41)

     
   

*

*

ˆ

ˆ

  

  

T T
g g g

T
g g

g x W x W x

g x W x

  

 
(42)

So, equation (37) becomes:

     

      
*

*

ˆ

ˆ  

   

    

T
f f

T
g g s

s f x f x W x

g x g x W x u u

 

 


(43)

Define the minimum estimation error:

        * *  ˆ  ˆ     f gE f x f x g x g x u  (44)

Thus, the equation (43) can be written as:
        T T

f g ss W x W x u u E  (45)

The Lyapunov function is selected as follow:
2

1 2

1  1 1
V    

2 2 2
  T T

f f g gs    
 

(46)

and its time derivative is:

   

 

 

 

 

1 2

1 2 1

2

1
1

2
2

1 1
V  

       

1 1 1
   

1

1

1





  

     

   

    

   



     

T T
f f g g

T T
f g s

T T T T
f f g g f f f

T T
g g g s

T
f f

T
g g s

ss

s W x W x u u E

s W x

s W x u su sE

sW x

sW x u su sE

   
 

 

      
  

  


  


  


  

  







(47)

The derivative of (40) is  f f   and  g g   .

If the adaptation laws be selected as (48) and (49)
, the Eq. (47) could be simplified as (50):

 1 f sW x  (48)

 2g sW x u  (49)
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 V    ss E u (50)

The sliding condition determined in section of
the sliding mode control design, is again
considered. So:

  2V      ss E u s



 (51)

In order to obtain su , the above inequality is used.
So:

2     ssu s sE



(52)

On the base of the definition of E in (44):

  
  

2 *

*

  ( )

( )

ˆ

ˆ

 



  

    

s f

g

su s f x f x

g x sg x u







(53)

By using of (35), we can write the following
inequality:

  
 

    
 

 

*

*

*

( ) |

( ) |
|

|

( ) |

ˆ

ˆ ˆ
ˆ

ˆ

ˆ |

 


   




 

g

g

f

g

g

s

g

d

g x g x u

g x g x
f x

g x

g x g x
u

g x

x e












  (54)

Substituting (54) into (53) leads to:

  
 

    
 

 

2 *

*

*

ˆ

ˆ ˆ
ˆ

ˆ

)

)

ˆ

  ( )

(

(

   

 
     



 






s f

g

f d

g

g

s

g

su s f x f x s

g x g x
f x x e s

g x

g x g x
su

g x







 







  (55)

 
   

    
 

2

*

*

*

( )

( )
(

ˆ

ˆ ˆ

ˆˆ ˆ
ˆ

)


 







   

 
   

 


g

s

g g

g

f

g

g x
su s

g x g x g x

g x g x
f x f x s su

g x

 
 






(56)

The approximation error is more than the
minimum error that is achieved by optimum
parameters. So, according to (10) and (11), we
can write the following inequalities:

   *( )   ( )ˆ ˆ ( )      f ff x f x f x f x F x  (57)

   *ˆ( )   ( )ˆ    g gg x g x g x g x  (58)

 
   

 
*

ˆ ˆ

ˆ ˆ ( )( )

 

 
 

 
g g

g g

g x g x

g xg x g x g x

 

 
 (59)

and because 10 1    , we can conclude:

   
 

*

1

( ˆˆ
1

ˆ

1

)

( )

1 

  



 




  

gg

g

g x g xg x

g x g x












(60)

As a result, the following inequality can be
considered instead of (56):

 

    

 

2

( )

ˆ

ˆ ˆ( )
( )

1  
(

ˆ
)

ˆ




 
  



 
    

    



g

s

g

f

g

g x
su s

g x

g x
f x f x

g x

g x
u s

g x

 







(61)

which is similar to (15). So, su be considered as

(16). Therefore, the inequality (51) for s  is

satisfied. As it shown, the sliding mode control
law of previous section has not changed, and just
an adaptive mechanism is determined for fuzzy
approximations. The designed controller structure
is shown in Fig. 1.

Fig. 1. The proposed indirect adaptive fuzzy sliding mode
power system stabilizer.

4. The procedure of stabilizer design
Stabilizer design steps can be summarized as
follow:
4.1. Of-line preprocessing
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Specify the coefficients of the sliding mode
control law.  , , , (x)  F   .

Specify the coefficients of the learning of
fuzzy system.  1 2,  

4.2. Initial fuzzy system construction
 Define im fuzzy sets for input variables

ix so that the membership functions

l
iA

 cover uniformly input range. Here,

1,2i and 1 2 7m m and 1, , i il m .
The Input variables are considered as

1  x  and 2  x P for power system
stabilizer. The membership functions are
Gaussian and it is defined in Appendix.
The linguistic variables are labeled as:
Negative Big (NB), Negative Medium
(NM), Negative Small (N), Zero (ZR),
Positive Small (PS), Positive Medium
(PM), Positive Big (PB). The input range
for the speed error (  ) and for the
power accelerator (P ) is [-1 1] in per
unit.

 Construct the fuzzy rule bases for the fuzzy
approximations  ˆ  ff x  ,  ˆ  gg x  , which

are consist of 1 2 49  l m m rules. The
initial value of f is chosen to be zero, but

the initial value of g is chosen to be

negative [22],[23], shown in Table 1.
 

   

1 2 1 2

1 2

,
1 1 2 2

,

  If        is         and          is      ,

Then            is   ˆ  

   

 

l l l l
f

l l
f f

R x A x A

f x  

   
(62)

 

   

1 2 1 2

1 2

,
1 1 2 2

,

  If        is         and          is      ,

  Then          isˆ        

    

  

l l l l
g

l l
g g

R x A x A

g x  

   
(63)

 Construct the fuzzy systems  ˆ  ff x  and

 ˆ  gg x  such as (32) and (33), and  W x

is given in (34).
4.3. On-line adaptation.
 Apply the control law (16) and (35) as a

power system stabilizer and fuzzy
approximations  ˆ  ff x  and

 ˆ  gg x  from above .

 Use the adaptation rules (48) and (49) to
adjust the fuzzy approximation parameter
vectors f and g , respectively.

Table 1. The fuzzy rule base and initial value of parameter
vector [22]

Δω
ΔP

NB NM NS ZR PS PM PB

NB -1 -2 -3 -4 -3 -2 -1

NM -2 -3 -4 -5 -4 -3 -2

NS -3 -4 -5 -6 -5 -4 -3

ZR -4 -5 -6 -7 -6 -5 -4

PS -3 -4 -5 -6 -5 -4 -3

PM -2 -3 -4 -5 -4 -3 -2

PB -1 -2 -3 -4 -3 -2 -1

5. The power system testing
In this paper, the two-area four-machine power
system (Fig. 2) is used to evaluate the
performance of the proposed stabilizer. It was
specifically designed in [1] to study low
frequency electromechanical oscillations in large
interconnected power systems. This system is
available in the Matlab Simpower [27] software
as a demo for studying the dynamic stability of a
small-size multi-machine system. It is different
from [1], because the load voltage improved by
installing 187 MVAr more capacitors in each area.
In here, the power system used for simulations is
although different from demo [27] in the model
of excitation system and turbine. The generators
have a rating of 20 kV/ 900 MVA  and connected
to the 230 kV transmission lines ( 220 km length)
through a transformer. The area 1 transfers about
400 MW real power to area 2 under normal
conditions. Dynamics equations of generators are
presented in [28] and [29]. The generators have
same stabilizer, speed governor, turbine,
excitation system and AVR. The structure of
power generation units and configuration of one
generator equipped is described in [1], [2] and
[29]. In Appendix described the parameters and
models of the generator components, transmission
lines and loads. The output of stabilizers is
limited to the 0.2 pu .

Fig. 2. Two-area four-machine test power system.
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6. Simulation and Results
The performance of the presented adaptive fuzzy
sliding mode power system stabilizer
(AFSMPSS-Proposed) is compared to the multi-
band power system stabilizer (MBPSS or IEEE
PSS4B) [2], fuzzy adaptive sliding mode power
system stabilizer with saturation function
(AFSMPSS-Sat), and the adaptive fuzzy sliding
mode power system stabilizer with PI control
term (AFSMPSS-PI) [23]. Model and parameters
of stabilizers expressed in Appendix. Power
system simulation and performance evaluation of
the controller is done under three types of
disturbances.

Case 1: A three-phase fault at the middle of the
upper tie line (bus-8) at 1s t , for 12 cycles or
200 ms that is cleared by disconnecting the
transmission line. The system continues to
operate with one power transmission line.
Case 2: 20 % pulse disturbance in the AVR
reference voltage of generator G1 for a period
of 200 ms .
Case 3: 20 % pulse disturbance in the
mechanical power of generator G1 for a period
of 200 ms .

Case1 as a large signal disturbance to study the
transient stability, and Case2 and Case3 as small
signal disturbances for evaluating robustness of
the designed PSS, are created. The speed
difference between G1 and G2 ( 2 1  ) as local
mode of oscillations and the speed difference
between G1 and G3 ( 3 1  ) as inter-area mode
of oscillations, are defined.

The Fig. 3, 4 and 5 present the simulation
results for Case 1. Fig. 3 shows the local and
inter-area modes of oscillations for multi-machine
power system with the proposed PSS
(AFSMPSS-Proposed), AFSMPSS-PI,
AFSMPSS-Sat and MBPSS (PSS4B). As seen in
Fig. 3 the proposed stabilizer has good
performance in damping of oscillations, and the
amplitude of inter-area mode of oscillation is
slightly reduced. Fig. 4a shows the rotor speed of
first generator (G1) by various stabilizers, and
Fig. 4b shows the rotor speed of all generators
with proposed PSS. Fig. 5 shows the variation of
transferred power between two areas, and the
field voltage of G1, for different types of PSSs.
The excitation system saturation as highly
nonlinear feature is seen in the field voltage.

Fig. 3. Power System response for Case 1: (a) local mode of
oscillations and (b) inter-area mode of oscillations.

The local and inter-area modes of oscillations
and the variation of transferred power between
two areas for Case 2 and 3 are drawn in Fig. 6 and
7. The performance efficacy of the proposed PSS
is clear. When a large signal disturbance occurs
(Case 1), excitation system reaches to saturation
limits quickly, and increasing the signal of
stabilizer does not have a significant impact on
the speed deviation domain. Stabilizing is done
after removing the disturbance and reducing the
excitation signal to under the saturation point. In
the small signal disturbance (Case 2, 3), the
output amplitude of the excitation system does
not reach to saturation limits and the stabilizer
signal is effective. The effect of changes in the
stabilizer signal amplitude proportional to
distance between the system estates and the
sliding surface, is seen in reducing the speed
deviation domain (Fig. 6, 7).
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Fig. 4. Rotor speed for Case 1: (a) speed of the
first Generator (G1) for different types of PSSs
and (b) rotor speed of all generators with
proposed PSS

Fig. 5. Comparative results for different types of PSSs (a)
power transfer from area 1 to area 2 and (b) field voltage of
G1
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Fig. 6. Power System response for Case 2: (a) local mode of
oscillations and (b) inter-area mode of oscillations and (c)
power transfer from area 1 to area 2

The performance index is defined in order to
evaluate the performance of the controllers. This

index is calculated by the following equation
during the simulations:

1

1

0

 





 
t t

p i

t

J t  (64)

The performance index comparison for
different PSSs is shown in Table 2. It is clear that
the less value of this index, the better is the
stabilizer performance. Simulations period is 10
seconds ( 1 10 s t ). Thus, the proposed indirect
adaptive fuzzy sliding mode power system
stabilizer has improved the system performance.

Table 2. The performance index comparison for different PSSs

AFSMPSS
Proposed

AFSMPSS
PI

AFSMPSS
Sat

MBPSS
(PSS4B)

Case1
 2 1pJ 0.0007897 0.0006716 0.0006648 0.001176

 3 1pJ 0.002783 0.003041 0.003012 0.006966

Case2
 2 1pJ 0.0007139 0.001052 0.001053 0.001041

 3 1pJ 0.0006947 0.001011 0.00101 0.001315

Case3
 2 1pJ 0.00004931 0.00004717 0.00005464 0.0001182

 3 1pJ 0.0000935 0.00008941 0.00009916 0.0002889

7. Conclusion
In this paper, an indirect adaptive fuzzy sliding
mode power system stabilizer based on new
sliding mode control law, is presented for
damping of low frequency oscillations of multi-
machine power systems. By changing the sliding
condition of sliding mode controller, a new
control law is obtained, so that the undesirable
chattering is removed and the amplitude of error
and stabilization time is reduced. Fuzzy systems,
as universal approximations, have made it
possible to approximate a highly nonlinear model
of the power system without any knowledge of it.
In scheme of this controller, the fuzzy systems are
used to approximate the unknown functions of
power system model. The adaptation laws are
obtained so that global power system stability is
guaranteed. The proposed stabilizer is able to
consider all nonlinear features of the power
system such as hard limits in the excitation
system. Evaluating of the proposed stabilizer is
done by

means of a two-area four-machine power system.
Simulation results show the improvement in
power system stability and robustness of the
proposed PSS under different disturbances.



SIAHI AND SOGHRATI: AN INDIRECT ADAPTIVE FUZZY SLIDING MODE CONTROLLER FOR…

41

Fig. 7. Power System response for Case 3: (a) local mode of
oscillations and (b) inter-area mode of oscillations and (c)
power transfer from area 1 to area 2

Appendix
1. The parameters of Synchronous generators (per
unit on 20 kV/ 900 MVA  base) are [1]:

1.8dX , 1.7qX , 0.3dX ' , 0.55qX ' ,

0.25dX '' , 0.25qX '' , 0.2lX , 0.0025aR

, 8doT '  s , 0.4qoT '  s , 6.5H (for G1 and

G2) , 6.175H (for G3 and G4)

2. The Generating units are loaded as follow:
G1: 1 700  MWP , 1 91.887  MVArQ , 1tE

G2: 2 700  MWP , 2 117.67  MVArQ , 1tE

G3: 3 719  MWP , 3 82.281  MVArQ , 1tE

G4: 4 700  MWP , 4 82.738  MVArQ , 1tE

3. Loads and shunt capacitors parameters:
BUS 7 : 967  MWLP , 100  MVArLQ ,

387  MVArcQ

BUS 9 : 1767  MWLP , 100  MVArLQ ,
537  MVArcQ

4. The transformers have an impedance of
0 15  Z j per unit on 20 / 230 kV and

900 MVA base and transmission line parameters
in base voltage 230  kVbV and base power

100  MVAbS are [1]:

0.0001  pu/ kmr , 62.653   pu/ kmL e ,
64.642   pu/ kmC e

5. The simplified model of turbine and speed
governor [1] shown in Fig. 8 and:

0.05R , 0.2  sGT , 0.3HPF , 7  sRHT ,
0.3  sCHT

Fig. 8. Turbine and speed governor model [1]

6. The block diagram of thyristor excitation
system model and transducer [2] is shown in Fig.
9 and:

210ak , 0aT , 0.038ck , max 6.43RV ,

min 6 RV , 0.01 RT

Fig. 9. Thyristor excitation system and transducer [2]

7. Gaussian membership function for fuzzy
systems is defined as [25]:

 

2

 
 
 
 
 

i
i j

i
j

x m

i
j ix e

 (65)

where the im
j

is center of the thj membership

function of the thi input, and

 10.6   i i
j j

i m m
j

 is the constant expansion of

membership [25].

8. Model and parameters of stabilizers:
The common term of adaptive fuzzy sliding mode
control law is as (35), and adaptation laws is as
(48) and (49). In the classical adaptive fuzzy
sliding mode controller with saturation function,

   sat su K s  , and K is defined in (16) and:
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 
1 if

sat if

1 if

    
    
   

s
s s s

s


  


(66)

The adaptive fuzzy sliding mode controller with
PI controller, described in [21] and [23], and the
main difference
is:

   , ,            
T

T
s p p i p iu s k k s sdt k s k sdt  .

The parameters values of designed PSS
(AFSMPSS-Proposed), AFSMPSS-Sat and
AFSMPSS-PI in the simulations expressed in the
Table 3.
The estimation error of  f x is defined

proportional to its approximation. In other words,

   ˆF F   fx f x  . The sample time of sliding

mode controllers in simulations is 0.001 s.

Fig. 10 shows the conceptual model of multi-band
stabilizer (IEEE PSS4B). The structure of
MBPSS is described in [2]. IEEE PSS4B
parameters defined in Matlab Simpower demo
[27] are used to simulation. The parameters
values in the simulations are:

0.2  LF Hz , 30LK , 1.25 IF Hz , 40IK ,
12 HF Hz , 160HK , max 0.075LV ,

min 0.075 LV , max 0.15IV , min 0.15 IV ,

max 0.15HV , min 0.15 HV , max 0.15SV ,

min 0.15 SV

Fig. 10. Conceptual model of multi-band stabilizer (IEEE
PSS4B) [2]

Table 3. The parameters values of PSS’s
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