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Abstract

Central nervous system (CNS) uses an abundant set
of joints and muscles to ensure both flexible and
stable = movements  while interacting the
environment. How the CNS faces the complexity of
control problem and solves the question of
physiological and mechanical abundances is not still
clear. Modular control is one of the most prevalent
hypotheses in answer to these questions. According
to this point of view, CNS combines a few building
blocks, here this will be muscle activities, named as
muscle synergies, to present a vast repertoires of
movements. In this study the algorithm of sample-
based nonnegative matrix tri-factorization (NM3F)
is used to extract spatial and temporal muscle
synergy modules from muscle EMG data for three
different types of point to point reaching (simple
straight, reversal and via-point) movement in the
frontal and sagittal planes. After extracting different
features of the muscle synergies, physiological
interpretation of these decomposed parts has been
discussed. The first temporal module coded the
direction and type of movement, while the spatial
modules describe some via postures. Also the
extracted modules are not similar for subjects. The
recruitment of the spatial and temporal modules are
correlated due to the movement direction.

Keywords: modular control structure; temporal
module; spatial module; muscle synergy; human
motor control; EMG decomposition.

I. Introduction

It has been estimated that the human body has
between 500 and 1400 degrees of freedom! Yet, he
can generate an infinite variety of very precise,
complicated and goal-directed movements in
continuously changing and uncertain
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environments. Understanding how this is achieved
is of great interest to both biologists and engineers
[1]. Different researchers in the field of motor
control have studied the subject with various
approaches, e.g., applying standard feedback
control theory based on continuous tracking of
desired movement [2], or wusing weighted
combination of  pre-configured  movement
primitives or muscle synergies to generate the
desired movement [1]. Therefore, a complex task is
performed by combining synergy blocks with
appropriate amplitudes and offsets. In fact, the idea
of muscle synergies reduces dramatically the
dimension of the parameter space and thereby,
simplifies movement control of musclo-skeletal
dynamics.

On the other hand, gathering large sets of data
during natural movements is  becoming
increasingly easier, thus allowing us to characterize
coordination across many variables at different
levels of the motor system. However, interpreting
such large data sets and analyzing them to test
motor control hypotheses remains a challenge [3].
Component decompositions allow us to decompose
large data set of EMG data and other variables into
components that can interpret and depict the
upstream organization of the neural control
systems, and their functional biomechanical
outputs downstream [3]. Decomposition techniques
can help the researchers to find the relationship
between the derived components and the original
data and draw conclusions about the underlying
neural mechanisms. It should be noticed that the
extracted components must be interpreted in terms

of the known underlying physiological
mechanisms and biomechanical outputs [3].
Decomposition can also be useful for

understanding the function of the underlying
components. In this field, non-negative matrix
factorization (NMF) methods are especially useful
for examining neural and muscle activity signals
that are inherently non-negative [1], [4]. One of the
attractive features of components resulted from
applying NMF methods is that they generate a
parts-based type of representation that appears
similar to both neurophysiological observations as
well as to the predictions from “sparse-coding”
algorithms in sensory systems [5].

Different algorithms implemented to decompose
EMG data, among them we restrict ourselves to
study and use the non-negative matrix factorization
based decompositions. In fact, these methods result
in components that are physiologically more
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relevant to EMG signals; because, non-negative
signals reflect more concretely the “pull only” [5]
behavior of muscles (i.e. muscles cannot be
activated “negatively”). Other dimensionality
reduction algorithms have been discussed with
more details in [4].

It has been approved that the CNS uses a
modular structure for human motion control. Thus
the modules extracted from the EMG data could be
recruited instead of controlling all muscle
activities. In this way the abundances in the muscle
activity space, could be simpler by recruitment of
muscle synergies.

By applying NMF algorithm on the EMG data,
it can be decomposed in spatial, temporal, spatio-
temporal or hybrid (space by time [6]) manners
using NMF algorithm. In this study, the method of
space by time decomposition of EMG matrix [6] is
used to extract the unified spatial and temporal
modules. This decomposition method, in addition
to reduction of degrees of freedom (DOF), requires
less amount of memory for saving information of
module compared to other methods mentioned
above [7].

Space by time decomposition has already been
used to extract synergy modules for simple
reaching point-to-point in horizontal plane, and it
has resulted in significant findings [6]. The main
objective of this study is to apply this method to
extract the unified spatial and temporal modules
for compound tasks in vertical planes. The
importance of this study lies in the fact that we will
be able to evaluate also the effect of gravitational
component of the arm movement. It should be
noticed that moving in the horizontal plane with air
sled, the arm does not endure its weight through
the movement and more joint angles cooperate in
the motion. The tasks we will investigate include
simple reaching point-to-point, reversal and via
point movements in the sagittal and frontal planes
[8]. Unified muscle synergies will be extracted and
analyzed from the EMG signal, for simple to more
complex movements in two vertical planes. In this
way, we will study encoding of the motion
information in the extracted modules and their
recruitments. The sequence of reaching point to
point movement task execution could be analyzed
through evaluating unified modules and their
recruitment in compound task. These tasks could
be reversal (start from a location then go to the
center and back to the start point) or via-point (go
from start location to the target location via center
point). Thus, by scrutiny of the unified spatial and

temporal modules in eight specified directions in
the vertical planes, and their assessment in
different types of simple and complex movements,
a physiological interpretation of motion control and
the decomposed parts of the EMG signal will be
presented.

I1. MATERIALS AND METHODS

A. Experimental data set

The data has been obtained from the research group
at the Santa Lucia Foundation. Two right handed
subjects took part in the test. The experimental
apparatus and reaching task has been described in
details in [8]. Briefly, two standing subjects gripped
a 180 gr handle connected to a sphere. The center
of sphere was aligned with the axis of the forearm
at a distance of 12 cm from center of the palm.
Participants were instructed to move the sphere
between a central position and eight peripheral
targets points located on a circle at 15 cm of
distance in vertical planes (Sagittal and Frontal)
while minimizing shoulder and wrist movements.
In each trial, subjects were instructed to reach the
target point with a movement of a duration shorter
than 400 msec, and to hold there for at least 1
second. Unsuccessful trials were repeated. Each
subject performed each movement successfully five
times, the target points are 8 with 2 directions that
are done in 2 planes. The subject would do the test
for a total number of 160 point-to-point movements
(2 planes x 8 targets x 2 directions x 5 repetitions).
As the subject moves his arm in different types of
reaching point to point movements, the marker’s
position attached to his shoulder, elbow and wrist
were recorded using an optic motion- tracking
system (Optotrack 3020, Nothern Digital,
Waterloo, Ontario, Canada) with a sampling
frequency of 120 Hz and spatial resolution below
0.1 mm. 17 to 19 active bipolar surface electrodes
(DE 2.1; Delsys, Boston,MA) recorded the EMG
activity [8].

B. Arm model

Kinematic and kinetic model of the arm,
incorporating geometrical and inertial parameters of
the upper arm and forearm segments, was used to
estimate shoulder and elbow joint angles from the
recorded spatial position of the shoulder, the elbow,
and the wrist markers. The kinematic model was
developed using the Denavit-Hartenberg (D-H) [9]
notation for shoulder joint with 3 degrees of
freedom (Abduction/Adduction angle,
Flexion/Extension angle and External/Internal
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Rotation angle) and elbow joint with one degree of
freedom (Flexion/Extension angle). The D-H
parameters of human with 3 DoF shoulder and 1
DoF elbow are as follows. Where Lu shows upper
arm link length and Lr shows the forearm link
length.

The length of every segments of the body could
be calculated as a function of subject’s weight and
height [10]. Also inertial parameters of these
segments for the kinetic model could be calculated
as a function of subject’s weight and height
according to regression equations [11].

Tablel: D-H parameters for 4 DoF arm model

Link Joint angle a a0 di Offset
1 Sh. Adduction w2 0 0 O -m/2
2 Sh. Flexion w2 0 0 0 /2
3 Sh. Ext. Rotation @2 0 0 Ly T
4 El flexion 0 Lg 0 O /2

Table2:Geometrical and inertial parameters for subject’s arm
model

Subject 1 2
Height (cm) 162 181
Weight (Kg) 58 78

Ly (cm) 3013 33.67

Lr (cm) 40.82 45.61

ra (cm) 12.16 13.78

r (cm) 23.57 26.39

My (kg) 1.56 2.11

M (kg) 1.52 1.90

I(lo)y (kg cm? s72) 28.54 42.61
I(ap)y (kg cm? s72) 74.02 130.03
I(tr)y (kg cm? s72) 84.74 144.65
I(lo)r (kg cm? s72) 12.93 19.56
I(ap)r (kg cm? s72) 295.87 44574
1(tr)r (kg cm? s°2) 302.27 455.45

Human Arm

05

05

o o5

08 05
¥ in meters

Hin meters

Fig. 1. Human arm model using subject’s geometrical and
inertial parameters.

Where index U and F represent upper arm and
the forearm, respectively. R is the position of the
link’s center-of-mass along the link and I is the
inertia along lo (longitudinal), ap (antero-posterior)
and tr (transversal) axis of the link, respectively. It
should be noticed that the mass of the forearm,
hand, and handle was assigned to the 4th link,
associated with the elbow flexion.

Using these parameters and Robotic toolbox, the
four degrees of freedom arm containing three
angles on shoulder joint and one angle on the
elbow joint can be represented as Fig. 1.

C. Working hypotheses and terminology

An important aspect of this work is the assumption
of concurrent existence of both temporal and
spatial modularity. The temporal and spatial
modularity is defined as follows. Temporal
modules are some scalar functions of time, they
represented temporal pattern of muscles activity.
The decomposition approach in this algorithm is
based on NMF, and is called as motor primitives,
pre-motor drives/bursts or temporally fixed muscle
synergies in other researches [12-15]. Spatial
modules are some vectors that whose number of
elements are the same as the number of EMG
channels. These vectors describe the ratio of each
muscle activation. This corresponds to time-
invariant, synchronous, spatially fixed muscle
synergies or muscle modes [16-18].

Two specific properties of modular control
structure are 1) low dimensionality, and 2)
hierarchical organization, to simplify control and
learning in the human arm motion control. So, it is
required to compare any decomposition algorithm
for EMG data, considering these two facts [7].

The muscle activity matrix is decomposed as a
linear combination of one-dimensional temporal
modules, which are time-varying (Fig. 2A). This
model considers a primitive as a temporal pattern
that will affect selectively different muscles. The
temporal decomposition has been used in [20].

In spatial decomposition a muscle activation
matrix is decomposed during one sample, as a
linear combination of a set of time-invariant
weighted muscle activity across all muscles (spatial
modules) that are multiplied by a time-varying
activation coefficient (Fig. 2C). This model has
been used in [17].

Another type of EMG matrix decomposition is
time-varying synergies [8] [21-24], referred to as
spatiotemporal decomposition and illustrated in
Fig. 2B. It has one amplitude and one time

21



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.13,NO.1, SPRING 2013

coefficient as two free parameters for each
synergy.

Later, a Hierarchical Alternating Least Squares
(HALS) method used for NMF model which
provides a very good convergence property and
therefore results in to achieve both better accuracy
and repeatability [25].

A Temporal modularity B spatiotemporal modularity
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Fig. 2. Different algorithms used to extract modules from
muscle activity matrix. A: temporal decomposition. B: spatial
decomposition. C: spatiotemporal decomposition. D:

concurrent spatial and temporal decomposition.

In this work, another model is used (referred to
as space-by-time decomposition [7] [26],
illustrated in Fig. 2D) to extract separately but
concurrently spatial and temporal modules from
muscle activity data matrix. The decomposition
can be viewed as a generalization and unification
of existing models and expresses any muscle
pattern m*(t)eRTM as the following double sum (T
and M being the number of time frames and
muscles, respectively):

B
T - v ehas vy« reatdual
2 EE e e restdsel (1)

Where wi(t) € RT*! and wj(t) € R"M are the
temporal and spatial modules respectively, and aj®
€ R is a scalar activation coefficient.

Where P and N are the number of temporal and
spatial modules respectively. To extract these
concurrent spatial and temporal modules in
practice, a specific algorithm is developed that
seeks an approximate low-dimensional
representation for all the input matrices called
sample-based nonnegative matrix tri-factorization
(sNM3F). This algorithm takes the parameters P
and N as input and is designed (like the three
previous ones) to iteratively minimize the total

reconstruction error expressed as follows, where
the Frobenius norm is calculated:

anz i = ggwmsﬁwg )

In this way by using sNM3F algorithm the
temporal and spatial modules could be extracted
concurrently from rectified EMG data. While in
some works the EMG matrix decomposition had
been applied on the phasic part of muscle activity,
by decreasing the tonic part from the rectified
EMG signal [8][17][21-24]. The most important
variant attempts to capture variability in time,
which may be inherent to the CNS’s modular
control strategy, or which may simply be caused by
the time-normalization procedure of the data or by
any intrinsic fluctuation (e.g., sensorimotor noise).

I1. Criteria to evaluate modular decompositions

A. Avoiding local minima

Although as the number of temporal and spatial
modules increase, the reconstruction error
decreases, but the degree of freedom for motion
control will increase. So achieving the optimized
number of modules, in that the number of DOF is
low enough while the error rate of reconstruction is
as low as possible, would be very important. For
this purpose it is necessary to increase the number
of temporal and spatial modules from 1 to 9, and
calculate the reconstruction error through the
number of modules. To avoid labelling local
minima as the global minimum when
reconstructing the EMG signal, it is necessary to
specify the number of modules, the algorithm of
finding temporal and spatial modules according to
the amount of the initial conditions should be
repeated several times. Thus, the amount of
reconstruction error minima in the 50 times
repetition, is the global minima of the
reconstruction error through the number of
temporal and spatial modules.

B. Variance accounted for (VAF)

The VAF which is a metric typically used in
studies investigating modularity in muscle
activations, 1S defined as the residual
reconstruction error normalized by the total
variance of the dataset. The VAF shows similarity
between the original EMG patterns and the
reconstructed data using a limited number of
temporal and spatial modules and can be used to
validate or falsify the decomposition.
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C. Selection of the number of modules

It should be considered that the inclusion of an
additional module must lead to reliably some task-
related EMG variations not described by other
already included modules. When applied to spatial
or spatiotemporal decompositions, this formalism
was shown to be able to select reliably and robustly
the smallest set of modules that describe all task-
related information in the EMG data [6] [26].

Extension of the method for the space-by-time
decomposition is as follows. After evaluating
decoding performance with (N, P) = (1,1), it is
considered adding either a spatial or a temporal
dimension. i.e., increasing either N or P by one.
The selected dimension increases the most the
decoding performance. Accordingly, the number of
modules is increased step by step, until the increase
of modules does not gain any further statistically
significant increase of decoding performance. This
procedure ensures the detection of modules that
explain only the “task- relevant” variability and the
exclusion of other sources of noise that produce
“task-irrelevant” variability.

IV. Results And Discussion

A.Number of modules

The VAF changes through different number of
spatial and temporal modules is shown in Fig. 3 It
can be seen that increase in the number of modules
can affect the reconstruction error and VAF in a
restricted manner. To maximize the VAF and at the
same time minimize required memory capacity,
three temporal and four spatial modules are chosen.
The number of synergies is selected considering
for further analysis as a compromise between
model parsimony and accuracy [27].

WAF through spatial and temporal modules

2 4
Mumber of Temporal modules 0 0 2 Mumber of Spatial modules

Fig. 3. VAF through different number of spatial and temporal
modules.

B. Similarity in the same number of modules

To compare different spatial modules extracted
with the same number, the modules should be
extracted through different number of temporal
modules. Therefore N=1,2,...,9 different spatial
modules correlations that are extracted with

M=1,2,...,9 temporal modules in nine different
decomposition, could be represented in a 9%x9
matrix. The i" row of this matrix shows the
correlation of N spatial modules that are extracted
with i temporal modules, compared with N spatial
modules that are extracted with j;=1,2,...,9
temporal modules. Each N spatial modules would
create an NxN matrix of correlation that the
average of its elements is determined as the
similarity between these two sets of N spatial
modules. Fig. 4 shows the similarity between
spatial modules (N is the number of spatial
modules), while the number of temporal modules
changes.

As shown in Fig. 4(left top) if only one spatial
module is extracted, this spatial module does not
change when the number of temporal modules
changes. That is when there is one spatial module
and change the number of temporal modules from
1 to 9, the extracted spatial module in any of nine
decompositions are similar to each other. The
average value of similarity in these nine
decompositions, that is more than 75%, is shown in
the bar plot (Fig. 4 down).

Thus when number of spatial module
considered constant, by changing the number of
temporal modules, there would be no significant
change in the spatial modules. This arises because
what is varying in each movement is encoded in
temporal modules and the related coefficients. So
the temporal modules and related coefficients
would change through different motions, and this
variation is independent of the number of temporal
modules. Due to this fact it can be concluded that
the spatial information of the EMG signal is
encoded as spatial modules that are independent
from the number of temporal modules.
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Fig. 4. Spatial modules correlation through different number
of temporal modules.
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Like what explained for spatial modules
similarity, the correlation between the same
numbers of temporal module extracted with
different number of spatial modules could be
calculated. Thus 9 matrix of correlation and the
average value of the correlation could be shown in
Fig. 5.

Considering the number of temporal modules
fixed, the spatial modules and related coefficients
would change through different motions, and this
variation is independent of the number of spatial
modules. Due to this fact it can be concluded that
the temporal information of the EMG signal is
encoded as temporal modules that are independent
from the number of spatial modules.
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Fig. 5. Temporal modules correlation through different
number of temporal modules

C. Spatial modules in different types of motion
Three extracted spatial modules for different types
of subject2's motions are nearly similar to each
other. Table. 1 has represented comparison of these
three spatial modules in straight simple movement,
reversal movement and via-point movement. The
average value of the correlation between these
extracted spatial modules in different types of
motions for subject2, is 0.9823.

Table3: similarity comparison in extracted spatial
modules for subject2

Simple Simple via-point
straight vs.  straight vs. Vs.
reversal via-point reversal
1* Module (W1) 0.9728 0.9866 0.9931
2" Module(W2) 0.9529 0.9911 0.9760
37 Module (W3) 0.9780 0.9962 0.9941
4" Module (W4) 0.9732 0.9862 0.9891

On the other hand, it seems that the extracted
spatial modules are different for different subjects.

As what some other researchers have suggested,
the number and pattern of muscle synergies
configured in an adaptive process. The morphology
and experience of each individual may interact in
unexpected ways over time [28], resulting in a
unique set of muscle synergy patterns. More
subtly, these adaptive processes themselves may
vary depending on context [29][30].

Thus each spatial module could be considered
as a specific configuration in joint space that relies
to a distinctive state of subject’s upper extremity.
Therefore if the decomposition of the EMG data
has i number of spatial modules, then there would
be i distinctive postures in the subject’s upper
extremity, which could be used as i stable points in
the work space of human arm. The temporal
modules and their related coefficients could form
the transition between these postures in
movements. To acquire these distinctive stable
points it is required to calculate the related joint
angles due to the muscle activation in each spatial
module through neural network identifier (NNI).
Thus a Neural network with one hidden layer, 17
input elements (as the number of EMG channels
from 17 different muscle in upper extremity), and 4
output elements (as the number of joint angles:
three angles (3DoF) for shoulder joint:
adduction/abduction angle, flexion/extension angle
and external/internal rotation angle, and one angle
(1DoF) of flexion/extension in elbow joint) has
been used.

A: Posturel B: Posture2

92

T X

D: Posture4

¢

C: Posture3

.

P

Fig. 6. Postures related to 4 extracted spatial modules of
subjectl.
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The network would be trained with 70% of the
data measured from simple movements of each
subject. Remaining 20% and 10% of the data used
for testing and evaluating the neural network,
respectively. In the progress of training, the Epoch
number is 676, was feed to the network randomly.
Scaled conjugate gradient algorithm was used for
training. Training automatically stops when
generalization stops improving, as indicated by an
increase in the mean square error of the validation
samples.

By using a nonlinear function of neural network
that projects the 17-19 muscle activity to the
shoulder and elbow angles, the appropriate posture
of the specified spatial modules could be extracted.
Thus, the arm model can be used to show different
postures related to the different spatial modules. In
Fig. 6 and Fig. 7, the postures corresponded to 4
extracted spatial modules of subject] and subject2
are shown respectively. As shown in these figures,
the spatial modules of different subject are not the
same. This would strengthen the idea that the
muscle synergies are subject dependent.

A: Posturel B: Posture2

A

& 358
.C: Posture3

I PP

D: Posture4

Fig. 7. Postures related to 4 extracted spatial modules of
subject2.

D. Temporal modules in simple straight motion

By extracting the spatial and temporal modules
from EMG matrix decomposition in any simple
straight point to point reaching movements in
sagittal or frontal planes, the motion information
such as direction or start or stop positions would be
encoded in the coefficients of the specified

modules. Thus the coefficients for the recruitment
of the modules vary through the task information.
Fig. 8 shows three temporal modules extracted in
simple straight point to point reaching movements
in sagittal and frontal planes for both subjects.

As shown in Fig. 8 extracted temporal modules
for simple straight motions are almost the same for
both subjects. The first temporal module in both
subjects have a positive bias at the beginning and
end of the motion, with one minimum followed by
one maximum through these biases. In two
remaining temporal modules, the initial value is
approximately zero. Also they have two peaks in
their active region. The second temporal module
has a zero value between its two peaks, but in the
third one there is no zero value between its two
peaks.

E. Sequence of point to point movements in
complicated motions

Subject2 performed, in addition to the basic set
of point-to-point movements, reaching movements
from one start location (either central or peripheral)
to a target location and back to the same start
location in a continuous movement (reversal) and
from a peripheral start location to a different
peripheral target location through the central
location (via-point).

The tangential velocity profiles for reversal and
via-point movements had two distinct peaks (Fig.
9). The movement duration was approximately two
times the duration of point to point movements,
and the maximum tangential velocity of both peaks
was close to the maximum of the tangential
velocity of point-to-point movements. The
averaged, phasic muscle activation waveforms for
reversal and via-point movements generally
showed a complex sequence of peaks and valleys
that, by a first qualitative analysis, resembled the
superposition of the waveforms of the muscle
patterns of the corresponding point to point
movements, each shifted in time to align the
tangential velocity peaks. However, many of the
muscle activation waveforms were modulated in
amplitude and timing with respect to the point-to-
point waveforms, and these changes were different
across muscles.

A fast single-joint arm movement is
characterized by a similar tri-phasic muscle pattern
of sequential bursts of activity (for a review see
[31]). The first agonist muscle bursts initiates the
motion, the antagonist burst decelerates the
movement toward the intended end position, and
finally the second agonist burst stabilizes the limb
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after movement
oscillations.

As shown in Fig. 9 the tangential velocity in
reversal movements, reaches to zero near the center
point. That is because of the direction change in
motion. At the first stage the movement is out-
center and after reaching to the center point, the
direction of movement changes and in the second
stage, the movement is center-out. During reaching
center point, the tangential velocity becomes zero.
It can be concluded that the reversal movements
are sequence of two point to point reaching
movements with zero velocity in start and stop
points. According to [32], each point to point
reaching movement is characterized by a similar
tri-phasic muscle pattern of sequential bursts. The
reversal motions consist of two fast point to point
reaching movement, in each stage there are three
sequential burst of acceleration, deceleration and
stabilization [33]. In reversal motions during

termination by dampening

reaching the center point, the stabilization
sequence takes place.
A B

Fig. 8. Three Temporal modules extracted for simple straight

point to point reaching movements A) for subjectl. B) for
subject2.

E] ) = E - w0

In via-point motions, the tangential velocity
during reaching the center point closes to zero as
the target point closes to the start point. As shown
in Fig. 6 the tangential velocity at the center for via
point motions from position2 to positionl or
position3 are closer to zero than the tangential
velocity at center in via point motions from
position2 to position4 or position8. As the target
position in via point movements goes far from the
start position, the tangential velocity at the center
point moves away from zero. It seems that as the
target position goes far from the start position, two
stages of point to point reaching movement merge
more to each other. Referring to [34], each point to
point reaching movement is characterized by a
similar tri-phasic muscle pattern of sequential
bursts. The via-point motions consist of two fast
point to point reaching movement, in each stage
there are three sequential burst of acceleration,

deceleration and stabilization [35]. During reaching
the center point as the target position goes far from
the start position, the deceleration and stabilization
sequence of the first stage merge more to the
acceleration of the second stage. That is why the
tangential velocity at the center goes away from
zero. As mentioned in [36] [37] the merging of
stages in complicated motions is to some extent
subjective. But if the subject knows the target
position, he could merge these two stages while
crossing the center point.

F. Temporal modules in complicated motion

To compare temporal modules in simple and
complicated motions, it is required to extract
temporal modules of reversal and via-point
motions in two vertical planes. As shown in Fig. 8
the second and third temporal modules in reversal
and via-point motions has the same features as the
features in the second and third temporal modules
in simple motions (Fig. 10). They have two peaks
in the active region of first module.

The first temporal module shows the type of
motion. In simple straight point to point reaching
movements, the first temporal module have a
positive bias at the beginning and end of the
motion, with one minimum followed by one
maximum through these biases. As mentioned
above the reversal and via-point motions could be
represented as the combination of two simple
straight motions. This could be represented in the
first temporal module pattern. For example in via-
point motion there exist one out-center motion
followed by one center-out motion.

up

lateral medial

_.:’II \i \:\L
down
N
Fig. 9. Trajectories and tangential velocity profiles of the
endpoint for five repetitions of reversal movements from
point2 to center an back to point2 (black line) and via-point
starting from point 2 to points 1, 3, 4, 5, 7 and 8 via center

point (gray line). All movements are in the frontal plane.

As shown in Fig. 10 the first temporal module
could be considered as the first module in simple
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straight motion repeated two times after each other.
In reversal motion it seems that the pattern of first
temporal module is as the first temporal module
followed by its inverse. In the first stage of motion
the pattern has a minimum followed by a
maximum, and in the second stage the pattern has a
maximum followed by a minimum. According to
the above discussion and [35] [38] [39], the
complicated motions are combination of simple
tasks. That the type of task is represented in the
first temporal modules of the complicated motion.

A B

] 0 EE % ) ] 150 3 = W

Fig. 10. Three temporal modules extracted for subject2 in
A) reversal movements. B) via-point movements.

G. Coefficients Correlation analysis

Due to extracting three temporal and four spatial
modules for the human arm reaching point to point
motions, the coefficient matrix has 12 elements in
three rows and four columns. By averaging the
coefficient matrix for five trials in each motion, the
correlation of the coefficient matrix for different
motions could be calculated. As we have 8§
peripheral target points in each plane, assuming
center-out and out-center motion, we would have
16 different simple motions in each plane for each
subject.

Coathciert comelation in frontsl cortar-out
1
1
2 8
3
] 16
s 14
3
7 b2
6
L,
2 4 & B

Fig. 11 Coefﬁment correlation for 51mple stralght motions of
subjectl, left column for center-out and right column for out-
center motions. Above row in frontal and bellow row for
sagittal plane

As shown in Fig. 11 each motion has its own
coefficient matrix due to its direction. But in some
motions (like 0-to-2 and 0-to-3 motions or 5-to-0

and 6-to-0 in frontal plane, and also 0-to-5 and 0-
to-6 motions or 0-to-4 and 0-to-5 motions in
sagittal plane), the coefficient correlation is high.
This means the recruitment of spatial and temporal
modules in these motions are to some extent the
same Wlth hlgh correlatlon

velation in fiontal seversal mo Coufici sagttal reversal motio

) 11
2 108
3
1 0
35 5 04
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Fig. 12. Coefficient correlation for reversal motions of

TR R

subject2, left in frontal and right in sagittal plane.

The coefficient correlation for the reversal
motion of subject2 is shown in Fig. 12. As seen,
the recruitment of spatial and temporal modules in
the reversal motions (1-0-1 and 2-0-2) and (6-0-6
and 7-0-7) in the frontal plane, and the reversal
motions (1-0-1 and 2-0-2) and (4-0-4 and 5-0-5) in
the sagittal plane, are highly correlated.

It could be concluded from these similarities,
that the recruitment of spatial and temporal
modules is due to the motion direction or the
distance of target points from each other in
different motions.

V. conclusion

Decomposition of matrix data can be useful for
understanding the function of the underlying
components. In this study, we used sNM3F
algorithm to extract unified spatial and temporal
modules from recorded muscle activities. NMF-
based decompositions are physiologically more
relevant to EMG signals, since non-negative
signals reflect well the “pull only” behavior of
muscles [5].

Thus, the sNM3F algorithm seeks an
appropriate low dimensional representation for
input matrix of EMG data from simple and
compound types of point-to-point reaching
motions. The evaluated motions are simple
straight, reversal, and via-point movements of
human hand in sagittal and frontal planes, with
motion in each plane leading into a four DOF
movement (one DOF in the elbow and three DOF
in the shoulder joint). Since the movements were
performed in the vertical planes, effects of the
gravitational component of arm movement are
included in the results.
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The extracted spatial modules are different for
different subjects. According to [28], the number
and pattern of muscle synergies are configured in
an adaptive process. The morphology and
experience of each individual may interact in
unexpected ways over time [28], resulting in a
unique set of muscle synergy patterns and yielding
to distinct postures. To acquire these distinctive
stable points it is required to calculate the related
joint angles due to the muscle activation in each
spatial module through neural network identifier
(NNI). Our results show that extracted postures
that are related to the spatial modules are also
subject-dependent.

Three temporal and four spatial modules are
extracted to minimize the reconstruction error and
at the same time to reduce the DOF. The spatial
information of the EMG signal is encoded in
spatial modules, which are independent from the
number of temporal modules. Moreover, each one
of spatial modules can be considered as a specific
configuration in joint space that corresponds to a
distinctive posture of subject’s upper extremity.

According to [35], [38], and [39], complex
motions are combinations of simple tri-phasic
tasks. The type of the task is represented in the first
temporal module of the complex motion. As
mentioned in [36]-[37], merging of stages in
complex motions is to some extent subjective.

It could be concluded from coefficient similarity
analysis that the recruitment of spatial and
temporal modules is due to the motion direction or
the distance of target points from each other in
different motions.

Our results for activation or inactivation of
muscles in the spatial modules were matched to our
previous expectations due to physiological
knowledge. Extracted modules are applicable for
clinical evaluation and rehabilitation of movements
[40].

All our conclusions are based on the data
collected from two subjects, who performed 320
trials in total. To be able to generalize these results,
certainly we do need to record data from more
subjects.
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