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Abstract 
Central nervous system (CNS) uses an abundant set 
of joints and muscles to ensure both flexible and 
stable movements while interacting the 
environment. How the CNS faces the complexity of 
control problem and solves the question of 
physiological and mechanical abundances is not still 
clear. Modular control is one of the most prevalent 
hypotheses in answer to these questions. According 
to this point of view, CNS combines a few building 
blocks, here this will be muscle activities, named as 
muscle synergies, to present a vast repertoires of 
movements. In this study the algorithm of sample-
based nonnegative matrix tri-factorization (NM3F) 
is used to extract spatial and temporal muscle 
synergy modules from muscle EMG data for three 
different types of point to point reaching (simple 
straight, reversal and via-point) movement in the 
frontal and sagittal planes. After extracting different 
features of the muscle synergies, physiological 
interpretation of these decomposed parts has been 
discussed. The first temporal module coded the 
direction and type of movement, while the spatial 
modules describe some via postures. Also the 
extracted modules are not similar for subjects. The 
recruitment of the spatial and temporal modules are 
correlated due to the movement direction. 
 
Keywords: modular control structure; temporal 
module; spatial module; muscle synergy; human 
motor control; EMG decomposition. 
 
I.  Introduction 
It has been estimated that the human body has 
between 500 and 1400 degrees of freedom! Yet, he 
can generate an infinite variety of very precise, 
complicated and goal-directed movements in 
continuously changing and uncertain 
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environments. Understanding how this is achieved 
is of great interest to both biologists and engineers 
[1]. Different researchers in the field of motor 
control have studied the subject with various 
approaches, e.g., applying standard feedback 
control theory based on continuous tracking of 
desired movement [2], or using weighted 
combination of pre-configured movement 
primitives or muscle synergies to generate the 
desired movement [1]. Therefore, a complex task is 
performed by combining synergy blocks with 
appropriate amplitudes and offsets. In fact, the idea 
of muscle synergies reduces dramatically the 
dimension of the parameter space and thereby, 
simplifies movement control of musclo-skeletal 
dynamics.  

On the other hand, gathering large sets of data 
during natural movements is becoming 
increasingly easier, thus allowing us to characterize 
coordination across many variables at different 
levels of the motor system. However, interpreting 
such large data sets and analyzing them to test 
motor control hypotheses remains a challenge [3]. 
Component decompositions allow us to decompose 
large data set of EMG data and other variables into 
components that can interpret and depict the 
upstream organization of the neural control 
systems, and their functional biomechanical 
outputs downstream [3]. Decomposition techniques 
can help the researchers to find the relationship 
between the derived components and the original 
data and draw conclusions about the underlying 
neural mechanisms. It should be noticed that the 
extracted components must be interpreted in terms 
of the known underlying physiological 
mechanisms and biomechanical outputs [3]. 
Decomposition can also be useful for 
understanding the function of the underlying 
components. In this field, non-negative matrix 
factorization (NMF) methods are especially useful 
for examining neural and muscle activity signals 
that are inherently non-negative [1], [4]. One of the 
attractive features of components resulted from 
applying NMF methods is that they generate a 
parts-based type of representation that appears 
similar to both neurophysiological observations as 
well as to the predictions from “sparse-coding” 
algorithms in sensory systems [5]. 

Different algorithms implemented to decompose 
EMG data, among them we restrict ourselves to 
study and use the non-negative matrix factorization 
based decompositions. In fact, these methods result 
in components that are physiologically more 
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relevant to EMG signals; because, non-negative 
signals reflect more concretely the “pull only” [5] 
behavior of muscles (i.e. muscles cannot be 
activated “negatively”). Other dimensionality 
reduction algorithms have been discussed with 
more details in [4]. 

It has been approved that the CNS uses a 
modular structure for human motion control. Thus 
the modules extracted from the EMG data could be 
recruited instead of controlling all muscle 
activities. In this way the abundances in the muscle 
activity space, could be simpler by recruitment of 
muscle synergies. 

By applying NMF algorithm on the EMG data, 
it can be decomposed in spatial, temporal, spatio-
temporal or hybrid (space by time [6]) manners 
using NMF algorithm. In this study, the method of 
space by time decomposition of EMG matrix [6] is 
used to extract the unified spatial and temporal 
modules. This decomposition method, in addition 
to reduction of degrees of freedom (DOF), requires 
less amount of memory for saving information of 
module compared to other methods mentioned 
above [7]. 

Space by time decomposition has already been 
used to extract synergy modules for simple 
reaching point-to-point in horizontal plane, and it 
has resulted in significant findings [6]. The main 
objective of this study is to apply this method to 
extract the unified spatial and temporal modules 
for compound tasks in vertical planes. The 
importance of this study lies in the fact that we will 
be able to evaluate also the effect of gravitational 
component of the arm movement. It should be 
noticed that moving in the horizontal plane with air 
sled, the arm does not endure its weight through 
the movement and more joint angles cooperate in 
the motion. The tasks we will investigate include 
simple reaching point-to-point, reversal and via 
point movements in the sagittal and frontal planes 
[8]. Unified muscle synergies will be extracted and 
analyzed from the EMG signal, for simple to more 
complex movements in two vertical planes. In this 
way, we will study encoding of the motion 
information in the extracted modules and their 
recruitments. The sequence of reaching point to 
point movement task execution could be analyzed 
through evaluating unified modules and their 
recruitment in compound task. These tasks could 
be reversal (start from a location then go to the 
center and back to the start point) or via-point (go 
from start location to the target location via center 
point). Thus, by scrutiny of the unified spatial and 

temporal modules in eight specified directions in 
the vertical planes, and their assessment in 
different types of simple and complex movements, 
a physiological interpretation of motion control and 
the decomposed parts of the EMG signal will be 
presented. 

 
II. MATERIALS AND METHODS 
A. Experimental data set 
The data has been obtained from the research group 
at the Santa Lucia Foundation. Two right handed 
subjects took part in the test. The experimental 
apparatus and reaching task has been described in 
details in [8]. Briefly, two standing subjects gripped 
a 180 gr handle connected to a sphere. The center 
of sphere was aligned with the axis of the forearm 
at a distance of 12 cm from center of the palm. 
Participants were instructed to move the sphere 
between a central position and eight peripheral 
targets points located on a circle at 15 cm of 
distance in vertical planes (Sagittal and Frontal) 
while minimizing shoulder and wrist movements. 
In each trial, subjects were instructed to reach the 
target point with a movement of a duration shorter 
than 400 msec, and to hold there for at least 1 
second. Unsuccessful trials were repeated. Each 
subject performed each movement successfully five 
times, the target points are 8 with 2 directions that 
are done in 2 planes. The subject would do the test 
for a total number of 160 point-to-point movements 
(2 planes × 8 targets × 2 directions × 5 repetitions). 
As the subject moves his arm in different types of 
reaching point to point movements, the marker’s 
position attached to his shoulder, elbow and wrist 
were recorded using an optic motion- tracking 
system (Optotrack 3020, Nothern Digital, 
Waterloo, Ontario, Canada) with a sampling 
frequency of 120 Hz and spatial resolution below 
0.1 mm. 17 to 19 active bipolar surface electrodes 
(DE 2.1; Delsys, Boston,MA) recorded the EMG 
activity [8]. 
 
B. Arm model 
Kinematic and kinetic model of the arm, 
incorporating geometrical and inertial parameters of 
the upper arm and forearm segments, was used to 
estimate shoulder and elbow joint angles from the 
recorded spatial position of the shoulder, the elbow, 
and the wrist markers. The kinematic model was 
developed using the Denavit-Hartenberg (D-H) [9] 
notation for shoulder joint with 3 degrees of 
freedom (Abduction/Adduction angle, 
Flexion/Extension angle and External/Internal 
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Rotation angle) and elbow joint with one degree of 
freedom (Flexion/Extension angle). The D-H 
parameters of human with 3 DoF shoulder and 1 
DoF elbow are as follows. Where LU shows upper 
arm link length and LF shows the forearm link 
length. 

The length of every segments of the body could 
be calculated as a function of subject’s weight and 
height [10]. Also inertial parameters of these 
segments for the kinetic model could be calculated 
as a function of subject’s weight and height 
according to regression equations [11].  

 
Tablel:  D-H parameters for 4 DoF arm model 

Link Joint angle αi ai θi di Offset 

1 Sh. Adduction π/2 0 0 0 -π/2 

2 Sh. Flexion π/2 0 0 0 π/2 

3 Sh. Ext. Rotation π/2 0 0 LU π 

4 El. flexion 0 LF 0 0 π/2 

 
Table2:Geometrical and inertial parameters for subject’s arm 
model 

2 1  Subject  
181  162  Height (cm)  
78  58  Weight (Kg)  

33.67  3013  (cm) UL  
45.61  40.82  (cm) FL  
13.78  12.16  (cm) ur  
26.39  23.57  (cm) fr  
2.11  1.56  (kg) UM  
1.90  1.52  (kg) FM  

42.61  28.54  )2−s 2(kg cm UI(lo)  
130.03  74.02  )2−s 2(kg cm UI(ap)  
144.65  84.74  )2−s 2(kg cm UI(tr)  
19.56  12.93  )2−s 2(kg cm FI(lo)  
445.74  295.87  )2−s 2(kg cm FI(ap)  
455.45  302.27  )2−s 2(kg cm FI(tr)  

 
Fig. 1. Human arm model using subject’s geometrical and 
inertial parameters. 

Where index U and F represent upper arm and 
the forearm, respectively. R is the position of the 
link’s center-of-mass along the link and I is the 
inertia along lo (longitudinal), ap (antero-posterior) 
and tr (transversal) axis of the link, respectively. It 
should be noticed that the mass of the forearm, 
hand, and handle was assigned to the 4th link, 
associated with the elbow flexion. 

Using these parameters and Robotic toolbox, the 
four degrees of freedom arm containing three 
angles on shoulder joint and one angle on the 
elbow joint can be represented as Fig. 1.  

 
C. Working hypotheses and terminology 
An important aspect of this work is the assumption 
of concurrent existence of both temporal and 
spatial modularity. The temporal and spatial 
modularity is defined as follows. Temporal 
modules are some scalar functions of time, they 
represented temporal pattern of muscles activity. 
The decomposition approach in this algorithm is 
based on NMF, and is called as motor primitives, 
pre-motor drives/bursts or temporally fixed muscle 
synergies in other researches [12-15]. Spatial 
modules are some vectors that whose number of 
elements are the same as the number of EMG 
channels. These vectors describe the ratio of each 
muscle activation. This corresponds to time-
invariant, synchronous, spatially fixed muscle 
synergies or muscle modes [16-18]. 

Two specific properties of modular control 
structure are 1) low dimensionality, and 2) 
hierarchical organization, to simplify control and 
learning in the human arm motion control. So, it is 
required to compare any decomposition algorithm 
for EMG data, considering these two facts [7]. 

The muscle activity matrix is decomposed as a 
linear combination of one-dimensional temporal 
modules, which are time-varying (Fig. 2A). This 
model considers a primitive as a temporal pattern 
that will affect selectively different muscles. The 
temporal decomposition has been used in [20]. 

In spatial decomposition a muscle activation 
matrix is decomposed during one sample, as a 
linear combination of a set of time-invariant 
weighted muscle activity across all muscles (spatial 
modules) that are multiplied by a time-varying 
activation coefficient (Fig. 2C). This model has 
been used in [17]. 

Another type of EMG matrix decomposition is 
time-varying synergies [8] [21-24], referred to as 
spatiotemporal decomposition and illustrated in 
Fig. 2B. It has one amplitude and one time 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.13,NO.1, SPRING 2013 

22 

coefficient as two free parameters for each 
synergy. 

Later, a Hierarchical Alternating Least Squares 
(HALS) method used for NMF model which 
provides a very good convergence property and 
therefore results in to achieve both better accuracy 
and repeatability [25]. 

 

 
Fig. 2. Different algorithms used to extract modules from 
muscle activity matrix. A: temporal decomposition. B: spatial 
decomposition. C: spatiotemporal decomposition. D: 
concurrent spatial and temporal decomposition. 

 
In this work, another model is used (referred to 

as space-by-time decomposition [7] [26], 
illustrated in Fig. 2D) to extract separately but 
concurrently spatial and temporal modules from 
muscle activity data matrix. The decomposition 
can be viewed as a generalization and unification 
of existing models and expresses any muscle 
pattern ms(t)ϵRT×M  as the following double sum (T 
and M being the number of time frames and 
muscles, respectively): 

(1)

Where wi(t) ϵ RT×1 and wj(t) ϵ R1×M  are the 
temporal and spatial modules respectively, and aij

s 
ϵ R is a scalar activation coefficient. 

Where P and N are the number of temporal and 
spatial modules respectively. To extract these 
concurrent spatial and temporal modules in 
practice, a specific algorithm is developed that 
seeks an approximate low-dimensional 
representation for all the input matrices called 
sample-based nonnegative matrix tri-factorization 
(sNM3F). This algorithm takes the parameters P 
and N as input and is designed (like the three 
previous ones) to iteratively minimize the total 

reconstruction error expressed as follows, where 
the Frobenius norm is calculated: 

 
(2)

In this way by using sNM3F algorithm the 
temporal and spatial modules could be extracted 
concurrently from rectified EMG data. While in 
some works the EMG matrix decomposition had 
been applied on the phasic part of muscle activity, 
by decreasing the tonic part from the rectified 
EMG signal [8][17][21-24]. The most important 
variant attempts to capture variability in time, 
which may be inherent to the CNS’s modular 
control strategy, or which may simply be caused by 
the time-normalization procedure of the data or by 
any intrinsic fluctuation (e.g., sensorimotor noise). 

 
III. Criteria to evaluate modular decompositions 
A. Avoiding local minima 
Although as the number of temporal and spatial 
modules increase, the reconstruction error 
decreases, but the degree of freedom for motion 
control will increase. So achieving the optimized 
number of modules, in that the number of DOF is 
low enough while the error rate of reconstruction is 
as low as possible, would be very important.  For 
this purpose it is necessary to increase the number 
of temporal and spatial modules from 1 to 9, and 
calculate the reconstruction error through the 
number of modules. To avoid labelling local 
minima as the global minimum when 
reconstructing the EMG signal, it is necessary to 
specify the number of modules, the algorithm of 
finding temporal and spatial modules according to 
the amount of the initial conditions should be 
repeated several times. Thus, the amount of 
reconstruction error minima in the 50 times 
repetition, is the global minima of the 
reconstruction error through the number of 
temporal and spatial modules. 
B. Variance accounted for (VAF) 

The VAF which is a metric typically used in 
studies investigating modularity in muscle 
activations, is defined as the residual 
reconstruction error normalized by the total 
variance of the dataset. The VAF shows similarity 
between the original EMG patterns and the 
reconstructed data using a limited number of 
temporal and spatial modules and can be used to 
validate or falsify the decomposition. 
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C. Selection of the number of modules 
It should be considered that the inclusion of an 

additional module must lead to reliably some task-
related EMG variations not described by other 
already included modules. When applied to spatial 
or spatiotemporal decompositions, this formalism 
was shown to be able to select reliably and robustly 
the smallest set of modules that describe all task-
related information in the EMG data [6] [26]. 

Extension of the method for the space-by-time 
decomposition is as follows. After evaluating 
decoding performance with (N, P) = (1,1), it is 
considered adding either a spatial or a temporal 
dimension. i.e., increasing either N or P by one. 
The selected dimension increases the most the 
decoding performance. Accordingly, the number of 
modules is increased step by step, until the increase 
of modules does not gain any further statistically 
significant increase of decoding performance. This 
procedure ensures the detection of modules that 
explain only the “task- relevant” variability and the 
exclusion of other sources of noise that produce 
“task-irrelevant” variability. 

 
IV. Results And Discussion 

A. Number of modules 
The VAF changes through different number of 
spatial and temporal modules is shown in Fig. 3 It 
can be seen that increase in the number of modules 
can affect the reconstruction error and VAF in a 
restricted manner. To maximize the VAF and at the 
same time minimize required memory capacity, 
three temporal and four spatial modules are chosen. 
The number of synergies is selected considering 
for further analysis  as a compromise between 
model parsimony and accuracy [27]. 

 
Fig. 3. VAF through different number of spatial and temporal 
modules. 
 

B. Similarity in the same number of modules 
To compare different spatial modules extracted 
with the same number, the modules should be 
extracted through different number of temporal 
modules. Therefore N=1,2,…,9 different spatial 
modules correlations that are extracted with 

M=1,2,…,9 temporal modules in nine different 
decomposition, could be represented in a 9×9 
matrix. The ith row of this matrix shows the 
correlation of N spatial modules that are extracted 
with i temporal modules, compared with N spatial 
modules that are extracted with j=1,2,…,9 
temporal modules. Each N spatial modules would 
create an N×N matrix of correlation that the 
average of its elements is determined as the 
similarity between these two sets of N spatial 
modules. Fig. 4 shows the similarity between 
spatial modules (N is the number of spatial 
modules), while the number of temporal modules 
changes. 

As shown in Fig. 4(left top) if only one spatial 
module is extracted, this spatial module does not 
change when the number of temporal modules 
changes. That is when there is one spatial module 
and change the number of temporal modules from 
1 to 9, the extracted spatial module in any of nine 
decompositions are similar to each other. The 
average value of similarity in these nine 
decompositions, that is more than 75%, is shown in 
the bar plot (Fig. 4 down). 

Thus when number of spatial module 
considered constant, by changing the number of 
temporal modules, there would be no significant 
change in the spatial modules. This arises because 
what is varying in each movement is encoded in 
temporal modules and the related coefficients. So 
the temporal modules and related coefficients 
would change through different motions, and this 
variation is independent of the number of temporal 
modules. Due to this fact it can be concluded that 
the spatial information of the EMG signal is 
encoded as spatial modules that are independent 
from the number of temporal modules. 

 

 
Fig. 4. Spatial modules correlation through different number 
of temporal modules. 
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Like what explained for spatial modules 
similarity, the correlation between the same 
numbers of temporal module extracted with 
different number of spatial modules could be 
calculated. Thus 9 matrix of correlation and the 
average value of the correlation could be shown in 
Fig. 5. 

Considering the number of temporal modules 
fixed, the spatial modules and related coefficients 
would change through different motions, and this 
variation is independent of the number of spatial 
modules. Due to this fact it can be concluded that 
the temporal information of the EMG signal is 
encoded as temporal modules that are independent 
from the number of spatial modules. 

 

 
Fig. 5. Temporal modules correlation through different 
number of temporal modules 
 
C. Spatial modules in different types of motion 
Three extracted spatial modules for different types 
of subject2's motions are nearly similar to each 
other. Table. 1 has represented comparison of these 
three spatial modules in straight simple movement, 
reversal movement and via-point movement. The 
average value of the correlation between these 
extracted spatial modules in different types of 
motions for subject2, is 0.9823.  
 
Table3: similarity comparison in extracted spatial 
modules for subject2 

 
Simple 

straight vs. 
reversal 

Simple 
straight vs. 
via-point 

via-point 
vs. 

reversal 
1st  Module (W1) 0.9728 0.9866 0.9931 
2nd Module(W2) 0.9529 0.9911 0.9760 
3rd Module (W3) 0.9780 0.9962 0.9941 
4th Module (W4) 0.9732 0.9862 0.9891 

 
On the other hand, it seems that the extracted 

spatial modules are different for different subjects. 

As what some other researchers have suggested, 
the number and pattern of muscle synergies 
configured in an adaptive process. The morphology 
and experience of each individual may interact in 
unexpected ways over time [28], resulting in a 
unique set of muscle synergy patterns. More 
subtly, these adaptive processes themselves may 
vary depending on context [29][30]. 

Thus each spatial module could be considered 
as a specific configuration in joint space that relies 
to a distinctive state of subject’s upper extremity. 
Therefore if the decomposition of the EMG data 
has i number of spatial modules, then there would 
be i distinctive postures in the subject’s upper 
extremity, which could be used as i stable points in 
the work space of human arm. The temporal 
modules and their related coefficients could form 
the transition between these postures in 
movements. To acquire these distinctive stable 
points it is required to calculate the related joint 
angles due to the muscle activation in each spatial 
module through neural network identifier (NNI). 
Thus a Neural network with one hidden layer, 17 
input elements (as the number of EMG channels 
from 17 different muscle in upper extremity), and 4 
output elements (as the number of joint angles: 
three angles (3DoF) for shoulder joint: 
adduction/abduction angle, flexion/extension angle 
and external/internal rotation angle, and one angle 
(1DoF) of flexion/extension in elbow joint) has 
been used.  

 

A: Posture1 B: Posture2 

C: Posture3 D: Posture4 

Fig. 6. Postures related to 4 extracted spatial modules of 
subject1. 
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The network would be trained with 70% of the 
data measured from simple movements of each 
subject. Remaining 20% and 10% of the data used 
for testing and evaluating the neural network, 
respectively. In the progress of training, the Epoch 
number is 676, was feed to the network randomly. 
Scaled conjugate gradient algorithm was used for 
training. Training automatically stops when 
generalization stops improving, as indicated by an 
increase in the mean square error of the validation 
samples. 

By using a nonlinear function of neural network 
that projects the 17-19 muscle activity to the 
shoulder and elbow angles, the appropriate posture 
of the specified spatial modules could be extracted. 
Thus, the arm model can be used to show different 
postures related to the different spatial modules. In 
Fig. 6 and Fig. 7, the postures corresponded to 4 
extracted spatial modules of subject1 and subject2 
are shown respectively. As shown in these figures, 
the spatial modules of different subject are not the 
same. This would strengthen the idea that the 
muscle synergies are subject dependent. 

 
A: Posture1 B: Posture2 

 
C: Posture3 D: Posture4 

 

Fig. 7. Postures related to 4 extracted spatial modules of 
subject2. 

 
D. Temporal modules in simple straight motion 
By extracting the spatial and temporal modules 
from EMG matrix decomposition in any simple 
straight point to point reaching movements in 
sagittal or frontal planes, the motion information 
such as direction or start or stop positions would be 
encoded in the coefficients of the specified 

modules. Thus the coefficients for the recruitment 
of the modules vary through the task information. 
Fig. 8 shows three temporal modules extracted in 
simple straight point to point reaching movements 
in sagittal and frontal planes for both subjects.   

As shown in Fig. 8 extracted temporal modules 
for simple straight motions are almost the same for 
both subjects. The first temporal module in both 
subjects have a positive bias at the beginning and 
end of the motion, with one minimum followed by 
one maximum through these biases. In two 
remaining temporal modules, the initial value is 
approximately zero. Also they have two peaks in 
their active region. The second temporal module 
has a zero value between its two peaks, but in the 
third one there is no zero value between its two 
peaks. 
E. Sequence of point to point movements in 

complicated motions 
Subject2 performed, in addition to the basic set 

of point-to-point movements, reaching movements 
from one start location (either central or peripheral) 
to a target location and back to the same start 
location in a continuous movement (reversal) and 
from a peripheral start location to a different 
peripheral target location through the central 
location (via-point).  

The tangential velocity profiles for reversal and 
via-point movements had two distinct peaks (Fig. 
9). The movement duration was approximately two 
times the duration of point to point movements, 
and the maximum tangential velocity of both peaks 
was close to the maximum of the tangential 
velocity of point-to-point movements. The 
averaged, phasic muscle activation waveforms for 
reversal and via-point movements generally 
showed a complex sequence of peaks and valleys 
that, by a first qualitative analysis, resembled the 
superposition of the waveforms of the muscle 
patterns of the corresponding point to point 
movements, each shifted in time to align the 
tangential velocity peaks. However, many of the 
muscle activation waveforms were modulated in 
amplitude and timing with respect to the point-to-
point waveforms, and these changes were different 
across muscles.  

A fast single-joint arm movement is 
characterized by a similar tri-phasic muscle pattern 
of sequential bursts of activity (for a review see 
[31]). The first agonist muscle bursts initiates the 
motion, the antagonist burst decelerates the 
movement toward the intended end position, and 
finally the second agonist burst stabilizes the limb 
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after movement termination by dampening 
oscillations. 

As shown in Fig. 9 the tangential velocity in 
reversal movements, reaches to zero near the center 
point. That is because of the direction change in 
motion. At the first stage the movement is out-
center and after reaching to the center point, the 
direction of movement changes and in the second 
stage, the movement is center-out. During reaching 
center point, the tangential velocity becomes zero. 
It can be concluded that the reversal movements 
are sequence of two point to point reaching 
movements with zero velocity in start and stop 
points. According to [32], each point to point 
reaching movement is characterized by a similar 
tri-phasic muscle pattern of sequential bursts. The 
reversal motions consist of two fast point to point 
reaching movement, in each stage there are three 
sequential burst of acceleration, deceleration and 
stabilization [33]. In reversal motions during 
reaching the center point, the stabilization 
sequence takes place. 

 
A B 

 

Fig. 8. Three Temporal modules extracted for simple straight 
point to point reaching movements A) for subject1. B) for 
subject2. 

 
In via-point motions, the tangential velocity 

during reaching the center point closes to zero as 
the target point closes to the start point. As shown 
in Fig. 6 the tangential velocity at the center for via 
point motions from position2 to position1 or 
position3 are closer to zero than the tangential 
velocity at center in via point motions from 
position2 to position4 or position8.  As the target 
position in via point movements goes far from the 
start position, the tangential velocity at the center 
point moves away from zero. It seems that as the 
target position goes far from the start position, two 
stages of point to point reaching movement merge 
more to each other. Referring to [34], each point to 
point reaching movement is characterized by a 
similar tri-phasic muscle pattern of sequential 
bursts. The via-point motions consist of two fast 
point to point reaching movement, in each stage 
there are three sequential burst of acceleration, 

deceleration and stabilization [35]. During reaching 
the center point as the target position goes far from 
the start position, the deceleration and stabilization 
sequence of the first stage merge more to the 
acceleration of the second stage. That is why the 
tangential velocity at the center goes away from 
zero. As mentioned in [36] [37] the merging of 
stages in complicated motions is to some extent 
subjective. But if the subject knows the target 
position, he could merge these two stages while 
crossing the center point. 
F. Temporal modules in complicated motion 

To compare temporal modules in simple and 
complicated motions, it is required to extract 
temporal modules of reversal and via-point 
motions in two vertical planes. As shown in Fig. 8 
the second and third temporal modules in reversal 
and via-point motions has the same features as the 
features in the second and third temporal modules 
in simple motions (Fig. 10). They have two peaks 
in the active region of first module. 

The first temporal module shows the type of 
motion. In simple straight point to point reaching 
movements, the first temporal module have a 
positive bias at the beginning and end of the 
motion, with one minimum followed by one 
maximum through these biases. As mentioned 
above the reversal and via-point motions could be 
represented as the combination of two simple 
straight motions. This could be represented in the 
first temporal module pattern. For example in via-
point motion there exist one out-center motion 
followed by one center-out motion.  

 

 
Fig. 9. Trajectories and tangential velocity profiles of the 
endpoint for five repetitions of reversal movements from 
point2 to center an back to point2 (black line) and via-point 
starting from point 2 to points 1, 3, 4, 5, 7 and 8 via center 
point (gray line). All movements are in the frontal plane. 
 

As shown in Fig. 10 the first temporal module 
could be considered as the first module in simple 
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straight motion repeated two times after each other. 
In reversal motion it seems that the pattern of first 
temporal module is as the first temporal module 
followed by its inverse. In the first stage of motion 
the pattern has a minimum followed by a 
maximum, and in the second stage the pattern has a 
maximum followed by a minimum. According to 
the above discussion and [35] [38] [39], the 
complicated motions are combination of simple 
tasks. That the type of task is represented in the 
first temporal modules of the complicated motion. 
 

 
A B 

 

Fig. 10. Three temporal modules extracted for subject2 in 
A) reversal movements. B) via-point movements. 

 

G. Coefficients Correlation analysis 
Due to extracting three temporal and four spatial 
modules for the human arm reaching point to point 
motions, the coefficient matrix has 12 elements in 
three rows and four columns. By averaging the 
coefficient matrix for five trials in each motion, the 
correlation of the coefficient matrix for different 
motions could be calculated. As we have 8 
peripheral target points in each plane, assuming 
center-out and out-center motion, we would have 
16 different simple motions in each plane for each 
subject.  

 

 
Fig. 11. Coefficient correlation for simple straight motions of 
subject1, left column for center-out and right column for out-
center motions. Above row in frontal and bellow row for 
sagittal plane 

As shown in Fig. 11 each motion has its own 
coefficient matrix due to its direction. But in some 
motions (like 0-to-2 and 0-to-3 motions or 5-to-0 

and 6-to-0 in frontal plane, and also 0-to-5 and 0-
to-6 motions or 0-to-4 and 0-to-5 motions in 
sagittal plane), the coefficient correlation is high. 
This means the recruitment of spatial and temporal 
modules in these motions are to some extent the 
same with high correlation.  

 
Fig. 12. Coefficient correlation for reversal motions of 
subject2, left in frontal and right in sagittal plane. 

 
The coefficient correlation for the reversal 

motion of subject2 is shown in Fig. 12. As seen, 
the recruitment of spatial and temporal modules in 
the reversal motions (1-0-1 and 2-0-2) and (6-0-6 
and 7-0-7) in the frontal plane, and the reversal 
motions (1-0-1 and 2-0-2) and (4-0-4 and 5-0-5) in 
the sagittal plane, are highly correlated.  

It could be concluded from these similarities, 
that the recruitment of spatial and temporal 
modules is due to the motion direction or the 
distance of target points from each other in 
different motions. 

 
V. conclusion 
Decomposition of matrix data can be useful for 
understanding the function of the underlying 
components. In this study, we used sNM3F 
algorithm to extract unified spatial and temporal 
modules from recorded muscle activities. NMF-
based decompositions are physiologically more 
relevant to EMG signals, since non-negative 
signals reflect well the “pull only” behavior of 
muscles [5].  

Thus, the sNM3F algorithm seeks an 
appropriate low dimensional representation for 
input matrix of EMG data from simple and 
compound types of point-to-point reaching 
motions. The evaluated motions are simple 
straight, reversal, and via-point movements of 
human hand in sagittal and frontal planes, with 
motion in each plane leading into a four DOF 
movement (one DOF in the elbow and three DOF 
in the shoulder joint). Since the movements were 
performed in the vertical planes, effects of the 
gravitational component of arm movement are 
included in the results.  
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The extracted spatial modules are different for 
different subjects. According to [28], the number 
and pattern of muscle synergies are configured in 
an adaptive process. The morphology and 
experience of each individual may interact in 
unexpected ways over time [28], resulting in a 
unique set of muscle synergy patterns and yielding 
to distinct postures. To acquire these distinctive 
stable points it is required to calculate the related 
joint angles due to the muscle activation in each 
spatial module through neural network identifier 
(NNI). Our results show that extracted postures 
that are related to the spatial modules are also 
subject-dependent.  

Three temporal and four spatial modules are 
extracted to minimize the reconstruction error and 
at the same time to reduce the DOF. The spatial 
information of the EMG signal is encoded in 
spatial modules, which are independent from the 
number of temporal modules. Moreover, each one 
of spatial modules can be considered as a specific 
configuration in joint space that corresponds to a 
distinctive posture of subject’s upper extremity. 

According to [35], [38], and [39], complex 
motions are combinations of simple tri-phasic 
tasks. The type of the task is represented in the first 
temporal module of the complex motion. As 
mentioned in [36]-[37], merging of stages in 
complex motions is to some extent subjective. 

It could be concluded from coefficient similarity 
analysis that the recruitment of spatial and 
temporal modules is due to the motion direction or 
the distance of target points from each other in 
different motions. 

Our results for activation or inactivation of 
muscles in the spatial modules were matched to our 
previous expectations due to physiological 
knowledge. Extracted modules are applicable for 
clinical evaluation and rehabilitation of movements 
[40].  

All our conclusions are based on the data 
collected from two subjects, who performed 320 
trials in total. To be able to generalize these results, 
certainly we do need to record data from more 
subjects. 
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