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Abstract 
This paper considers the problem of stable limit 
cycles generating in a class of uncertain nonlinear 
systems which leads to stable oscillations in the 
system’s output. This is a wanted behavior in many 
practical engineering problems. For this purpose, 
first the equation of the desirable limit cycle is 
achieved according to shape, amplitude and 
frequency of the required output oscillations. Then, 
the nonlinear control law is designed such that the 
phase portrait of the closed-loop system includes 
this stable limit cycle. The design of controller is 
based on the Lyapunov stability theorem which is 
suitable for stability analysis of the positive limit 
sets (the stable limit cycle is a positive limit set for 
the nonlinear dynamicl system). The proposed 
robust controller consists of two parts: nominal 
control law and additional term which guarantees 
the robust performance and vanishing the effect of 
uncertain terms. Finally, to show the applicability 
of the proposed method, an inertia pendulum 
system (with parametric uncertainties in its 
dynamical equations) is considered and the robust 
output oscillations are achieved by creating the 
desirable limit cycle in the close-loop system. 
 
Keywords: Positive limit set, Stable oscillations, 
Robust limit cycle, Lyapunov redesign method. 
 
Introduction 
Generation of stable limit cycles is one of the most 
famous areas in the control engineering. Stable limit 
cycles create an oscillatory behavior in the time 
response of state variable in the nonlinear systems. 
Stable oscillations are desired behavior in many 
practical engineering problems like: buck-boost 
converters, switching power supplies [1,2], walk cyclic 
pattern [3,4], boom-bust cycles [5,6] and catalytic 
hyper cycles [7]. 

Two main approaches have been proposed in 
literature to create a stable limit cycle in the phase 
trajectories of the nonlinear systems. In the first 
approach, limit cycle stabilization is converted to 

                                                
1. M.Sc. student Department of Electrical and Electronic 

Engineering, Shiraz University of Technology, Shiraz, Iran 
a.hakimi@sutech.ac.ir 

output tracking problem by tracking of the periodic 
reference signals. For this purpose, the error signal (i.e., 
the output deviation from the time-varying reference 
signal) and its derivatives up to the relative degree of 
system are defined as error vector. Then, by 
constructing the error dynamical system, the tracking 
problem is converted to asymptotic stabilization of the 
time-varying error dynamical system. In this method, 
the periodic reference signal should be smooth enough 
and its derivations up to the relative degree of system 
should be generated. In this way, several robust 
nonlinear and fuzzy controllers are proposed for 
different dynamical systems such as underactuated and 
feedback linearizable systems [8,9]. Another approach 
is based on the stability analysis of posititve limit sets 
and extends the Lyapunov stability theorems from the 
stability analysis of the equilibrium points to stability 
analysis of the limit sets [10]. In this aproach, selecting 
the appropriate Lyapunov function is related to the 
shape of limit cycle and there is no need to generate the 
time varying reference signal and its derivatives. Based 
on this approach, the control law may be designed to 
create a stable limit cycle (as a positive limit set) in the 
closed-loop system. Authors of [11-13], designed such 
control laws for special classes of nonlinear systems 
using different techniques of nonlinear control such as 
CLF, passivity, backstepping and so on. In these 
references, the nominal systems are considered and the 
designed controllers are not robust against uncertainties 
and external disturbances. However, it is important to 
note that in modeling of the physical systems, there are 
uncertain terms due to uncertainty in the parameters, 
external disturbances or simplification of the model. 

This paper deals with generating robust stable 
output oscillation by robust orbital stabilization of a 
class of uncertain nonlinear systems in the presence of 
uncertainties and external disturbances. For this 
purpose, first, by designing an appropriate nonlinear 
control law, the stable limit cycle is created in the 
nominal nonlinear system. Then, an additional state 
feedback term is designed by considering the uncertain 
terms, such that the overall state feedback controller 
guarantees generating of a stable limit cycle in the 
actual closed-loop uncertain nonlinear system. At the 
end, to examine the applicability of the proposed 
method, the robust stable oscillations are created in a 
pendulum with considering parametric uncertainties. 
Computer simulations verify the theoretical results. 

 
Problem Statemant 
Consider the following uncertain nonlinear system: 

2 . Assistant professor Department of Electrical and Electronic 
Engineering, Shiraz University of Technology, Shiraz, Iran 
binazadeh@sutech.ac.ir 

mailto:a.hakimi@sutech.ac.ir
mailto:binazadeh@sutech.ac.ir


MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.3, FALL 2012 

2 

( )
1 2

2 ( ) ( ) ( , )
x x
x f x g x u x uδ

=

= + +

&
&

 (1) 

where { }2 , 0x D D∈ ⊂ ∈¡  is the state vector, u ∈ ¡  is the 
control input, 2:f →¡ ¡  with (0) 0f =  is a smooth 
function and 2:g →¡ ¡  is a nonzero function in the 
domain of interest. Also ( , )x uδ  is an unknown function 
which lumped to gather the model uncertainties and 
external disturbances. The objective is to design a 
robust state feedback control ( )u xπ=  such the 
trajectories of the closed-loop system attract the 
prescribed limit cycle S , defined by: 

{ }2 2: ( )S x D x rϕ= ∈ ⊂ =¡  (2) 

where ( )xϕ  is a smooth and continuously 
differentiable function. The shape of ( )xϕ  and the 
value of r  is effective in the shape, amplitude and 
frequency of the stable oscillations that create in the 
output of the closed-loop system. Therefore, ( )xϕ  and 
r  are chosen according to objective to create a desired 
periodic response in the output of the system. For 
example, in [14], it declared that if the desirable time 
response of 1( )x t  and 2 ( )x t  are as follows: 

1 0 2 0 0( ) sin , ( ) cos ,d dx t A t x t A tω ω ω= =  (3) 

Then a stable limit cycle with equation 2( )x rϕ =  
(where 0r A ω=  and 2 2 2

0 1 2( )x x xϕ ω= +  ), should exist in 
the phase trajectories of the nonlinear second order 
system. 

In the other hand, since limit cycles are a specific 
kind of positive limit sets, therefore, the stability of 
limit cycles can be investigated by theorems that 
conclude stability of limit sets. The following theorem 
extends the Lyapunov stability theory to stability 
analysis of limit sets: 
Theorem 1 [15]: Consider the following nonlinear 
system: 

( )x F x=&  (4) 

where nx D∈ ⊂ ¡ . Let S D⊂  be a closed limit set of 
(4). If there exists a continuously differentiable 
function ( )V x  such that: 

I. It is zero on defined limit set S , 
II. It is positive in some neighborhood D  of S  , 

excluding S  itself, 
III. Its time derivative ( ( ) ( / ) ( )V x V x F x= ∂ ∂&  ) is 

negative in D S∉ , 
Then, the limit set S  is a stable limit set. 
 

Generating Stable Limit Cycles in the Uncertain 
Nonlinear Systems 
This section, considers creating a stable limit cycle in 
the uncertain nonlinear system (1). For this purpose, 
first the nominal controller ( )u k x=  is designed for the 
nominal system (i.e., ( , ) 0x uδ =  ), such that the defined 
limit cycle S  is attractive in the closed-loop nominal 
system. Then, to vanish the  effect of uncertainties, the 
additional term ( )xυ , is designed based on the 
Lyapunov redesign method, such that the overall state 
feedback ( ) ( )u k x xυ= +  generates the stable limit 
cycle S  in the closed-loop system (1). 

Consider the nominal version of nonlinear system 
(1) as follows: 

1 2

2 ( ) ( )
x x
x f x g x u
y cx

=

= +
=

&
&  (5) 

The control law ( )u k x= , which generates a stable limit 
cycle in the phase trajectories of the nominal closed-
loop system, is given in the following theorem: 
Theorem 2 [13]: Consider the system (5). the 
following control input generates the stable limit cycle 
S in the closed-loop system: 

( )( )2

( )
1 ( ) ( ) ( ) ( )
( ) d

u k x

f x k x r x x
g x

ϕ ζ η

=

= − − − −
 (6) 

where 0dk > . Also ( )xη  and ( )xζ  are continuous 
functions that satisfy: 

2

2
1

( )( )

( )( ) ( )

xx
x

xx x x
x

ϕ
ζ

ϕ
η ζ

∂
=

∂

∂
=

∂

 (7) 

Proof: By putting the controller (6) into (5), the 
resulted close-loop system is: 

( )
1 2

2
2 ( ) ( ) ( )d

x x

x k x r x xϕ ζ η

=

= − − −

&

&
 (8) 

Consider the Lyapunov function candidate as: 

( )221( ) ( )
2

V x x rϕ= −  (9) 

This function satisfies the conditions І and ІІ of 
Theorem 1. Calculating the ( )V x&  along the trajectories 
of the nominal closed-loop system, one has: 
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Evidently, ( )V x  is descending when ( ) 0xζ ≠  and 
2( ) 0x rϕ − ≠  simultaneously. Also, it is invariant when 

( ) 0xζ =  or 2( ) 0x rϕ − = . In [13], it is deduced that 
assuming the closed-loop system is detectable with 
respect to the output ( )xζ  and unstable at the origin 
and using LaSalle's invariant theorem, the condition ІІІ 
in Theorem 1 is also satisfied for all solutions that not 
initialized at the origin. ■ 

Now consider the uncertain system (1) (i.e., 0δ ≠ ). 
In this case, an additional term will be added to the 
previous control law to create robust manner. 
Substituting the control input ( ) ( )u k x xυ= +  in this 
system results in: 

( )
1 2

2 ( ) ( ) ( ) ( ) ( , )
x x
x f x g x k x x x uυ δ

=

= + + +

&
&

 (11) 

Consider the same Lyapunov function that proposed 
for the nominal system in (9) as a Lyapunov function 
candidate for the uncertain system. Differentiating this 
function along the trajectories of the closed loop system 
(11) then: 

( )

1 2
1 2

2
2

1 2

2 2 2

2

( ) ( )

( ) ( )

( ) ( )

d

d

V x V xV x x
x x

V Vx k r g
x x
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x

ϕ ζ η υ δ
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∂ ∂
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∂ ∂
∂ ∂

= + − − − + +
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∂
= − − + +

∂

& & &

(12) 

Therefore 

( )22 2( ) ( ) ( )dV x k x x rζ ϕ ωυ ω δ= − − + +&  (13) 

where [ ]2/ ( )V x g xω = ∂ ∂ . The first term in the right-
hand side of (12) is due to the nominal closed-loop 
system. The second and third terms are appearded due 
to the effect of control term υ  and the uncertain term 
δ . Now, the goal is designing υ  to vanish the effect of 
δ  such that 0ωυ ωδ+ ≤ . Suppose that δ  satisfies the 
following inequality: 

0( , ( ) ) ( ) sup ( )x k x x k xδ υ ρ υ+ ≤ +  (14) 

where ( )xρ  is a known positive function of states and 
00 1k≤ <  is a positive constant. It can be deduced that: 

( )0( ) ( ) sup ( )x x k xωυ ωδ ωυ ω ρ υ+ ≤ + +  (15) 

Consider ( )xυ  as: 

( ) ( ) ( )sgn( )x x xω
υ β β ω

ω
= − = −  (16) 

where ( )xβ  is a smooth function and it is chosen such 
that, 

0

( )( )
1

xx
k

ρ
β ≥

−
 (17) 

Thus sup ( ) ( )x xυ β=  and: 

0

0

0

( ) ( ) sup ( )

( ) ( ) ( )

( )(1 ) ( )

( ) ( )
0

x x k x

x x k x

x k x

x x

ωυ ωδ ωυ ρ ω υ ω

β ω ρ ω β ω

β ω ρ ω

ρ ω ρ ω

+ ≤ + +

≤ − + +

= − − +

≤ − +
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Consequently: 

2 2 2

2 2 2

( )

( )
d

d

V k r
k r

ζ ϕ ωυ ω δ

ζ ϕ

= − − + +

≤ − −

&
 (19) 

Thus, with the control law (16), the derivative of ( )V x  
along trajectories of the closed-loop system (11) is 
negative and all conditions of Theorem 1 are satisfied. 
Therefore S is a stable limit cycle for system (11) and 
the following robust state feedback control law 
guarantees robust attraction of the trajectories of the 
closed loop system (11) to limit cycle S  in the 
presence of uncertainties and external disturbances. 

( )( )2

( ) ( )
1 ( ) ( ) ( ) ( )
( )

( )sgn( )

d

u k x x

f x k x r x x
g x

x

υ

ϕ ζ η

β ω

= +

= − − − −

−

(20) 

Remark 1: Since discontinuous controllers suffer from 
chattering, to alleviate this problem an approximation 
of the signum function like a saturation function with a 
high slope (1 / ε ) may be considered. 

 
Creating Robust Output Oscillation in Inertia 
Pendulum 
In this section, to clarify the design procedure, the 
proposed method in robust output oscillation  is applied 
to an inertia pendulum. As shown in Fig.1, this system 
includes a beam with the length l and a travelling mass 
with the mass m. Also, there is a frictional force against 
the motion of the travelling mass with a friction 
coefficient k. The objective is creating the stable 
sinusoidal oscillations with amplitude A and frequency 

0ω  in the output of the system. Therefore, based on the 
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proposed approach in this paper, this problem is solved 
through generating the stable limit cycle. 

 
Fig.1. The mechanical structure of pendulum 

 
The mathematical model of this system can be 

described as [15]: 

1 2

2 1 2

1

sin
x x
x a x b x c u
y x

=

= − − +
=

&
&  (21) 

where 0 / , /a g l b k m= =  and 21/c ml= . Also, 0g  is the 
gravity acceleration. It is assumed that there are 
uncertainties in these parameters due to errors in 
modeling and measurement. Therefore, it is considered 
that 9 11a< < , 0 0.4b< <  and 0.55 2.45c< < . Let 10na = , 

0.2nb =  and 1.5nc =  as the nominal values of a , b and 
c , respectively. Thus, the equations of the system (21) 
can be rewritten as follows: 

( )
1 2

2 1 2

1

sin ( , )n n n

x x
x a x b x c u x u
y x

δ

=

= − − + +

=

&
&  (22) 

where: 

1 2( , ) sinn n n

n n n

a a b b c cx u x x u
c c c

δ
− − −

= + +  (23) 

Equations (22) have the structure of (1) and the 
proposed method can be applied. Now, suppose that the 
objective is to design a robust state feedback control for 
uncertain system (22) to robust attraction of the limit 
cycle S  defined as: 

{ }2 2 2
1 2: 4 1S x D x x= ∈ ⊂ + =¡  (24) 

According to (24), 2 2
1 2( ) 4x x xϕ = + . Therefore, ( )xη  and 

( )xζ  may be calculated as: 

2
2

2 1 2 2 1
1

( )( ) 2

( )( ) ( ) 8 2 4

xx x
x

xx x x x x x x
x

ϕ
ζ

ϕη ζ

∂ = = ∂
 ∂ = = =
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 (25) 

Thus, the nominal controller is: 

( )( )2 2
1 2 1 2 2 1

( )
1 sin 2 4 1 4n n d
n

u k x

a x b x k x x x x
c

=

= + − + − −
(26) 

Now, by adding ( )xυ  to the nominal controller and 
substituting it in (23), the upper band of δ  can be 
calculated as: 

( )

( )( )

1 2

1 2 12

2 2
2 1 2 2 12

2 2

3 3
2 2

sin ( ) ( )

sin sin

2 4 1 4

( ) ( )

8 ( ) 2 ( )

4(

n n n

n n n

n n n n
n

n n n n

n
n d

n

n n n n n n

n n n n

d n d n n

nn n

n

a a b b c c
x x k x x

c c c

a a b b c c c cx x a x
c c c c

c c
b x k x x x x

c

a a b b a c c b c c
x x

c c c c

k c c k c c c cx x
cc c

c c

δ υ

υ

υ

− − −
= + + +

− − − −
= + + +

−
+ + − + − −

− − − −
≤ + + +

− − −
+ + +

−
+ 2 2

2 ( )) d n

n n

k c c
x x

c c
−

+

 (27) 

Also, [ ] 2 2
2 2 1 2/ ( ) 2 (4 1)nV x g x c x x xω = ∂ ∂ = + − . 

Consequently: 

( )( )
( )

2 2
1 2 1 2 2 1

( ) ( )
1 sin 2 4 1 4

( ) /

n n d
n

u k x x

a x b x k x x x x
c

x sat

υ

β ω ε

= +

= + − + − −

−

 (28) 

In continue, computer simulations are performed 
for 0.25dk =  , 0.07ε =  and initial condition 

0 [0.5 1]Tx = . Therefore 

31.2 2.5 4.9 0.63x xδ υ≤ + + +  (29) 

Thus, 3( ) 1.2 2.5 4.9x x xρ = + + , 0 0.63k =  and ( )xβ  is 
chosen as: 

31.5 2.5 5
( )

1 0.63
x x

xβ
+ +

=
−

 (30) 

Fig.2, shows the robust attraction of desired limit 
cycle in the phase plane. Also, Figs. 3-5 show the time 
response of state variables and input. As seen, the 
closed-loop system’s states have the wanted behavior. 
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Fig.2. Attraction of closed-loop system to the desired limit 
cycle 
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Fig.3. Time response of x1 for close-loop system 
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Fig.4. Time response of x2 for close-loop system 
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Fig.5. Time response of the robust control law (28) 

 
Conclusion 
In this paper, a robust technique presented for 
generating the stable oscillations in a class of nonlinear 
systems with matching uncertainties. For this purpose, 

a Lyapunov function which is suitable for stability 
analysis of positive limit sets are introduced. Then, the 
robust state feedback control law was designed for 
generating the stable limit cycles in the closed loop 
system. The proposed method applied to the inertia 
pendulum with parametric uncertainties. Simulation 
results showed the effectiveness of the proposed 
method in generation of stable oscillations in the 
presence of parametric uncertainties. 
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