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Abstract

This paper considers the problem of stable limit
cycles generating in a class of uncertain nonlinear
systems which leads to stable oscillations in the
system’s output. Thisisawanted behavior in many
practical engineering problems. For this purpose,
first the equation of the desirable limit cycle is
achieved according to shape, amplitude and
frequency of therequired output oscillations. Then,
the nonlinear control law is designed such that the
phase portrait of the closed-loop system includes
this stable limit cycle. The design of controller is
based on the Lyapunov stability theorem which is
suitable for stability analysis of the postive limit
sets (the stable limit cycleis a positive limit set for
the nonlinear dynamicl system). The proposed
robust controller consists of two parts. nominal
control law and additional term which guarantees
therobust performance and vanishing the effect of
uncertain terms. Finally, to show the applicability
of the proposed method, an inertia pendulum
system (with parametric uncertainties in its
dynamical equations) is considered and the robust
output oscillations are achieved by creating the
desirablelimit cycle in the close-loop system.

Keywords: Positive limit set, Stable oscillations,
Robust limit cycle, Lyapunov redesign method.

Introduction

Generation of stable limit cycles is one of the most
famous areas in the control engineering. Stable limit
cycles create an oscillatory behavior in the time
response of state variable in the nonlinear systems.
Stable oscillations are desired behavior in many
practical engineering problems like: buck-boost
converters, switching power supplies[1,2], walk cyclic
pattern [3,4], boom-bust cycles [5,6] and catalytic
hyper cycles[7].

Two main approaches have been proposed in
literature to create a stable limit cycle in the phase
trajectories of the nonlinear systems. In the first
approach, limit cycle stabilization is converted to
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output tracking problem by tracking of the periodic
reference signals. For thispurpose, theerror signd (i.e.,
the output deviation from the time-varying reference
signal) and its derivatives up to the relative degree of
system are defined as error vector. Then, by
constructing the error dynamica system, the tracking
problem is converted to asymptotic stabilization of the
time-varying error dynamical system. In this method,
the periodic reference signal should be smooth enough
and its derivations up to the relative degree of system
should be generated. In this way, severa robust
nonlinear and fuzzy controllers are proposed for
different dynamical systems such as underactuated and
feedback linearizable systems [8,9]. Another approach
is based on the stability analysis of posititve limit sets
and extends the Lyapunov stability theorems from the
stability analysis of the equilibrium points to stability
analysis of thelimit sets[10]. In thisaproach, selecting
the appropriate Lyapunov function is related to the
shape of limit cycle and there isno need to generate the
timevarying reference signal and itsderivatives. Based
on this approach, the control law may be designed to
create astable limit cycle (as a positive limit set) in the
closed-loop system. Authors of [11-13], designed such
control laws for special classes of nonlinear systems
using different techniques of nonlinear control such as
CLF, passivity, backstepping and so on. In these
references, the nomina systems are considered and the
designed controllersare not robust against uncertainties
and externa disturbances. However, it is important to
notethat in modeling of the physical systems, there are
uncertain terms due to uncertainty in the parameters,
external disturbances or smplification of the model.
This paper deals with generating robust stable
output oscillation by robust orbital stabilization of a
class of uncertain nonlinear systems in the presence of
uncertainties and external disturbances. For this
purpose, first, by designing an appropriate nonlinear
control law, the stable limit cycle is created in the
nomina nonlinear system. Then, an additional state
feedback term is designed by considering the uncertain
terms, such that the overall state feedback controller
guarantees generating of a stable limit cycle in the
actual closed-loop uncertain nonlinear system. At the
end, to examine the applicability of the proposed
method, the robust stable oscillations are created in a
pendulum with considering parametric uncertainties.
Computer simulations verify the theoretical results.

Problem Statemant
Consider the following uncertain nonlinear system:
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L &)
%, =f (x)+g(x)(u+d(x,u))

where x1 D1 j?{0}1 D isthestatevector, ui j isthe
control input, f:§*® j with f(0)=0 is a smooth
function and g:§2® j is a nonzero function in the
domain of interest. Also d(x,u) isan unknown function
which lumped to gather the model uncertainties and
external disturbances. The objective is to design a
robust state feedback control u=p(x) such the
trajectories of the closed-loop system attract the
prescribed limit cycle S, defined by:

S:{XTDI i (x):rz} 2

where j(x) is a smooth and continuousy
differentiable function. The shape of j (x) and the
value of r is effective in the shape, amplitude and
frequency of the stable oscillations that create in the
output of the closed-loop system. Therefore, j (x) and
r are chosen according to objective to creste a desired
periodic response in the output of the system. For
example, in [14], it declared that if the desirable time
response of x,(t) and x,(t) areasfollows:

Xy @) = Asinwt, X, (t) = Aw, coswt, 3

Then a stable limit cycle with equation j (x)=r?
(where r =Aw, and j (x) =wx2+x2 ), should exist in
the phase trgjectories of the nonlinear second order
system.

In the other hand, since limit cycles are a specific
kind of positive limit sets, therefore, the stability of
limit cycles can be investigated by theorems that
conclude stability of limit sets. The following theorem
extends the Lyapunov stability theory to stability
andysis of limit sets;

Theorem 1 [15]: Consider the following nonlinear
system:

% =F(x) (4

where xT D1 j". Let S1 D be a closed limit set of

(4). If there exists a continuously differentiable

function v (x) such that:

I. Itiszeroondefined limitset S,

Il. It is positive in some neighborhood D of s
excluding s itsdf,

[1l. Its time derivative ( VM(x)=(V /X)F(x) ) is
negativein DI S,

Then, thelimit set S isastable limit set.

Generating Stable Limit Cycles in the Uncertain
Nonlinear Systems
This section, considers creating a stable limit cycle in
the uncertain nonlinear system (1). For this purpose,
first the nominal controller u =k (x) isdesigned for the
nominal system (i.e., d(x,u) =0 ), such that the defined
limit cycle S is attractive in the closed-loop nominal
system. Then, to vanish the effect of uncertainties, the
additional term u(x) , is designed based on the
Lyapunov redesign method, such that the overdl state
feedback u=k(x)+u(x) generates the stable limit
cycle S inthe closed-loop system (1).

Consider the nominal version of nonlinear system
(1) asfollows:

%, =X,
X, = (x)+g(x)u (5)
y =cx

Thecontrol law u =k (x) , which generatesa stablelimit
cycle in the phase trgectories of the nominal closed-
loop system, is given in the following theorem:
Theorem 2 [13]: Consider the system (5). the
following control input generates the stable limit cycle
Sin the closed-loop system:

u=k(x)

=100k i 60- r7)260- o) ©)

where k, >0 . Also h(x) and z(x) are continuous
functionsthat satisfy:

010 ]
h(x) =x, -5 /7 ()
%,

Proof: By putting the controller (6) into (5), the
resulted close-loop systemis:

X, =X,
%, =k (i (x)- 12)z (x)- h(x)

Consider the Lyapunov function candidate as:

(8)

V=20 00- 1)’ 9)

This function satisfies the conditions T and I of
Theorem 1. Calculating the Vi (x) along the trajectories
of the nomina closed-loop system, one has:
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v&(x)z:le(j - r2)>&1+%' SR,

:%1(] - )X, +

ﬂ. : 2 ] 2

ﬂto -12)(-kyG - 13z -h) (10)
=hz( -r?)-hz( -r?)-k,z?{ -r??
=-k,z?( -r?)?

Evidently, v (x) is descending when z(x): 0 and
j (x)-r2t 0 simultaneoudy. Also, it isinvariant when
z(x)=0 or j(x)-r?=0. In [13], it is deduced that
assuming the closed-loop system is detectable with
respect to the output z (x) and unstable at the origin
and using LaSall€'s invariant theorem, the condition I11
in Theorem 1 is dso satisfied for al solutions that not
initialized at the origin. ]

Now consider the uncertain system (1) (i.e., d * 0).
In this case, an additional term will be added to the
previous control law to create robust manner.
Substituting the control input u =k (x)+u(x) in this
system resultsin:

X, =X,
(11)
X, = (x)+g(x)(K(x)+u(x)+d(x,u))

Consider the same Lyapunov function that proposed
for the nominal system in (9) as a Lyapunov function
candidate for the uncertain system. Differentiating this
function along thetrajectories of the closed |oop system
(11) then:

V&:W(X))&1+W(X)>&Z
X, %,
1w W '
= -k -r)z-h d)) (12
ﬂX1xz+ﬂxz( oG -1z -h+gu+d))(12)
w

gu+d)

=-Kk,z?( - r3)*+—
a2 ) x

Therefore

V() =-k,z2(x) (i (x)- r2)" +wu +wd (13)

where w=[1V /9x,]g(x) . The first term in the right-

hand side of (12) is due to the nomina closed-loop
system. The second and third terms are appearded due
to the effect of control term U and the uncertain term
d. Now, thegod isdesigning u to vanish the effect of
d such that wu +wd £0. Suppose that d satisfies the

following inequality:

ld (x,k (x)+U)| £ 1 (x) +kq suplu(x)| (14)

where r (x) is a known positive function of states and
0£k, <1 isapositive constant. It can be deduced that:

wu +wd £Wu(x)+|w|(r (x)+k, sup|u(x)|) (15)
Consider u(x) as
u(x)=- b(X)|\x_|:- b (x) syn(w) (16)

where b(x) isasmooth function and it is chosen such
that,

b(x)? I_(’;) (17)

Thus suplu(x)|=b(x) and:

wu +wd £wu(x)+r (x)|w|+k, supju(x)|jw|
£-b(x)|w|+r (x)|w|+k,b (x)w|
=-b(X)@- ko)w|+r (x)|w] (18)
£-1 (x)|w|+r (x)w|
=0

Consequently:

V=-k,z2( - r?)?+wu+wd (19)
£-k,z%( -r?)?

Thus, with the control law (16), the derivative of v (x)
along trgjectories of the closed-loop system (11) is
negative and al conditions of Theorem 1 are satisfied.
Therefore S is a stable limit cycle for system (11) and
the following robust state feedback control law
guarantees robust attraction of the trajectories of the
closed loop sysem (11) to limit cycle S in the
presence of uncertainties and external disturbances.

u=Kk(x)+u(x)

:ﬁ(-f () k, (i 00~ 1%)2(x)- h(x) (20)

- b(x)sgn(w)

Remark 1: Since discontinuous controllers suffer from
chattering, to alleviate this problem an approximation
of the signum function like a saturation function with a
high slope (1/e ) may be considered.

Creating Robust Output Oscillation in Inertia
Pendulum

In this section, to clarify the design procedure, the
proposed method in robust output oscillation isapplied
to an inertia pendulum. As shown in Fig.1, this system
includes a beam with the length | and atravelling mass
withthe mass m. Also, thereisafrictional force against
the motion of the travelling mass with a friction
coefficient k. The objective is creating the stable
sinusoidd oscillations with amplitude A and frequency
w, inthe output of the system. Therefore, based on the

3
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proposed approach in this paper, this problem is solved
through generating the stable limit cycle.
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Fig.1. The mechanical' structure of pendulum

The mathematical model of this syssem can be
described as [15]:

S

l:XZ
X, =-asinx, - bx, +cu (22)
:X1

<

where a=g,/l, b=k /m and c=1/m*. Also, g, isthe
gravity acceleration. It is assumed that there are
uncertainties in these parameters due to erors in
modeling and measurement. Therefore, itisconsidered
that 9<a<11, 0<b <04 and 055<c<245. Let a, =10,
b, =02 and ¢, =15 as the nomina values of a, b and
c, respectively. Thus, the equations of the system (21)
can be rewritten as follows:

)&l:XZ
%, =-a,sinx, - b, x, +c, (u+d(x,u)) (22)
Yy =X
where:
_a,-a_ b,-b c-¢,
d(x,u)= sinx, + X, + u (23
C C

n n n

Equations (22) have the structure of (1) and the
proposed method can be applied. Now, supposethat the
objectiveisto design arobust state feedback control for
uncertain system (22) to robust attraction of the limit
cycle S defined as:

S:{XT DI i2:4x12+x22:]} (24)

Accordingto (24), j (x) =4x?+x2. Therefore, h(x) and
z(x) may be calculated as:

2 ()= = 5,

l

: ﬂz( ) ()
ih ] (X =8x.X, /2, =4
¥ (x)=x, 1, z (x) X1X2/ X, =4aX,

4

Thus, the nominal controller is:
u=k(x)

oo - )

n

Now, by adding u(x) to the nominal controller and

substituting it in (23), the upper band of d can be
calculated as:

|d| :}qc- asinx1+b"c- bx2+c- ¢

n n n

™ (k(x)+u(x))

-a . b,-b c-c c-c .
& sinx, +——x, + +Uu——"a, Snx,
C c c c,

n n n

c-c
2
CI'\

+

n (+bn X, - 2K, (4x12 +x2- 1)x

b,

L [8K (cz- C”)‘HXH 0, |2 - c,)|
C \ c’

| |
|2
CZ

) @)

clan-a, b N

| c

I ‘ ‘ e ‘HXH

n

e+ o

=

‘ n

+

n n

Also,  w=[TV /1x,]g(x) =2, x,(4x] +x; - )
Consequently:
u=k(x)+u(x)

=é(aﬂ sinx, +b, x, - 2k, (4x12 +x7- 1)x2

- b(x)sat (w/e)

ax,) (28)

In continue, computer simulations are performed

for k,=025 , e=007 and initid condition
X, =[05 1" . Therefore
ld|£1.2]x | +2.5]x | +4.9+0.63\u| (29)

Thus, r(x)=12|x|'+25|x|+4.9, k,=063 and b(x) is
chosen as:

1L5fx( + 25)x] +5
1- 0.63

b(x)= (30)

Fig.2, shows the robust attraction of desired limit
cycle in the phase plane. Also, Figs. 3-5 show thetime
response of state variables and input. As seen, the
closed-loop system’ s states have the wanted behavior.



HAKIMI AND BINAZADEH: STABLE LIMIT CYCLESGENERATING IN A CLASSOF UNCERTAIN NONLINEAR SYSTEMS.....

1 Xo
X2 0
-1
05 0 05
X1

Fig.2. Attraction of closed-loop system to the desired limit
cycle
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Fig.3. Time response of x; for close-loop system
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Fig.4. Time response of x; for close-loop system
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Fig.5. Time response of the robust control law (28)

Conclusion

In this paper, a robust technique presented for
generating the stable oscillationsin a class of nonlinear
systems with matching uncertainties. For this purpose,

a Lyapunov function which is suitable for stability
analysis of positive limit sets are introduced. Then, the
robust state feedback control law was designed for
generating the stable limit cycles in the closed loop
system. The proposed method applied to the inertia
pendulum with parametric uncertainties. Simulation
results showed the effectiveness of the proposed
method in generation of stable oscillations in the
presence of parametric uncertainties.
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