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Abstract 
In this study, a robust controller is designed for 
fuzzy network control systems (NCSs) using the 
static output feedback. Delay and data packet 
dropout affect on the stability of network control 
systems, and therefore, the asymptotic stability 
condition is established considering delay and data 
packet dropout. Delay is time-varying while the 
lower and upper bounds for delay is defined, and 
the number of data packet dropout is unknown. 
Data drift is also an important phenomena that may 
occur when data is transmitted from sensors to the 
controller and from the controller to actuators. This 
phenomenon is modeled as a stochastic variable 
with a probabilistic distribution. For stability 
analyses, Lyapunov–Krasovskii functions, which 
depend on the limits of delay and data packet 
dropout, are used. Results of controller design are 
derived as Linear Matrix Inequalities (LMIs). A 
numerical example is adopted to show the 
effectiveness of the proposed approach. 
 
Keywords: Fuzzy systems; Networked control 
systems; Linear matrix inequalities; Robust control. 
 
1.  Introduction  
In recent years, as well as progress in computer science 
and communication technology, the application of 
network systems is growing [1]. Network control 
systems (NCSs) have been made of sensors, controllers 
and actuators that are connected via a communication 
network. The NCSs have many advantages such as low 
cost for wiring, and the flexibility of operation [2].  

When data is transferred from sensors to the 
controller and from the controller to actuators, this 
transmission may result in delay and data packet 
dropout [3]. In the stability analysis, delay and data 
packet dropout is considered. The value of delay and 
data packet dropout is time-varying, however, an upper 
and a lower bound is considered for it. 
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 The problem of controller design for network 
control systems are studied in [4-6]. It should be noted 
that robustness against modeling uncertainty is an 
essential issue in the theoretical and practical works [7, 
8]. In [9], the time varying uncertainty is considered. 
For the controller design and stability analysis, 
Lyapunov function method is selected while this 
function depends on the limits of delays. The result of 
controller design is derived based on an LMI that 
depends on the bounds of delay. 

Data drift is also an important phenomena, which 
may occur when data is sent out from sensors or the 
controller, in the networked control systems. In other 
words, data drift causes a deviation in the value of data 
when it is transmitted from sensors to the controller or 
from the controller to actuators. Accordingly, data drift 
is a virtual phenomenon that should be considered in 
the stability analysis and controller design in the 
network control systems. In [10] fault detection of 
network control systems considering data drift is 
addressed. In this reference, data drift phenomena of 
each sensor have been described by an individual 
stochastic variable with different probabilistic density 
functions. 

Output and state feedback can be exploited for the 
control of network systems. For example in [4, 6, 11] 
the output feedback and in [2, 12] the state feedback is 
utilized, respectively. 

Despite of development in network control systems, 
the analysis of nonlinear network control systems is 
still an open field for researchers. One approach to 
analyze a nonlinear network control system is the use 
of the Takagi-Sugeno fuzzy models. For the stability 
analysis of these systems, fuzzy Lyapunov functions 
are employed. Since the uncertainty is an inseparable 
part of modeling, a robust fuzzy controller should be 
designed such that the stability of the system is 
guaranteed [13, 14]. 

In this paper, the stability of a nonlinear network 
control system with time- varying uncertainty is 
studied. The T-S fuzzy approach is used to model the 
nonlinear system, and the output feedback is employed 
to stabilize the system.  In the stability analysis, delay, 
data packet dropout, and data drift are considered. Data 
drift considered as stochastic variable that satisfies a 
probabilistic distribution. A suitable fuzzy Lyapunov 
function is exploited to derive the results as an LMI. 
This LMI depends on the limits of delay, data packet 
dropout, data drift expectation, and data drift variance. 
Simulations illustrate the feasibility of the established 
Theorem. In other words, the main contribution of this 
paper is the robust controller design for fuzzy network 
control systems considering delay, data packet dropout, 
and data drift. 

The rest of this paper is organized as follows. In 
Section 2 the structure of closed loop fuzzy network 
control system is explored.  The problem of controller 
design for network control systems is addressed in 
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Section 3. A numerical example is adopted to show the 
effectiveness of the proposed approach. Finally, the 
paper is concluded in Section 5. 

Notation: The notations used throughout the paper 
are fairly standard. Iand 0represent identity matrix and 
zero matrix; {.}diag represents a block 
diagonal matrix. The notation 0A >  means that 
A is a real symmetric and positive definite. The 
symbol * denotes the elements below the main diagonal 
of a symmetric block matrix.  {}.Ε denotes the 
expectation. 
 
2. PROBLEM STATEMENT 
Considering the structure of network control systems 
that is shown in Fig. 1, the model of a network control 
system is described as follows: 

( 1) ( ( )) ( ( )) ( ( ))
( ) ( )

x k f x k g u k m w k
y k Cx k

+ = + +
=  

(1) 

where 1( ) nx k ×∈ ¡ is the state vector, ( )u k  is the control 
action, 1( ) my k ×∈ ¡  is the measured output, 

2 0( ) [ , )w k L t∈ ∞  is the disturbance input, (.), (.), (.)f g m , 
and (.)h are nonlinear terms. 
 

 
Fig. 1. Structure of network control system 

 
By modeling the nonlinear system with a fuzzy system, 
the plant is described as: 
 
Plant rule i: IF 1( )kθ is 1

iW , . . . , ( )n kθ is n
iW ,THEN 

( )
1

( 1) ( ) ( ) ( ) ( )

( ) ( )

r

i i i i
i

x k A x k B u k M w k

y k Cx k

µ θ ∆
=

+ = + +

=

∑

 

(2) 

x(k) (k), [ ,0], 1,2,...,Mk i rϑ τ= = − =  
where Mτ is the upper bound of delay, (k)ϑ  is the initial 
state condition, and 1 2, ,..., nθ θ θ are premise variables. 

, , ,i i i iA B M C∆ are known matrixes with appropriate 
dimension. Moreover, ( )iµ θ  is defined as: 

1

1

1

( ( ))
( ( ))

( ( ))

( ( )) ( ( ))

( ( )) 0, ( ( )) 1

i
i r

ii
g

j
i i

j

r
i ii

w k
k

w k

w k W k

k k

θ
µ θ

θ

θ θ

µ θ µ θ

=

=

=

=

=

≥ =

∑

∏

∑  

(3) 

The system uncertainties are described as follows: 

( )
i i i

i i i

A A A
A L F k E

∆ = + ∆
∆ =  

(4) 

where iL and iE  is known matrixes, and ( )F k  is a time 
varying matrix that satisfies ( ) ( ) , 0TF k F k I k≤ ∀ > . 
When data is sent out from sensors to the controller and 
from the controller to actuators, these transmissions 
may result in delays that are named scτ , caτ , 
respectively. These delays are time varying that the 
upper and lower bounds are known. Moreover, in data 
transmission process, data may not be received to the 
destination, this phenomenon is named data packet 
dropout. Delay and data packet dropout affect on 
system stability, and may cause the instability of the 
NCSs, therefore, considering delay and data packet 
dropout is essential in the stability analyses. 
Let it is the time that a datais received by actuator, 

1[ , )i ik t t +∈ and ( ) ( ) ( )sa sc cak k kτ τ τ= + and
( ) ( )i sck k t kτ τ− +@ , therefore, fuzzy control law 

considering delay and data packet dropout is given by: 
 
IF 1( )kθ is 1

jW , . . . , ( )n kθ is n
jW ,THEN: 

1

( ) ( ( )) ( ( ))
r

j j
j

u k k K Cx k tµ θ τ τ
=

= − −∑
 

(5) 

in which delay and data packet dropout are bounded: 
( ) (1 )sa p sak n hτ τ τ< < + +  

(6) 

where ,sa saτ τ is the lower and upper bounds of delay 
from sensors to actuators, pn is the maximum number 
of sequential packet dropouts from sensors to actuators, 
and h is the sampling period of sensors. 

Data drift may deviate the value of data that is sent, 
and it occurs when data is transmitted from sensors to 
the controller and from the controller to actuators. If 
data drift is considered in the close-loop system, the 
control law is changed as: 

1

( ) ( ( )) ( ( ))
r

j j
j

u k k K Cx k tµ θ τ τ
=

= − Π −∑
 

(7) 

where Π  is the data drift parameter that is unrelated to 
the disturbance. It is assumed that the probabilistic 
density function ( )F Π  of Π  lie in the interval [0, 1]. 
The mathematical expectation and variance of Π  are 
α and 2β , respectively.  

Substituting the control law (7) in the system, 
results in the close-loop system as: 

System Sensor Actuator 

Network 
Delay && Data packet dropout && Data drift 

Controller 
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( )
1 1

( 1) ( ) ( ( ))

( ) ( ( )) ( ))

r r

i j
i j

i i j i

x k k

A x k B K Cx t k M w k

µ θ µ θ τ

τ

= =

∆

+ = − ×

+ Π − +

∑∑
 

(8) 

With attention to system (8), we have: 

( )(
)

1 1

( 1) ( ) ( ( ))

( ) ( ( ))

( ( )) ( ))

r r

i j
i j

i i j

i j i

x k k

A x k B K Cx t k

B K Cx t k M w k

µ θ µ θ τ

α τ

α τ

= =

+ = − ×

+ Π − −

+ − +

∑∑

 

(9) 

Lemma 1 [4]: For any positive-definite matrix n nR ×∈¡
, and considering ( ) [0, ]kτ τ∈ , ( )kτ +∈ ¢ , and defining 

( ) ( 1) ( )v k x k x k= + − , we have: 
1

( )
( ) ( )

[ ( ) ( ( )] [ ( ) ( ( )]

k
T

i k k

T

v i Rv i

x k x k k R x k x k k
τ

τ

τ τ

−

= −

− ≤

− − − − −

∑
 

Lemma 2 [13]: Considering real matrixes 1 2 3, ,Ξ Ξ Ξ

with appropriate dimensions that satisfy 3 3
T IΞ Ξ ≤ , 

then: 
1

1 3 2 2 3 1 1 1 2 2 0T T T T Tε ε ε−Ξ Ξ Ξ + Ξ Ξ Ξ ≤ Ξ Ξ + Ξ Ξ ∀ >  
 
Lemma 3 [15]: thefollowing condition: 

1 1

( ( )) ( ( )) 0
r r

i j ij
i j

x k x kµ µ
= =

Γ <∑∑  

is equal to: 
0, 1,2,...,

2 0,
1

ii

ii ij ji

i r

i j
L

Γ < =

Γ + Γ + Γ < ≠
−  

 
3. MAIN RESULT 

In this section, the stabilization condition of fuzzy 
network control systems is investigated. A robust 
controller for fuzzy systems considering delay, data 
packet dropout, and data drift is developed. 
 
THEOREM 1. The closed-loop system (9) is 
asymptotically stable with upper and lower bounds 

,M mτ τ  for delay and data drift expectation and variance 
2,α β , if the following LMI is satisfied for any 
0, 0, 0, 0i i i iP Q R ε> > > > : 

11 12

22

0
*

ij ij

i

 Ξ Ξ
< Ξ 

 

(10) 

where: 
 

( )

11

12

22

( )
*
* * 2 0
* * * 2

R ( 1)
0 0 0

0
0 0
0 0

2 2

T T
i i i i

T T T T
ij i i j i M j i

i

i

T
i i i M m i i i

T T T T T T
j i M j iij

i i

i i

i
i i i

R A A I
Q R K B K B

P I
R I

P Q E E

C K B C K B
PL
PL

diag P I R I

ψ
α τ α

ψ τ τ ε

β τ β

ε

 −
 

− − Ξ = −
 

−  
=− − + − + +

 
 
 Ξ =
 
 
 

Ξ = − − −

 

 
Proof:Assume that ( ) ( 1) ( )v k x k x k= + − , and define a 
Lyapunov functions as: 

1 2 3 4

1
1

2
( )

1

3
1

1 1

4

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

m

M

M

T

k
T

i k k

k
T

j i k j

k
T

M
j i k j

V k V k V k V k V k
V k x k P x k

V k x i Q x i

V k x i Q x i

V k v i R v i

τ

τ

τ

τ

τ

−

= −

− −

=− + = +

− −

=− = +

= + + +

=

=

=

=

∑

∑ ∑

∑ ∑
 

(11) 

where: 

1

1

1

( ) 0, 1,2,...,

( ) 0, 1,2,...,

( ) 0, 1,2,...,

r

i i i
i

r

i i i
i
r

i i i
i

P P P i r

Q Q Q i r

R R R i r

µ θ

µ θ

µ θ

=

=

=

= > =

= > =

= > =

∑

∑

∑
 

(12) 

By some computation, one can obtain: 
( ){ } { }1 ( 1) ( 1) ( ) ( )T TV k x k P x k x k P x kΕ ∆ = Ε + + −

 (13) 
and 

{ }2

1

( ) ( ) ( ( )) ( ( ))

( ) ( )
m

M

T T

k
T

i k

V x k Q x k x k k Qx k k

x i Q x i
τ

τ

τ τ
−

= + −

Ε ∆ ≤ − − −

+ ∑  
(14) 

and 
{ }

{ }
3

1

( ) ( ) ( ) ( )

( ) ( )
m

M

T
M m

k
T

i k

V k x k Q x k

x i Q x i
τ

τ

τ τ
−

= − +

Ε ∆ = −

− ∑  
(15) 

and 

{ }
1

2
4 ( ) ( ) ( )( ) ( )

M

k
T T

M M
j k

V v k R v k v j R v j
τ

τ τ
−

= −

  Ε ∆ ≤ Ε − 
  

∑
 

Now, using Lemma 1, we have: 
{ } { }2

4 ( ) ( )

[ ( ) ( ( )] [ ( ) ( ( )]

T
M

T

V v k R v k

x k x k k R x k x k k

τ

τ τ

Ε ∆ ≤ Ε −

− − − −  (16) 

Based on Lyapunov approach, the system (9) is stable 
if:  
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{ }
{ }1 2 3 4

( )

( ) ( ) ( ) ( ) 0

V k

V k V k V k V k

Ε ∆ =

Ε ∆ + ∆ + ∆ + ∆ <  (17) 

Therefore, we have: 
{ } {

{ }

}

1

1

2

( ) ( 1) ( 1) ( ) ( )

( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( )

( ) ( ) [ ( ) ( ( )]

[ ( ) ( ( )] ( ) ( ) 0

m

M

m

M

T T

T T

k
T T

M m
i k

k
T T

i k

T
M

V k x k P x k x k P x k

x k Q x k x k k Q x k k

x i Q x i x k Q x k

x i Q x i x k x k k

R x k x k k v k Rv k

τ

τ

τ

τ

τ τ

τ τ

τ

τ τ

−

= + −

−

= − +

Ε ∆ < Ε + + −

+ − − × −

+ + −

− − − −

× − − + <

∑

∑

(18) 

Define ( ) ( ) ( ( ))T T Tk x k x k kξ τ = −  , then, we can 
conclude that:  

1 1 1 1 1

( ) ( ( )) ( )

( ( )) ( ) ( ) ( ) 0

r r r r r

i j i
i j i j i

T
j i ij

k

k k k

µ θ µ θ τ µ θ

µ θ τ µ θ ζ ζ
= = = = =

−

× − Ω ≤

∑∑∑∑∑
 

(19) 

where: 
11 12

22*

ij ij

ij ij

 Ω Ω
Ω =  Ω   

(20) 

11
2

2
12

(1 )

( ) ( ) R

( )

ij T
i i i i M m i

T
M i i i i

ij T T
i i j M i i i j i

A P A P Q

A I R A I
A P B K C A I R B K C R

τ τ

τ

α τ α

∆ ∆

∆ ∆

∆ ∆

Ω = − + + −

+ − − −

Ω = + − +

 

( ) ( )
( ) ( )

22

2

Tij
i i i j i i j

T

M i j i i j

Q R B K C P B K C

B K C R B K C

α α

τ α α

Ω = − − +

+
 

( ) ( )
( ) ( )

2

2 2

T

i j i i j

T

M i j i i j

B K C P B K C

B K C R B K C

β

τ β

+

+
 

If 0ijΩ <  the condition (17) is satisfied, then using 
Schur complement for 0ijΩ < , we have: 

11 12

22

0
*

ij ij

i

 Π Π
< Π   (21) 

where: 

( )

11
1

12

1 1 1
22

R (1 )
*
* *

( ) 0 0

0 0 0

T
i i M m i i i

ij T T T
i i j i

i

T
i

ij T T T T T T T T T
M j i j i M j i

i
i i i

P Q R A
Q R C K B

P

A I
C K B C K B C K B

diag R P R

τ τ
α

τ α β τ β

∆

−

∆

− − −

 − − + + −
 

Π = − − 
 − 
 −
 

Π =  
 
 

Π = − − −

 
 
Now, considering equation 1( ) ( ) 0TP I P P I−− − > , 

1( ) ( ) 0TP I P P I−− − > and using Lemma 2 for uncertain 
terms, the LMI (10) is obtained. The proof of Theorem 
1 is complete.                                                                 ■ 
Remark1. For solving LMI (10), Theorem 3 can be 
used to obtain variable matrix. 

 
4. SIMULATION RESULTS 

In order to evaluate the performance of proposed 
method a fuzzy network control system with two rules 
is considered: 

( )
1

1 2

( 1) ( ) ( ) ( ) ( )

( ) ( )
1.2 -0.2 1.2 -0.2

,
0.1 -0.4 0.2 0

1.3 1.5 0.5 0.6
B1= , B2= , M1= ; M2= ,

0.7 1 0.7 0.5
C=[10,-2];

r

i i i i
i

x k A x k B u k M w k

y k Cx k

A A

µ θ ∆
=

+ = + +

=

   
= =   

   
       
       
       

∑

 

The membership function defines as: 

11 1 2 1 1 1( )

1( ( )) , ( ( )) 1 ( ( ))
1 x kx k x k x k

e
µ µ µ−= = −

+
 

For uncertain terms assume that: 

1 2

0.2 k, E1=E2 [0.1,0.2], F(k)=sin( )
0.2 6

L L π 
= = = 

 

 

The upper and lower bands of delay are 1, 0, 
respectively, and the initial condition is 

[ ]x (0) 10 5 TT = . In this paper two conditions for data 
drift are considered, in condition 1, it is assumed 
thatdata drift occurs with the following probability: 

0.1 0.9
( ) 0.8 1.0

0.1 1.1
F

Π =
Π = Π =
 Π =

 

It is clear that the 1α = and 2 0.002β = . 
In condition 2, it is assumed thatdata drift occurs with 
the following probability: 

0.1 0.8
( ) 0.85 1.0

0.05 1.2
F

Π =
Π = Π =
 Π =

 

Therefore, 0.99α = and 2 0.0059β = . Using Theorem 1, 
the controller is obtained. 
Based on condition 1 the controller parameters are 
calculated as 1 2-0.0272,  -0.0272K K= = , and based on 
condition 2 controller parameters are 1 -0.0322K =  and 

2  -0.0300K = . 
The state of closed-loop system based on condition 1, 
is shown in Fig. 2, and the control law is shown in Fig. 
3.  
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Fig. 2. State of the close-loop system based on condition 1 

 
Fig. 3. Control law based on condition 1 

 

 
Fig. 4. State of the close-loop system based on condition 2 

 

 
Fig. 5. Control law based on condition 1 

 
Moreover, the state of closed-loop system and control 
law based on condition 2 are shown in Fig. 4 and Fig. 
5, respectively. Obviously, the system is stable and 
control law is acceptable. Therefore, the proposed 
method is able to handle delay, data packet dropout, 
and data drift simultaneously. 
 
5. CONCLUSIONS 
In this paper,the problem of controller design for 
nonlinear network control systems, which is modeled 
by fuzzy systems, is investigated. Since the modeling 
uncertainty is unavoidable, the stability is guaranteed 
using a robust controller. In the stability analysis, 
delay, and data packet dropout is considered. 
Moreover, data drift, which might change the value of 
data that is transmitted through the network, is also 
considered in the design procedure. For the stability 
analysis, the fuzzy Lyapunov function is used, and the 
result is developed based on an LMI that depends on 
the limits of delay, data packet dropout, and 
expectation and variance of data drift. Simulation 
results verify the good performance of the proposed 
approach. 
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