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Abstract

This paper presents a parameterization method to
optimal trajectory planning and dynamic obstacle
avoidance for Omni-directional robots. The aim of
trajectory planning is minimizing a quadratic cost
function while a maximum limitation on velocity
and acceleration of robot is considered. First, we
parameterize the trajectory using polynomial
functions with unknown coefficients which
transforms trajectory planning to an optimization
problem. Then we use a novel method to solving the
optimization problem and obtaining the unknown
parameters. Finally, the efficiency of proposed
approach is confirmed by simulation.
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1. Introduction

Trajectory optimization is one of the most important
issuesin the research on mobile robots. A mobile robot
must be able to move in hisworkspace from any initial
location to any specific goal location while minimizing
a performance index and avoiding collison with
obstacles. The trajectory optimization and optimal
control problem terms can be used interchangeably.
For classicad problems and some special weakly
nonlinear low dimensiona systems, the solution can be
obtained analytically using the necessary and sufficient
conditionsof optimality. In[1] and[2], anew analytical
solution and a reduced-order analytical solution to
mobile robot trajectory generation in the presence of
moving obstacles are proposed. For dynamic systems
described by strongly nonlinear differential equations,
numerical methods must be used to obtain solution of
optimal control problem. A classification of various
techniques for solving trajectory optimization
problems numericaly has been described in [3].
Numericd methods for solving optimal control
problems are divided into two main groups: indirect
and direct methods. A Survey of direct and indirect
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methodsfor trajectory optimization are presented in [4]
and [5]. In an indirect method, the calculus of variation
is used to determine the first-order optimality
conditions. Indeed, the indirect approach solves the
problem indirectly by converting the optimal control
problem to a boundary-value problem [6]-[9]. In direct
approaches the optimal control problem istransformed
into a nonlinear programing problem (NLP). The
advantage of the direct approach is that the user does
not have to be concerned with adjoint variables or
switching structures. One disadvantage of direct
methods is that they produce less accurate solutions
than indirect methods [4]. The approaches of
converting an optimal control problem to a NLP are
classfied in three broad categories. State
parameterization methods, control parameterization
methods and state and control parameterization
methods. There are severd methodswhich utilize these
three approaches to transcribe an optima control
problem to aNLP. Examplesinclude direct collocation
methods [10-12], direct single and multiple shooting
methods [13-15].

In this paper we deal with nonlinear differential
equations and constraints so employ a numerical
method to trajectory optimization. To transformation of
optimal control problem to NLP, use a direct state
parameterization approach and present an optimal
polynomial trajectory planning and obstacle avoidance
for Omni-directional mobile robots. The trgjectory
must be able to move the robot from any specificinitia
position to any known desired position. An optimal
performance index is set up to parameterized trajectory
stays close to the shortest path and minimum energy.
Maximum velocity and acceleration constraints of
robot which exist in practica take into account.
Combining with the obstacle avoidance, the practical
optimal collusion-freetrajectory can be generated. This
trgjectory is presented by a parameterized polynomial
which is obtained from solving an optimization
problem. This paper is aong the same line of the work
[17] with a different approach to solve optimization
problem. This solution method is so faster than
previous solution method.

The paper is organized as follow. Problem
statement and model of the Omni-directional robot is
presented in section Il. In section I, with some
assumption, formulation of the problem is stated
completely. A polynomial tragjectory planning and
obstacle avoidance is proposed in Section V.
Trgjectory planning and obstacle avoidance procedure
isexamined by simulationsin section V and finaly, the
paper is concluded in section VI.
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2. Problem statement and robot model
A. Problem statement
Find a trajectory between two points A and B which
with considering maximum limitation on ve ocity and
acceleration of robot, avoids collusion with obstacles
and minimizes a performance index as shown in Figure
1

B
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Figure 1. Mobile robot in dynamic environment with
moving obstacles

B. Robot’ s model
In [17], we used a linear state space model as
follows:

X(t) = AX () + Bu(t), (1)
Where
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Which x(t) and x,(t) are positions of robot in x
and y Cartesian coordinates, also xg(t) and x,(t) are
velocities of robot in x and y axis respectively. u(t)
and u,(t) arethe control signalsin x and y axistoo.

3. Problem for mulation and assumptions
To obtain optimal trgjectory, we often need to solve an
optimal control problem. The problem to be solved is:
Find the inputs to a dynamical system intT [ty,t]
which can make minimum the quadratic performance
index while satisfying any congtraints on the trgectory
planning. It can be described into mathematical forms
which are written asfollows:

\ T \
ﬁ:ﬁ ming = 18X (X (t)gdt,

N OO

: st X(t) = AX(t) + Bu(t), 4

i X(tg) = Xo, X(ta) = Xy,

16 (XO.%0,U®.H) £0
Where X(t) is state vector, u(t)is input vector,
QI R""isasemi-definitematrix, RT R" " isadefinite
meatrix, Xy is initial condition vector, X; is final
condition vector and ¢ (X(t), X(t),U(t),t) £0 are linear
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or nonlinear inequality constraints of states, inputs and
their derivatives.

To trgectory planning in this paper, we have three
set of nonlinear inequality constraints due to obstacle
avoidance, maximum veocity constraint and
maximum accel eration constraint.

Nonlinear inequality constraints due to obstacle
avoidance are asfollows:

W (X(®),)2 0,j =1,2,....m (5)

Where m is number of obstacles which robot must
avoid collusion with them.

Also Nonlinear inequality constraints due to
maximum velocity and acceleration constraints are as
follows:

1
0B+ x51)2 £ vy ©)
1
CHORS HOE. )
Where v, and a, are maximum limitation on

velocity and acceleration of robot respectively.

In next subsection we make the following
assumptions on the trgjectory planning.
Final velocity of robot must be zero to avoid
discontinuities in the solution when reaching close to
the desired final state [16].
All obstacles are consdered as circular robots with

T
radi usr;, center of (xclj x%_ ) and constant velocity

T
(Vcli V%i) '

Weight of states and energy in the performance index
be egual. Then we consider Q and R as elementary

matrixes with appropriate dimensions.

By these assumptions, mathematica form of
optimal control problem associated with the trajectory
planning can be rewritten as follows:
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Where (xClj X, ) and (volj Ve,
position of obstacles and constant vel ocity of obstacles
respectively.

)
) are initial

4, Polynomial trajectory planning and obstacle
avoidance

A. Polynomial trajectories

In this section firstly, polynomia trgjectories are
presented. Two polynomials are used for each of the
Cartesian coordinates xand y asfollows:

X (1) = X(t) = ag +agt +at? +...+at", (9
X(t) = y(t) = by +bit +byt> +..+byt"  (10)

Where ay,q,...,a,and by, by, ..., b, are the unknown
coefficients of the polynomials.

Then from (1)-(3) we get:

X3(t) = K(t) = a +2apt +...+ na,t" Y (11
Xg(t) = Y(0) =y + 2opt +...+ 0t ™D, (12)

W (t) = 2a, +6agt+...+n(n- Dat™?  (13)

Up(t) = 20, +Bby t+...+n(n- Dot (14)

In the next, we choice appropriate degree of
polynomia trajectories such that all boundary
conditions and constraints can be satisfied.

Since we have eight boundary conditions, we need
eight coefficients to fulfill them. Moreover for
minimization of performance index subject to the
congtraints, at least two coefficientsarerequired. Sowe

use afourth-order polynomials for each trgjectory. We
get:

() = ag +agt + at? +agtS +ayt?, (15)

%o (1) = by + byt +byt? + bt +,t%, (16)
X3(t) = K(t) = & + 2aot +3agt? + da,t>, (17)
X4 (t) = Y(t) = by + 20yt +3bat? + Ayt (18)

y (t) = &(t) = 2a, +6ag t+12a, t2, (19)

Uy () = §i(t) = 2b, +6by t+120, t2 (20)

B. Transformation of the optimal control problem to
parametric optimization problem
After substituting (15)-(20) in (8), the optima
control problen (8) converts to a parametric
optimization problem with ten unknown coefficients.
As mentioned, coefficients ay,a,a,,a3,bg,b;,b,and
by are obtained to satisfy boundary conditions. Then
the problem can be rewritten as follows:
} ?(f(a4,b4,t) 0
! G+33 (g, by ) F
i 2 (a4, b, 1)*
iminJ :léf g+x3(a4 4 )+dt,
: 2% edlacbs 0t
: G (au.by, 1) £
i Erd a0
| st: (21)
T
|
I[><1(514 By, (%, +Vg t)] +
T
T
T
T
T
I

[Xa(8a.bs,0)- (x, *+ve, 122 12,
1
(%3 (2q.bg., 1) + X5 (84, by, ]2 £ Vi,
1
183 (4.0 0+ K3 3. Dy, 12 £
C. Solution method of parametric opti mization problem
In [17], we used an approach for obtaining the
optimization problem which solve the problem in
whole of time (ty,tf). this make increase simulation

time. In this paper we utilize a novel approach that
decrease simulation time dramatically. In previous
method we check dl the inequality constraints for
throughout of interval of time. Here we check these
constraintsonly for oncein all thetimeinterval. Firstly,
we convert the constraints to non-positive or non-
negative constraints. Then determine minimum and
maximum of them. For checking non-postive
constraints, we compute maximum of the constraints
on time and unknown coefficients are obtained such
that the minimum be non-positive. Also For checking
non-negative constraints, maximum of the constraints
are computed on time and unknown coefficients are

15



MODARESJOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.3, FALL 2012

acquired such that the maximum be non-negative.
Therefore, (21) can be modified asfollows:

?(f(a4,b4,t) 9

9+x§(a4,b4,t)j
2 :

minJ S 1 (a4’b4’t)+dt
2% g+x§(a4,b4,t)j
g+u12(a4,b4,t)j
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! x5 (aq.by. 1) 0
T maxg 1 -£0,
i §+X421(a4,b4,t)]2- VB
P B (anbat) 0
i max & -£0

1
i §+ﬁ§(a4,b4,t)]2 - amp

5. Simulation results
Toillustrate the efficiency of the proposed method, we
have performed Matlab simulationsto generate optimal
collision-free tragjectories. Also to better survey, we
compare smulation results in present method and
previous method was presented in [17].
A. Scenario 1

A representative smulation is discussed, where the
following initial and final conditionsis used:

X, = %o, =0m, X, =2m,x12 =1m,
X0, =%, = om/s
Maximum velocity and acceleration of robot are
equal to:

Vi =21MV'S, 3y, =3m/ 2, (24)
Also, timeinterval isconsidered tT [0 4]. Tablel

shows simulation data for optimal tragjectory planning
and multi obstacle avoidance.
Obtained polynomial functions are as follows:

(23)

Table 1. Multi obstacle avoidance simulation data (Scenario 1)

. Position Velocity Radius
Positions (m) (m/s) (m)
and
Velocities of
obstacles X Xc, Ve, Ve,
Obstacle 1 1 13 018 0.19 0.16
Obstacle 2 0.75 1 01 | -0.25 0.18
Obstacle 3 04 | 08 | 0.2 -04 0.12
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Figure 2. Diagrams of position, velocity and acceleration of
robot for optimal trgjectory planning and multi moving
obstacle avoidance (scenario 1)
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% (t) = - 0.1546t2 +0.2023t3 - 0.0331t*,  (25)
%o (t) = 0.2195t% - 0.0473t3 +0.002t*,  (26)
X3(t) =0.3092t +0.6069t2 - 0.1324t3,  (27)

%,4(t) = 0.439t - 0.1417t% +0.008t°>, (28)
Wy (t) = - 0.3972t%+1.2138t - 0.3092, (29)
Uy (t) = §i(t) = 0.024t% - 0.2835t +0.439  (30)
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Figure 2 depicts diagrams of position, velocity and
acceleration of robot. The curve of optimal trgectory
and multi moving obstacle avoidance is shown in
Figure 3. Totd velocity and acceleration of robot are
illustrated in Figure 4.
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Figure 3. Optimal trgjectory and multi moving obstacle
avoidance (scenario 1)
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Figure 4. Totd velocity and acceleration of robot (scenario 1)

As can be seen in Figure 3, the robot avoids
collison with multiple moving obstacles by two
method effectively.

As shown in Figure 4, limitations on maximum
velocity and acceleration of robot are satisfied.

Run time of simulation for new method is equal to
0.1s and this time for previous method was obtained
11.63s. Furthermore, the performance index vaue for
new method and previous method are equal to 4.69 and
4.48 respectively.

B. Scenario 2

In this scenario, we consder initial and fina

conditions as follows:

)(01:)(02 :Om, )(]i:)(12 :3ml

31
x03:x04=0m/s (31)

Maximum velocity and acceleration of robot are
equal to:

Vi =2m/'s, am:3m/52, (32

Time interval is considered tT [0 5]. Simulation

data for trgectory planning and multi obstacle
avoidance are given in Table 2.

Table 2. Multi obstacle avoidance smulation data (Scenario 2)

Positions | position Velocity | Radius

and (m) (m/s) (m)
Velocities

of vV V
obstacles o % a “
-09
Obstaclel | 1.5 0 0.7 0.22
-05

Obstacle2 | 0.2 2 0.3 0.25

Positions | position Velocity | Radius
and (m) (m/s) (m)
Velocities

of Y V,

obstacles o | % @ K

-0.3

Obstacle3 | 25 | 05 0.6 0.15
Obstacle4 | 3 3 | 703 -035 4,

Obtained polynomial functions are asfollows:

% (t) = 0.4825t2 - 0.097t> +0.0049t*, (33)
%o(t) = 0.13t? +0.044t> - 0.0092t*, (34)
X3(t) = 0.965t - 0.291t2 +0.0196t>, (35)

X, (t) = 0.26t +0.132t2 - 0.0368t>, (36)
Uy (t) = 0.0588t2 - 0.582t +0.965, (37)
Uy (t) = - 0.1104t%+0.264t +0.26 (38)

Figure 5 shows diagrams of position, velocity and
acceleration of robot. The curves of optimal trgjectory
and total velocity and acceeration of robot are
illustrated in Figure 6 and Figure 7.
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Figure 5. Diagrams of position, velocity and acceleration of
robot for optima trgjectory planning and multi moving
obstacle avoidance (scenario 2)
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Figure 6. Optimal trajectory and multi moving obstacle
avoidance (scenario 2)
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Figure 7. Totd velocity and acceleration of robot (scenario 2)

Asshownin Figure 6 and Figure 7, the robot avoids
collison with multiple moving obstacles by two
method effectively while limitations on maximum
velocity and acceleration of robot are satisfied.

Simulation time for new method is 0.05s, whilst
Simulation time for previous method was obtained
9.35s. Also the value of cost functions for new method
and previous method are 19.45 and 16.3 respectively.
On the other side, control effort for new method is
lower than previous method.

7. Conclusion

In this paper was presented a procedure for optimal
tragjectory planning and obstacle avoidance of Omni-
directiona mobile robots in dynamic environments
using polynomials of fourth degree. The obtained
trajectory minimizes a quadratic performance index
while satisfying velocity and acceleration constraints.
First, by choice of appropriate objective function the
problem was formulated as an optimal control problem.
After that, by parameterization of trgectories, the
problem was converted to a nonlinear programing
problem. Then, to solve the problem a new method has
been employed. Finally, a simulation has been
performed and effectiveness of proposed method was
illustrated by simulation results. The most significant
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advantages of this method are that it reduces
implementation time markedly and is much low cost
computationally.
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