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Abstract 
This paper presents a parameterization method to 
optimal trajectory planning and dynamic obstacle 
avoidance for Omni-directional robots. The aim of 
trajectory planning is minimizing a quadratic cost 
function while a maximum limitation on velocity 
and acceleration of robot is considered. First, we 
parameterize the trajectory using polynomial 
functions with unknown coefficients which 
transforms trajectory planning to an optimization 
problem. Then we use a novel method to solving the 
optimization problem and obtaining the unknown 
parameters. Finally, the efficiency of proposed 
approach is confirmed by simulation. 
 
Keywords: obstacle avoidance; Omni-directional 
robot; optimization problem; polynomial 
trajectory; trajectory planning. 
 
1. Introduction 
Trajectory optimization is one of the most important 
issues in the research on mobile robots. A mobile robot 
must be able to move in his workspace from any initial 
location to any specific goal location while minimizing 
a performance index and avoiding collision with 
obstacles. The trajectory optimization and optimal 
control problem terms can be used interchangeably. 
For classical problems and some special weakly 
nonlinear low dimensional systems, the solution can be 
obtained analytically using the necessary and sufficient 
conditions of optimality. In [1] and [2], a new analytical 
solution and a reduced-order analytical solution to 
mobile robot trajectory generation in the presence of 
moving obstacles are proposed. For dynamic systems 
described by strongly nonlinear differential equations, 
numerical methods must be used to obtain solution of 
optimal control problem. A classification of various 
techniques for solving trajectory optimization 
problems numerically has been described in [3]. 
Numerical methods for solving optimal control 
problems are divided into two main groups: indirect 
and direct methods. A Survey of direct and indirect 
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methods for trajectory optimization are presented in [4] 
and [5]. In an indirect method, the calculus of variation 
is used to determine the first-order optimality 
conditions. Indeed, the indirect approach solves the 
problem indirectly by converting the optimal control 
problem to a boundary-value problem [6]-[9]. In direct 
approaches the optimal control problem is transformed 
into a nonlinear programing problem (NLP). The 
advantage of the direct approach is that the user does 
not have to be concerned with adjoint variables or 
switching structures. One disadvantage of direct 
methods is that they produce less accurate solutions 
than indirect methods [4]. The approaches of 
converting an optimal control problem to a NLP are 
classified in three broad categories: State 
parameterization methods, control parameterization 
methods and state and control parameterization 
methods. There are several methods which utilize these 
three approaches to transcribe an optimal control 
problem to a NLP. Examples include direct collocation 
methods [10-12], direct single and multiple shooting 
methods [13-15]. 

In this paper we deal with nonlinear differential 
equations and constraints so employ a numerical 
method to trajectory optimization. To transformation of 
optimal control problem to NLP, use a direct state 
parameterization approach and present an optimal 
polynomial trajectory planning and obstacle avoidance 
for Omni-directional mobile robots. The trajectory 
must be able to move the robot from any specific initial 
position to any known desired position. An optimal 
performance index is set up to parameterized trajectory 
stays close to the shortest path and minimum energy. 
Maximum velocity and acceleration constraints of 
robot which exist in practical take into account. 
Combining with the obstacle avoidance, the practical 
optimal collusion-free trajectory can be generated. This 
trajectory is presented by a parameterized polynomial 
which is obtained from solving an optimization 
problem. This paper is along the same line of the work 
[17] with a different approach to solve optimization 
problem. This solution method is so faster than 
previous solution method. 

The paper is organized as follow. Problem 
statement and model of the Omni-directional robot is 
presented in section II. In section III, with some 
assumption, formulation of the problem is stated 
completely. A polynomial trajectory planning and 
obstacle avoidance is proposed in Section IV. 
Trajectory planning and obstacle avoidance procedure 
is examined by simulations in section V and finally, the 
paper is concluded in section VI. 
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2. Problem statement and robot model 
A. Problem statement 
Find a trajectory between two points A  and B which 
with considering maximum limitation on velocity and 
acceleration of robot, avoids collusion with obstacles 
and minimizes a performance index as shown in Figure 
1.  

 
Figure 1. Mobile robot  in dynamic environment with 
moving obstacles 
 
B. Robot’s model 

In [17], we used a linear state space model as 
follows: 
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Which 1(t)x  and 2 (t)x  are positions of robot in x  
and y Cartesian coordinates, also 3 (t)x  and 4 (t)x  are 
velocities of robot in x  and y  axis respectively. 1(t)u  
and 2 (t)u  are the control signals in x  and y  axis too. 

 
3. Problem formulation and assumptions 
To obtain optimal trajectory, we often need to solve an 
optimal control problem. The problem to be solved is: 

Find the inputs to a dynamical system in 0 1t [t , t ]∈
which can make minimum the quadratic performance 
index while satisfying any constraints on the trajectory 
planning. It can be described into mathematical forms 
which are written as follows: 
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Where ( )X t  is state vector, ( )u t is input vector,
n nQ R ×∈  is a semi-definite matrix, r rR R ×∈ is a definite 

matrix, 0X  is initial condition vector, 1X  is final 
condition vector and (X(t), X(t), U(t), t) 0ic ≤&  are linear 

or nonlinear inequality constraints of states, inputs and 
their derivatives. 

To trajectory planning in this paper, we have three 
set of nonlinear inequality constraints due to obstacle 
avoidance, maximum velocity constraint and 
maximum acceleration constraint. 

Nonlinear inequality constraints due to obstacle 
avoidance are as follows:  

(X(t), t) 0, 1, 2,...,jW j m≥ =  (5) 
Where m  is number of obstacles which robot must 

avoid collusion with them. 
Also Nonlinear inequality constraints due to 

maximum velocity and acceleration constraints are as 
follows: 

1
2 2 23 4 m(x ( ) x ( ))t t v+ ≤  (6) 

1
2 2 23 4 m(x ( ) x ( ))t t a+ ≤& &  (7) 

Where mv  and ma  are maximum limitation on 
velocity and acceleration of robot respectively. 

In next subsection we make the following 
assumptions on the trajectory planning. 

• Final velocity of robot must be zero to avoid 
discontinuities in the solution when reaching close to 
the desired final state [16]. 

• All obstacles are considered as circular robots with 

radius jr , center of ( )1 2j j

T
c cx x and constant velocity 

( )1 2
.

j j

T
c cv v  

• Weight of states and energy in the performance index 
be equal. Then we consider Q  and R  as elementary 
matrixes with appropriate dimensions.  

By these assumptions, mathematical form of 
optimal control problem associated with the trajectory 
planning can be rewritten as follows: 
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Where ( )1 2j j

T
c cx x  and ( )1 2j j

T
c cv v are initial 

position of obstacles and constant velocity of obstacles 
respectively. 

 
4. Polynomial trajectory planning and obstacle 
avoidance 
A. Polynomial trajectories 
In this section firstly, polynomial trajectories are 
presented. Two polynomials are used for each of the 
Cartesian coordinates x and y as follows: 

2
1 0 1 2( ) (t) ... ,n

nx t x a a t a t a t= = + + + +  (9) 
2

2 0 1 2( ) y(t) ... n
nx t b b t b t b t= = + + + +  (10) 

Where 0 1, ,..., na a a and 0 1, ,..., nb b b are the unknown 
coefficients of the polynomials. 

Then from (1)-(3) we get: 
( 1)

3 1 2( ) (t) 2 ... ,n
nx t x a a t na t −= = + + +&  (11) 

( 1)
4 1 2( ) (t) 2 ... ,n
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1 2 3( ) 2 6 t ... ( 1) n
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( 2)
2 2 3( ) 2 6 t ... ( 1) ,n

nu t b b n n b t −= + + + −  (14) 
In the next, we choice appropriate degree of 

polynomial trajectories such that all boundary 
conditions and constraints can be satisfied. 

Since we have eight boundary conditions, we need 
eight coefficients to fulfill them. Moreover for 
minimization of performance index subject to the 
constraints, at least two coefficients are required. So we 
use a fourth-order polynomials for each trajectory. We 
get: 

2 3 4
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B. Transformation of the optimal control problem to 
parametric optimization problem 

After substituting (15)-(20) in (8), the optimal 
control problem (8) converts to a parametric 
optimization problem with ten unknown coefficients. 
As mentioned, coefficients 0 1 2 3 0 1 2, , , , b ,b ,ba a a a and 

3b  are obtained to satisfy boundary conditions. Then 
the problem can be rewritten as follows: 
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C. Solution method of parametric optimization problem 
In [17], we used an approach for obtaining the 

optimization problem which solve the problem in 
whole of time 0( , ).ft t  this make increase simulation 
time. In this paper we utilize a novel approach that 
decrease simulation time dramatically. In previous 
method we check all the inequality constraints for 
throughout of interval of time. Here we check these 
constraints only for once in all the time interval. Firstly, 
we convert the constraints to non-positive or non-
negative constraints. Then determine minimum and 
maximum of them. For checking non-positive 
constraints, we compute maximum of the constraints 
on time and unknown coefficients are obtained such 
that the minimum be non-positive. Also For checking 
non-negative constraints, maximum of the constraints 
are computed on time and unknown coefficients are 
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acquired such that the maximum be non-negative. 
Therefore, (21) can be modified as follows: 
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5. Simulation results 
To illustrate the efficiency of the proposed method, we 
have performed Matlab simulations to generate optimal 
collision-free trajectories. Also to better survey, we 
compare simulation results in present method and 
previous method was presented in [17]. 
A. Scenario 1 

A representative simulation is discussed, where the 
following initial and final conditions is used: 

1 20 0 0m,x x= =
1 21 12m, 1m,x x= =

3 40 0 0m/ sx x= =  (23) 

Maximum velocity and acceleration of robot are 
equal to: 

m 2m/ s,v = 2
m 3m/ s ,a =  (24) 

Also, time interval is considered [ ]0 4 .t ∈  Table 1 
shows simulation data for optimal trajectory planning 
and multi obstacle avoidance. 

Obtained polynomial functions are as follows: 
2 3 4

1( ) 0.1546 0.2023 0.0331 ,x t t t t= − + −  (25) 
2 3 4

2 ( ) 0.2195 0.0473 0.002 ,x t t t t= − +  (26) 
2 3

3( ) 0.3092 0.6069 0.1324 ,x t t t t= + −  (27) 
2 3

4 ( ) 0.439 0.1417 0.008 ,x t t t t= − +  (28) 
2

1( ) 0.3972 +1.2138 0.3092,u t t t= − −  (29) 
2

2 ( ) (t) 0.024 0.2835 0.439u t y t t= = − +&&  (30) 
Figure 2 depicts diagrams of position, velocity and 

acceleration of robot. The curve of optimal trajectory 
and multi moving obstacle avoidance is shown in 
Figure 3. Total velocity and acceleration of robot are 
illustrated in Figure 4. 

 

Table 1. Multi obstacle avoidance simulation data (Scenario 1) 

Positions 
and 

Velocities of 
obstacles 

Position 
(m) 

Velocity 
(m/s) 

Radius 
(m) 

1cx  
2cx  

1cv  
2cv   

Obstacle 1 1 1.3  0.18
 

0.19−  0.16  

Obstacle 2 0.75
 1  0.1  0.25−  0.18  

Obstacle 3 0.4  0.8  0.2  0.4−  0.12  

 

 
Figure 2. Diagrams of position, velocity and acceleration of 
robot for optimal trajectory planning and multi moving 
obstacle avoidance (scenario 1) 

 
Figure 3. Optimal trajectory and multi moving obstacle 
avoidance (scenario 1) 
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Figure 4. Total velocity and acceleration of robot (scenario 1) 

 
As can be seen in Figure 3, the robot avoids 

collision with multiple moving obstacles by two 
method effectively. 

As shown in Figure 4, limitations on maximum 
velocity and acceleration of robot are satisfied. 

Run time of simulation for new method is equal to 
0.1s and this time for previous method was obtained 
11.63s. Furthermore, the performance index value for 
new method and previous method are equal to 4.69 and 
4.48 respectively.  
B. Scenario 2 

In this scenario, we consider initial and final 
conditions as follows:  

1 20 0 0m,x x= =
1 21 1 3m,x x= =

3 40 0 0m/ sx x= =  (31) 

Maximum velocity and acceleration of robot are 
equal to: 

m 2m/ s,v = 2
m 3m/ s ,a =  (32) 

Time interval is considered [ ]0 5 .t ∈  Simulation 
data for trajectory planning and multi obstacle 
avoidance are given in Table 2. 

 
Table 2. Multi obstacle avoidance simulation data (Scenario 2) 

Positions 
and 

Velocities 
of 

obstacles 

Position 
(m) 

Velocity 
(m/s) 

Radius 
(m) 

1cx  
2cx  

1cv  
2cv   

Obstacle 1 1.5  0.9−
 

0  0.7  0.22  

Obstacle 2 0.2  2  0.3  0.5−
 

0.25  

Positions 
and 

Velocities 
of 

obstacles 

Position 
(m) 

Velocity 
(m/s) 

Radius 
(m) 

1cx  
2cx  

1cv  
2cv   

Obstacle 3 2.5  0.5  0.3−
 

0.6  0.15  

Obstacle 4 3  3  0.3−
 

0.35−
 

0.2  

 
 

Obtained polynomial functions are as follows: 

2 3 4
1( ) 0.4825 0.097 0.0049 ,x t t t t= − +  (33) 

2 3 4
2 ( ) 0.13 0.044 0.0092 ,x t t t t= + −  (34) 

2 3
3( ) 0.965 0.291 0.0196 ,x t t t t= − +  (35) 

2 3
4 ( ) 0.26 0.132 0.0368 ,x t t t t= + −  (36) 

2
1( ) 0.0588 0.582 0.965,u t t t= − +  (37) 

2
2 ( ) 0.1104 +0.264 0.26u t t t= − +  (38) 

  
 
Figure 5 shows diagrams of position, velocity and 

acceleration of robot. The curves of optimal trajectory 
and total velocity and acceleration of robot are 
illustrated in Figure 6 and Figure 7. 

 
 

 
Figure 5. Diagrams of position, velocity and acceleration of 
robot for optimal trajectory planning and multi moving 
obstacle avoidance (scenario 2) 
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Figure 6. Optimal trajectory and multi moving obstacle 
avoidance (scenario 2) 

 
Figure 7. Total velocity and acceleration of robot (scenario 2) 

 
As shown in Figure 6 and Figure 7, the robot avoids 

collision with multiple moving obstacles by two 
method effectively while limitations on maximum 
velocity and acceleration of robot are satisfied. 

Simulation time for new method is 0.05s, whilst 
Simulation time for previous method was obtained 
9.35s. Also the value of cost functions for new method 
and previous method are 19.45 and 16.3 respectively. 
On the other side, control effort for new method is 
lower than previous method. 

 
7. Conclusion 
In this paper was presented a procedure for optimal 
trajectory planning and obstacle avoidance of Omni-
directional mobile robots in dynamic environments 
using polynomials of fourth degree. The obtained 
trajectory minimizes a quadratic performance index 
while satisfying velocity and acceleration constraints. 
First, by choice of appropriate objective function the 
problem was formulated as an optimal control problem. 
After that, by parameterization of trajectories, the 
problem was converted to a nonlinear programing 
problem. Then, to solve the problem a new method has 
been employed. Finally, a simulation has been 
performed and effectiveness of proposed method was 
illustrated by simulation results. The most significant 

advantages of this method are that it reduces 
implementation time markedly and is much low cost 
computationally. 
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