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Abstract 
This paper presents a probabilistic confidence-
interval based method for optimal placement of 
shunt capacitors in distribution networks by 
considering probabilistic characteristics of 
loads. The main objective function are reducing 
loss and improving the voltage profile. 
Backward forward sweep method has been 
employed to obtain the power flow results in 
distribution system. In addition, Integer 
Harmony Search Algorithm has been used to 
solve the optimization problem. The 
probabilistic aspects of problem have been 
solved using point estimation (PE) method. The 
novelty of this paper is introducing a confidence 
interval index using Gram-Charlier expansion. 
This index shows the risk of system to violate its 
security constraints when loads are considered 
as stochastic random variables. Using this 
index, planners can find the optimal sitting and 
sizing of capacitors in distribution systems 
based on their desired level of risk. Verification 
of the proposed method has been tested on 33-
bus radial distribution system. Results 
demonstrate the effectiveness and merits of the 
proposed method. 
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Nomenclature 
Z function of n independent random variables 
μZ Expected value of random variable Z 
MkZ kth central moment of random variable Z 
f(X) Joint probability density function of X 
n Number of random variables 

jσ  standard deviation of the jth variable 

k,jx  Estimating points in point estimate method 
)2,1k( =  

pj 
Weights of estimating points in point 
estimate method 

3,jλ  Skewness of a random variable  

4,jλ  Kurtosis of a  random variable 

k,mZ  output of the function for the point 
constituted by kth point of mth 

)x(ϕ  PDF of normal distribution 

iC  constant coefficients obtained from 
cumulants of random variable 

ik  cumulants of a random variable 
X state vector 
C control vector 
σj Standard deviation of jth variable 

jgP  active powers injected to bus j 

jgP  Reactive powers injected to bus j 

jdP  active power demands at bus j 

jdQ  reactive power demands at bus j 

jCQ  total reactive power injected to bus j 

%Rα  value that guarantee bus voltage to be in the 
admissible range 

%Rβ  value that guarantee bus voltage to be in the 
admissible range 

%Rγ  value that guarantees line current amplitude 
to be less than the maximum 

  
1. Introduction 
Distribution systems are radial and too long. 
Because of such topology and the fact that current 
amount is high in distribution systems (i.e. due to 
their low voltage level), the ohmic loss in these 
networks is high and voltage at the end of these 
feeders has very poor regulation. 

Optimal placement of capacitor banks in 
distribution networks results in reduction of power 
loss, improved voltage profile, and releases 
reactive capacity of power apparatus. Optimal 
Capacitor Placement (OCP) is a well-discussed 
subject of many other papers [1-14]. In [2], Ant 
Colony (AC), in [3], Tabu Search (TS), in [4 ،5] 
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Particle Swarm (PS), in [6-9] fuzzy logic theory, 
and in [10-14] Genetic Algorithm (GA) have been 
used to solve optimal capacitor placement problem. 
Recently, in many researches it has been found that 
Harmony Search Algorithm (HSA) has a better 
solution for such allocation problems because of its 
useful capabilities [15-17]. HSA has good 
robustness and does not need many mathematical 
requirements due to its evolutionary nature. The 
evolution operators make HSA effective at finding 
global minima, unlike the so-called trajectory 
methods, which only compare the nearby points in 
the search space. Due to its simple structure, HSA 
can find the optimal point in less time than many 
other evolutionary methods, which well suits high 
computation burden of probabilistic methods. 

On the other hand, the deregulation of electric 
markets calls for consideration of financial costs 
and power quality issues with respect to real 
network conditions. Because of the probabilistic 
nature of loads, it is important to consider load 
forecasts to attain real system conditions. Load 
forecasts are probabilistic and may have different 
probability density functions and their variations 
may not be in sync, so the distribution system may 
encounter all combinations of loads. To address 
this issue, probabilistic methods should be used to 
identify real network conditions. Unfortunately, in 
many related researches, load variations have not 
been considered  [1 ،2 ،18-21], and in some others, 
load variations have been considered at two or 
three different levels [6 ،7 ،12]. 

One of the most common methods to solve 
probabilistic problems is Monte-Carlo Simulation 
(MCS). This method solves problems by 
generating suitable random numbers with respect 
to input variables’ PDFs, solving the problem in a 
deterministic manner for each set of generated 
numbers, and determining the PDF of the outputs 
by analyzing the results. However, a huge 
computation burden makes this method time 
consuming [22]. 

Another probabilistic approach to find different 
moments of probabilistic output variables is Point 
Estimation (PE) method. PE has been widely used 
in literature to study different aspects of power 
systems including load flow [23-25]. PE considers 
just the first four moments of input variables’ PDFs 
to estimate the whole PDF. PE takes less time and 
has less computation burden than MCS while 
having a desirable accuracy. 

When dealing with a probabilistic problem, a 
certain degree of reliability should be taken into 
account because of the probabilistic nature of both 

state and dependent random variables. In [26], the 
POCP problem has been solved using PE method, 
and all loads and state and dependent variables are 
considered to have a normal PDF. However, 
because of the nonlinear nature of the power 
system, neither the loads, nor the state and 
dependent variables, have normal PDF. 
Furthermore, the only degree of reliability used in 
this reference is the six-sigma index which does 
not represent the real system conditions. It has 
been shown in literature [27-29] that a PDF can be 
described by its first few moments using Gram-
Charlier series expansion. Therefore, to meet the 
constraints of a probabilistic problem for a certain 
degree of reliability, Gram-Charlier series 
expansion can be used to approximate PDF and 
CDF of dependent variables. 

To the best of our knowledge, reliability based 
point estimation method has not previously been 
applied to the problem of multi-objective 
constrained probabilistic optimal capacitor 
placement. In this paper, PE method has been used 
along with IHSA to solve the probabilistic optimal 
capacitor placement in radial distribution systems. 
Gram-Charlier series expansion is used to 
approximate the PDF and CDF of dependent 
variables and meet the probabilistic constraints for 
a certain degree of reliability. 

The rest of this paper is organized as follows: 
Section 2 introduces different methods used in this 
paper. Problem formulation is illustrated in Section 
3 and different probabilistic aspects of the 
minimization problem are also described. In 
Section 4, the method described in this paper is 
tested on a modified 33-bus radial distribution 
system and results are compared and discussed. 
Finally, the paper is ended with conclusions 
section. 
 
2. Methodology 
2.1. Point Estimation  
In order to consider uncertainties, three points for 
each input variable are determined in this method 
and the problem is solved for each stochastic 
variable three times; once for the point below the 
mean, once for the point above it, and once for the 
mean point itself, while other variables are kept at 
their mean value. More details of this method are 
discussed below:  

Let Z be a function of n independent random 
variables as follows: 

)x,...,x,x(f)X(fZ n21==  (1) 
Assume that the expected value and standard 
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deviation of the jth variable are jµ  and jσ , 
respectively. 
The k th central moment of the jth variable with 
probability density function of )x(g jj is calculated 
as follows: 

,...,k     ,     dx)x(g)x()x(M jjj
k

jjjk 21=µ−= ∫
+∞

∞−

 (2) 

And k,jλ  is defined as: 

k
j

jk
k,j

)x(M
σ

=λ  (3) 

where 3,jλ and 4,jλ are known as coefficients of 
skewness and kurtosis, respectively. 
The expected value of the function can be 
calculated using the following equation: 

))x(f(EZ =µ  (4) 
Using Taylor series, expanding the function at the 
expected values results in: 
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Let ),k(x k,jjk,j 21=ξ+µ=  be predefined 
concentration points and ),k(p 21= be the 
probability concentrations at points k,jx . 
Considering these assumptions, the constants to be 
determined are ),k(k,j 21=ξ and ),k(p 21= .  By 
estimating the mean of points, it can be said that: 
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(6) 

Now, by making the first four orders of (5) and (6) 
equal, and considering the fact that the sum of the 
probability concentrations should be equal to one 
(7), the constant parameters can be derived: 
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For the point constituted by the means of all 
random variables, just one run of function f is 
needed, as the other runs are repetitious. So we 
refine the probability of this point as the sum of all 
these repetitive points. 
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Finally, jth raw moment of function Z of several 
random variables X can be found: 

[ ] ( )∑ ∑
= =

≅=µ
n

m k

j
k,mk,m

j
j ZpZE

1

3

1
 (12) 

where k,mZ  is the output of the function for the 
point constituted by kth point of mth variable and 
the expected value of other random variables. 
In this paper, the first few moments are used to 
estimate the output PDF using Gram-Charlier 
expansion method. 
 
2.2.  Integer Harmony Search Algorithm 
HSA is one of the most powerful metaheuristic 
methods which uses stochastic random search 
instead of a gradient one. HS algorithm was 
invented analogous to music improvisation. It was 
first used to solve discrete optimization problems. 
Later, it was modified to solve continuous 
optimization problems as well. 

In order to improvise a harmony which matches 
aesthetic standards, musicians try to adjust the 
instruments’ pitches in each try. In optimization 
problems, the same process is followed. At each 
iteration decision variables are refined to improve 
the objective function.  

Integer Harmony Search Algorithm (IHSA) has 
better performance than many other optimization 
methods for solving discrete optimization 
problems. It also has few parameters, easy 
implementation and simple concepts.  

At the first step, the optimization problem and 
algorithm parameters are initialized. The 
optimization problem is specified as follows:  

ii XxtoSubject

)x(fMinimize

∈
 (13) 

where )x(f  is the objective function, x is the set of 
decision variables and X is the set of possible 
range for the values of x . The HSA parameters are 
also defined in this step. The first one is called 
Harmony Memory Size (HMS), which shows the 
number of solution vectors stored in the Harmony 
Memory (HM). Other parameters are the 
evolutionary ones which are Harmony Memory 
Consideration Rate (HMCR), Pitch Adjustment 
Rate (PAR), and Bandwidth (BW).  
At the second step, HM is filled with a randomly 
generated set of decision variables in their 
corresponding possible ranges. 
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Then fitness function is evaluated for each of these 
set of solutions. 
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In the third step, a new harmony is improvised 
using three rules (for each decision variable): 1) 
selecting a value from HM with the probability of 
HMCR, 2) selecting a value in a range (BW) near 
the value chosen from HM, with the probability 
specified by PAR. For integer variables, BW 
should be a set of integers around zero, like 

{ }...,,,,,,...BW 21012 ++−−= , 3) randomly generating 
a value in the permissible search space with a 
probability of (1-HMCR). 

At the fourth step, the fitness function is 
evaluated for the new harmony. If the new 
harmony has a better fitness than the worst solution 
in the HM, it will take the place of the worst 
harmony in the HM. 

At the final stage, the termination criterion is 
checked to see if the algorithm will stop or not. 
The common stopping criterion for HSA is the 
number of iterations which should be set at the first 
stage.  

HSA steps are summarized in the flowchart 
shown in Fig.1. In this paper, IHSA is used to find 
the best location and size of capacitor units. 
 
2.3.  Gram-Charlier Expansion 
In order to find the confidence interval of 
dependent parameters affecting the inequalities, 
Gram-Charlier expansion is used in this paper. 
According to Gram-Charlier expansion, PDF of 
many distributions can be formed as a series 
comprised of normal distribution PDF and its 
derivatives. Consider a random variable z with a 
continuous distribution and denote its mean and 
standard deviation as zµ and zσ , respectively. 
According to Gram-Charlier expansion, for the 
standardized variable

z

zzx
σ

µ−
= , probability density 

function )x(f  can be written as follows: 

L+ϕ ′′′+ϕ ′′+ϕ′+ϕ= )x(
!

C)x(
!

C)x(
!

C)x()x(f
321

321  (15) 

where )x(ϕ  is the PDF of normal distribution. iC
are constant coefficients obtained from cumulants 
of random variable.  
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where ik  are cumulants of random variable z. 
 

 
Fig.1. HSA Flowchart 

 
Therefore, after finding moments of output 
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variables using PE method, its cumulants are 
computed, and Gram-Charlier expansion can be 
utilized to rebuild the PDF of output variable.  
 
3. Problem Formulation 
Optimal capacitor placement is a mixed integer 
nonlinear optimization problem in which a defined 
objective function should be minimized while a set 
of equality and inequality constraints are met.  

0),(
0),(

),(

≤
=

CXH
CXG

toSubject
CXFMinimize obj

 (17) 

where X and C are the state vector and control 
vector of the system, respectively. In the problem 
of optimal capacitor placement, state vector 
represents the magnitude and argument of the 
voltage of each busbar, and the control vector 
shows the sitting and sizing of capacitors at each 
busbar. objF  , G(X,C) and H(X,C) are the objective 
function, and equality and inequality constraints. 
The deterministic solution of this problem is a 
well-studied subject of many papers in literature. 
However, when dealing with this problem as a 
probabilistic one, the definition of its structure will 
change as follows: 

 
3.1. Probabilistic Multi-Objective Function 
The multi-objective function used in this paper 
consists of three parts, namely capacitor cost, 
power loss, and voltage regulation. The last two 
parts are probabilistic dependent and state 
variables, respectively, and their expected value 
will be used in objective function. These objectives 
are detailed in the next subsections. 
 
3.1.1. Expected Value of Power Loss 
A remarkable amount of power used in distribution 
systems is due to line losses. So, a main objective 
of optimal capacitor placement problem is to 
minimize power loss. As a dependent variable, the 
expected value of power loss obtained from PE 
method is used in this paper. The formulation to 
obtain different moments of any function of several 
random variables is illustrated in section 2.1. 
 
3.1.2. Expected Value of Voltage Regulation 
One negative aspect of distribution systems is their 
considerable voltage drop at the end of long 
feeders. A common criterion to investigate the 
voltage quality in distribution systems is voltage 
regulation. In this paper, busbar voltages are state 
variables. So, their expected values can be used to 

calculate the voltage regulation index. For a system 
of n busbars, this index is defined as follows. 

∑
=

−=
n

i

pu
meanmean VVR

1

2
1  (18) 

A combination of these indices has been used to 
minimize the objective function. Weighting factors 
have been assigned to each index regarding the 
cost of saving energy on power loss and voltage 
drop of the system and the cost of capacitor units. 

CC.CVR.CPL.CF meanmeanobj 321 ++=  (19) 
Where, C1, C2 and C3 are weighting factors, 

meanPL and meanVR  are the expected values of power 
loss and voltage regulation, respectively, and CC is 
the capacitor cost which is the product of number 
of capacitors and the unit cost. 
 
3.2. Probabilistic Constraints 
3.2.1. Power Equalities 
In electrical systems, generated power should be 
equal to the demand. So the probabilistic power 
flow equations should be satisfied for any 
combination of active and reactive load demands, 
and capacitors placed at different buses: 

0=−
jj dg PP  (20) 

jjj cdg QQQ −=−  (21) 
where 

jgP  and 
jgQ  are active and reactive powers 

injected to bus j; 
jdP  and 

jdQ  are active and 
reactive power demands at bus j; and 

jcQ  is the total 
reactive power injected to bus j by capacitor(s) 
placed at that bus. 
 
3.2.2. Bus Voltage Limit 
In electrical systems, one of the main targets is to 
feed the loads while keeping the frequency and 
voltage in an admissible range. When dealing with 
uncertainties of loads, bus voltages will be 
probabilistic variables as well. So, the maximum 
and minimum allowable voltage amplitude at all 
buses should be considered in optimal capacitor 
planning problem as follow:  

%Rm%Rmin VVV β−<<α+  (22) 
Where %Rα  and %Rβ  are two values found from the 
voltage CDF of each bus that guarantee bus voltage 
to be in the admissible range with a probability of 

%R . 
 
3.2.3. Maximum Line Current 
Feeders of power system can handle different 
current amplitudes based on their gender, operating 
conditions, weather conditions, etc. So, as a safety 
rule, current amplitude in a line, which is a 
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probabilistic variable, should not exceed its 
maximum allowable limit. 

%Rmaxjj II γ−≤  (23) 
where %Rγ  is a value found from the current 
amplitude CDF of each line that guarantees line 
current amplitude to be less than the maximum 
allowable value with a probability of %R . 
 
3.3.  Assessment Procedure of Probabilistic 

Inequalities 
In each iteration of HSA, the validity of new 
harmony should be checked. In probabilistic 
optimal capacitor problem, probabilistic 
inequalities should be met for each harmony (set of 
capacitor size and site). The steps to assess the 
probabilistic inequalities of optimal capacitor 
placement problem introduced in this paper are 
mentioned here consecutively:  

- For new harmony, find the bus voltage and line 
current moments, using PE method. 

- Using GC expansion, find the bus voltage and 
line current CDFs. 

- Find the voltage and current corresponding to the 
required confidence interval ( %%% ,, RRR γβα ). 

- Check if the voltage and current found in the 
previous step meet the probabilistic inequalities. 
 
4. Simulation Results and Discussion 
The proposed procedure of probabilistic optimal 
capacitor placement has been tested on a modified 
33-bus radial distribution system illustrated in Fig. 
2.  

 
Fig.2. 33-bus Radial Distribution System 

 
The load demands are considered to have 
Generalized Extreme Value (GEV) distribution. 
Location and scale parameters have been assumed 
to have the same value as the original load 
demands, and 10 percent of it, respectively. Details 
of GEV distribution are presented in Appendix. 
Shape parameter of all load demands are supposed 
+0.3. This corresponds to consumers that have 

light load most of the time and heavy load, rarely. 
Two different scenarios have been considered.  
Scenario A: the optimal capacitor placement 
problem has been solved for two cases. In the first 
case, the deterministic optimal capacitor problem 
has been solved in which, load demands were 
supposed to have deterministic values equal to the 
expected value of their GEV PDF with parameters 
mentioned in the previous paragraph. In the second 
case, load demands are supposed to be probabilistic 
variables with the same GEV parameters. In this 
case, the probabilistic optimal capacitor placement 
problem has been solved for a confidence interval 
of 0.97, meaning that all probabilistic inequalities 
(bus voltages and line currents) should be satisfied 
97 percent of the time. 
Scenario B: in this scenario two different cases 
were also considered; in the first case, an 
approximate confidence interval of σ±3  has been 
considered to counter probabilistic inequalities. In 
this case, the bus voltages and line currents were 
assumed to have a normal PDF in which σ±3
indicates a confidence interval of 99.87 percent. 
Considering this, in the second case of scenario B, 
the same problem of probabilistic optimal capacitor 
placement has been solved using the Gram-
Charlier method with a confidence interval of 
0.9987. 

In both scenarios mentioned above, the 
maximum permissible current and minimum 
permissible voltage have been considered 0.025 
and 0.9 per unit, respectively. The results of each 
scenario have been compared and the profits of the 
method mentioned in this paper have been 
discussed. 
 
Table 1: Optimal Capacitor Location and Size for 
Deterministic Case of Scenario A 

Installed KVAR Capacity Bus Number 
50 8, 11, 16, 29, 30, 33 
100 10 
150 18, 31, 32 
200 14 

 
 

Table 2: Optimal Capacitor Location and Size for 
probabilistic Case of Scenario A with a confidence interval of 
0.97 

Installed KVAR Capacity Bus Number 
50 9, 10, 11, 30 
100 12, 14, 15 
150 16, 18 
200 31, 33 

 

35



MOHAMMADI et al: CONFIDENCE-INTERVAL BASED MULTI-OBJECTIVE CONSTRAINED PROBABILISTIC OPTIMAL … 

39 

Scenario A: tables 1 and 2 represent the sitting and 
sizing of capacitor units for deterministic and 
probabilistic cases, respectively. It is clear that 
when load demands are considered constant and no 
confidence intervals are taken into account, fewer 
capacitor banks are needed to minimize the 
objective function while assuring the equality and 
inequality constraints. However, in case of 
stochastic load demands, more capacitor units 
should be placed in the network in order to satisfy 
the probabilistic inequality constraints considering 
a predefined confidence interval. 
Bus voltages for both cases of scenario A are well 
compared in Fig. 3. Continuous lines show the 
exact value (deterministic case) and the expected 
value (probabilistic case) of bus voltages. The 
confidence intervals of probabilistic case are also 
drawn. Fig. 3 shows the effect of considering 
stochastic nature of load demands on optimal 
capacitor placement problem for a certain degree 
of confidence. A similar discussion can be made 
for line currents and corresponding figures can be 
plotted. However, for the sake of conciseness, only 
bus voltages are compared.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig.3. Comparison of bus voltages obtained from 
deterministic method (Blue Line) and expected values of bus 
voltages obtained from GC method (Red Line) 
 
Fig. 4 shows the evolution of best fitness found by 
HSA method in both cases. It is found from Fig. 4 
that there is no major difference between 
deterministic and probabilistic cases’ fitness. 
However, in probabilistic case, a sensible 
confidence interval has been met. This is one of the 
merits of using the method proposed in this paper. 
Table 3 too, demonstrates the best objective values 
found by HSA. Probabilistic method also has lower 
loss and voltage deviation because of its greater 
capacitor investment.  
 

 
Fig.4. HSA best fitness evolution for deterministic case (Blue 
Line) and GC method (Red Line) 
 
Table 3: Comparison of Deterministic and GC-Based 
Methods Used in Scenario A 

 Deterministic GC for 
CI=0.97 

GC to 
Determin

istic 
Ratio 

Loss  
(Expected 

Value) 
145.1826 139.906

7 0.9637 

Voltage 
Deviation 
(Expected 

Value) 

0.1764 0.1446 0.8197 

Total Installed 
KVAR 

Capacity 
1050 1200 1.1429 

 
Scenario B: in this scenario, the probabilistic 
optimal capacitor placement is solved for both 
methods of 3sigma and GC. Tables 4 and 5 show 
the best sitting and sizing of capacitor banks for 
3sigma and GC methods, respectively. There is 
also a comparison of these methods’ best 
objectives found by HSA in table 6. It should be 
noted that although the expected values of loss and 
voltage deviation are lower in 3sigma method, the 
capacitor investment is much lower in GC method. 
The reason behind this is that by correctly 
estimating the bus voltage and line current PDF 
and CDF, the exact confidence intervals can be 
found. In this way, the excess capacitor investment 
to meet the excess confidence interval of 3sigma 
would be reduced, while meeting the probabilistic 
inequalities of bus voltage and line currents. 
 
Table 4:  Optimal Capacitor Location and Size for 3sigma 
Case of Scenario B (CI=0.9987) 

Installed KVAR 
Capacity Bus Number 

50 11, 12, 13, 15, 16, 23, 
26, 29, 30 

100 10, 31 
150 8, 14, 33 
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300 7 
350 17 

 
Table 5:  Optimal Capacitor Location and Size for GC Case 
of Scenario B (CI=0.9987) 

Installed KVAR 
Capacity Bus Number 

50 8, 9, 14, 16, 28 
100 33 
150 18 
200 13 
250 17 
400 32 

Table 6:  Comparison of 3sigma and GC-Based Methods 
Used in Scenario B 

 3sigma GC for 
CI=0.9987 

GC to 
3sigma 
Ratio 

Loss 
(Expected 

Value) 
137.7265 141.0444 1.0241 

Voltage 
Deviation 
(Expected 

Value) 

0.0942 0.1220 1.2951 

Total 
Installed 
KVAR 

Capacity 

1750 1350 0.7714 

 
Fig. 5 and 6 show the expected value of bus 
voltage after optimal placement of capacitors found 
by HSA for 3sigma and GC method, respectively. 
The difference between estimated confidence 
intervals found by 3sigma and GC methods is well 
indicated in these two figures. Fig 7 also 
demonstrates the evolution of the best fitness found 
by HSA for GC and 3sigma methods. 
So, by estimating the near-real CDF of bus voltage 
and line currents, lower capacitor investment is 
needed while inequalities are all met. 

 
Fig.5. Expected value of bus voltage magnitudes and 
confidence intervals for 3sigma method 

 

 
Fig.6. Expected value of bus voltage magnitudes and 
confidence intervals for GC method. (CI=0.9987) 
 

 
Fig.7. HSA best fitness evolution for 3sigma (Blue Line) and 
GC method (Red Line) 
 
5. Conclusion  
In this paper, a new method to solve the 
probabilistic optimal capacitor placement problem 
was presented. It was assumed that load demands 
have stochastic nature. Therefore, a probabilistic 
method was proposed to handle the stochastic 
aspect of the optimal capacitor placement problem.  
In addition, Harmony Search Algorithm was 
exploited to solve the optimization problem. In 
order to speed up the optimization problem, Point 
Estimation method was utilized instead of Monte 
Carlo method to find the bus voltage and line 
current moments. Then, Gram-Charlier expansion 
has been used to find the near-real CDF of 
variables concerning the inequalities. It was shown 
that by having the CDF of state and dependent 
variables, the probabilistic optimal capacitor 
problem can be solved for an arbitrary amount of 
confidence interval. The proposed method was 
compared with 3-sigma method where commonly 
used in literature. Furthermore, it is assumed that 
load demands have Generalized Extreme Value 
distribution to clearly demonstrate the merits of 
this method. The method is verified by testing on a 
33-bus radial distribution system. The results show 
that the proposed method can be used to assess the 
probabilistic aspects of systems with many 
uncertain energy sources, like wind, solar, etc. 
Besides, it can be used to analyze such systems up 
to an arbitrary confidence interval.  
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6. Appendix 
The probability density function for the generalized 
extreme value with scale parameter k , scale 
parameter σ  and location parameter µ  is defined 
as:  
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
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Fig. 8 presents a sample PDF of variable x for 
30.k = , 80=µ , and 8=σ . 

 
Fig.8. A sample PDF of variable x for 30.k = , 80=µ , and 

8=σ  
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