MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.4, WINTER, 2013

Confidence-Interval Based M ulti-
Objective Constrained Probabilistic
Optimal Capacitor Placement in
Distribution Systems

M. Mohammadi', M. Mousavi?, A. Shayegani?,
M .M. Arefi4

Received :2015/10/20  Accepted: 2015/12/5
Abstract

This paper presents a probabilistic confidence-
interval based method for optimal placement of
shunt capacitors in distribution networks by
considering probabilistic characteristics of
loads. The main objective function are reducing
loss and improving the voltage profile
Backward forward sweep method has been
employed to obtain the power flow results in
distribution system. In addition, Integer
Harmony Search Algorithm has been used to
solve the optimization problem. The
probabilistic aspects of problem have been
solved using point estimation (PE) method. The
novelty of this paper isintroducing a confidence
interval index using Gram-Charlier expansion.
Thisindex showstherisk of system to violate its
security constraints when loads are consider ed
as stochastic random variables. Using this
index, planners can find the optimal sitting and
sizing of capacitors in distribution systems
based on their desired level of risk. Verification
of the proposed method has been tested on 33-
bus radial distribution system. Results
demonstrate the effectiveness and merits of the
proposed method.
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Nomenclature
Z function of nindependent random variables

uz Expected value of random variable Z

Mz k" central moment of random variable Z

f(X) Joint probability density function of X

n Number of random variables

S| standard deviation of the " variable

X Estimating points in point estimate method
e (k=12

_ Weights of estimating pointsin point
b estimate method

Skewness of a random variable

Kurtosis of a random variable

output of the function for the point

constituted by ki point of m®

PDF of normal distribution

c constant coefficients obtained from
cumulants of random variable

¢ cumulants of arandom variable

X state vector

C control vector

oj Standard deviation of j""variable

Py,  active powersinjected to busj
Ps,  Reactive powers injected to busj
Py active power demands at bus |

Qqy  reactive power demands at busj
ch total reactive power injected to busj

value that guarantee bus voltage to bein the
AR o

admissible range
b value that guarantee bus voltage to bein the

RO/O . .

admissible range
0 value that guarantees line current amplitude
CRo%

to be less than the maximum

1.Introduction

Distribution systems are radial and too long.
Because of such topology and the fact that current
amount is high in distribution systems (i.e. due to
their low voltage level), the ohmic loss in these
networks is high and voltage at the end of these
feeders has very poor regulation.

Optimal placement of capacitor banks in
distribution networks results in reduction of power
loss, improved voltage profile, and releases
reactive capacity of power apparatus. Optimal
Capacitor Placement (OCP) is a well-discussed
subject of many other papers [1-14]. In [2], Ant
Colony (AC), in [3], Tabu Search (TS), in [4 5]
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Particle Swarm (PS), in [6-9] fuzzy logic theory,
and in [10-14] Genetic Algorithm (GA) have been
used to solve optimal capacitor placement problem.
Recently, in many researches it has been found that
Harmony Search Algorithm (HSA) has a better
solution for such allocation problems because of its
useful capabilities [15-17]. HSA has good
robustness and does not need many mathematical
requirements due to its evolutionary nature. The
evolution operators make HSA effective at finding
global minima, unlike the so-called trgectory
methods, which only compare the nearby pointsin
the search space. Due to its simple structure, HSA
can find the optimal point in less time than many
other evolutionary methods, which well suits high
computation burden of probabilistic methods.

On the other hand, the deregulation of electric
markets calls for consideration of financial costs
and power quality issues with respect to real
network conditions. Because of the probabilistic
nature of loads, it is important to consider load
forecasts to attain real system conditions. Load
forecasts are probabilistic and may have different
probability density functions and their variations
may not be in sync, so the distribution system may
encounter all combinations of loads. To address
this issue, probabilistic methods should be used to
identify real network conditions. Unfortunately, in
many related researches, load variations have not
been considered [1 <2 <18-21], and in some others,
load variations have been considered at two or
three different levels [6 <7 <12].

One of the most common methods to solve
probabilistic problems is Monte-Carlo Simulation
(MCS). This method solves problems by
generating suitable random numbers with respect
to input variables PDFs, solving the problem in a
deterministic manner for each set of generated
numbers, and determining the PDF of the outputs
by analyzing the results. However, a huge
computation burden makes this method time
consuming [22].

Another probabilistic approach to find different
moments of probabilistic output variables is Point
Estimation (PE) method. PE has been widely used
in literature to study different aspects of power
systems including load flow [23-25]. PE considers
just the first four moments of input variables PDFs
to estimate the whole PDF. PE takes less time and
has less computation burden than MCS while
having a desirable accuracy.

When dealing with a probabilistic problem, a
certain degree of reliability should be taken into
account because of the probabilistic nature of both
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state and dependent random variables. In [26], the
POCP problem has been solved using PE method,
and all loads and state and dependent variables are
considered to have a normal PDF. However,
because of the nonlinear nature of the power
system, neither the loads, nor the state and
dependent  variables, have normal  PDF.
Furthermore, the only degree of reliability used in
this reference is the six-sigma index which does
not represent the real system conditions. It has
been shown in literature [27-29] that a PDF can be
described by its first few moments using Gram-
Charlier series expansion. Therefore, to meet the
constraints of a probabilistic problem for a certain
degree of reliability, Gram-Charlier series
expansion can be used to approximate PDF and
CDF of dependent variables.

To the best of our knowledge, reliability based
point estimation method has not previousy been
applied to the problem of multi-objective
constrained  probabilistic  optimal  capacitor
placement. In this paper, PE method has been used
aong with IHSA to solve the probabilistic optimal
capacitor placement in radia distribution systems.
Gram-Charlier series expansion is used to
approximate the PDF and CDF of dependent
variables and meet the probabilistic constraints for
acertain degree of reliability.

Therest of this paper is organized as follows:
Section 2 introduces different methods used in this
paper. Problem formulation isillustrated in Section
3 and different probabilistic aspects of the
minimization problem are also described. In
Section 4, the method described in this paper is
tested on a modified 33-bus radial distribution
system and results are compared and discussed.
Finally, the paper is ended with conclusions
section.

2. Methodology

2.1. Point Estimation

In order to consider uncertainties, three points for
each input variable are determined in this method
and the problem is solved for each stochastic
variable three times, once for the point below the
mean, once for the point above it, and once for the
mean point itself, while other variables are kept at
their mean value. More details of this method are
discussed below:

Let Z be a function of n independent random
variables as follows:
Z=f(X)=f(X,Xg0s %) (1)
Assume that the expected value and standard
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deviation of the " varigble are n; and s,

respectively.
The k ! central moment of the j" variable with
probability density function of g (x)is calculated

as follows:

+¥
M (%)= x;- m)<g;(x;)dx; k=12,. &)
-¥
And | ;, isdefined as.
| = M (X;) (3)
kT k

Sj

wherel j;and | ;,are known as coefficients of
skewness and kurtosis, respectively.

The expected value of the function can be
calculated using the following equation:

nz =E(f(x)) 4
Using Taylor series, expanding the function at the
expected values resultsiin:

m, = f(m,m,,.., m,) +

g d iﬂ'f i (5)
|a:.1 ?;1 it X, (M4 Mz s M)l i

Let  x;, =m+x;,(k=12)  be  predefined
concentration points and p(k=12)be the
probability ~ concentrations at  points ;.

Considering these assumptions, the constants to be
determined are x;, (k=12)and p(k=12). By

estimating the mean of points, it can be said that:

n 2
mz = f(lnl.va """ m, )é é pm,k + (6)
. m=1k=1
o o l ﬂlf i i i
a l—lﬂT(ml,mg ----- m, X PmiXmit Pm2Xm2 )s m
m

Now, by making the first four orders of (5) and (6)
equal, and considering the fact that the sum of the
probability concentrations should be equal to one
(7), the constant parameters can be derived:

n 3

P -1

& & P (7

Xm,k :l%s*'('l)s-kwl m,4-%| m,3 ,k=1,2 (8)

(1% -

P G ) T ©)
1 1

Pmz=—-——75— (10)
n i m4 "~ I m3

For the point congituted by the means of all
random variables, just one run of function f is
needed, as the other runs are repetitious. So we
refine the probability of this point as the sum of all
these repetitive points.
£ 2 1
Pm=a Pmz=1- a 5
m=1 m=1l m4 ~ l m3

(11)

Finaly, j* raw moment of function Z of several
random variables X can be found:
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(12)

wherez,,,, is the output of the function for the

point constituted by ki point of m" variable and
the expected value of other random variables.

In this paper, the first few moments are used to
estimate the output PDF using Gram-Charlier
expansion method.

m = E[Zj]@é’r{ 53. pm,k(zm,k)j
m=1k=1

2.2. Integer Harmony Search Algorithm

HSA is one of the most powerful metaheuristic
methods which uses stochastic random search
instead of a gradient one. HS algorithm was
invented analogous to music improvisation. It was
first used to solve discrete optimization problems.
Later, it was modified to solve continuous
optimization problems as well.

In order to improvise a harmony which matches
aesthetic standards, musicians try to adjust the
instruments’ pitches in each try. In optimization
problems, the same process is followed. At each
iteration decision variables are refined to improve
the objective function.

Integer Harmony Search Algorithm (IHSA) has
better performance than many other optimization
methods for solving discrete optimization
problems. It also has few parameters, easy
implementation and simple concepts.

At the first step, the optimization problem and

agorithm parameters are initiadized. The
optimization problem is specified as follows:
Minimize f(x)

(13)

Subject to x T X;

where f(x) is the objective function, xis the set of
decison variables and xis the set of possible
range for the values of x. The HSA parameters are
aso defined in this step. The first one is called
Harmony Memory Size (HMS), which shows the
number of solution vectors stored in the Harmony
Memory (HM). Other parameters are the
evolutionary ones which are Harmony Memory
Consideration Rate (HMCR), Pitch Adjustment
Rate (PAR), and Bandwidth (BW).

At the second step, HM is filled with a randomly
generated set of decision variables in their
corresponding possible ranges.

€ Xy P L Xn U
¢ X1 X22 L XoN u
HM =€ ' U
é ! ! i (14)
e u
6XHmsy  XHms2 L XumsN 0

Then fitness function is evaluated for each of these
set of solutions.
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In the third step, a new harmony is improvised
using three rules (for each decision variable): 1)
selecting a value from HM with the probability of
HMCR, 2) selecting a value in a range (BW) near
the value chosen from HM, with the probability
specified by PAR. For integer variables, BW
should be a set of integers around zero, like
BW={...,- 2,-1,0,+1,+2,..}, 3) randomly generating
a value in the permissible search space with a
probability of (1-HMCR).

At the fourth step, the fitness function is
evaluated for the new harmony. If the new
harmony has a better fitness than the worst solution
in the HM, it will take the place of the worst
harmony in the HM.

At the fina stage, the termination criterion is
checked to see if the algorithm will stop or not.
The common stopping criterion for HSA is the
number of iterations which should be set at the first
stage.

HSA steps are summarized in the flowchart
shown in Fig.1. In this paper, IHSA is used to find
the best location and size of capacitor units.

2.3. Gram-Charlier Expansion

In order to find the confidence interval of
dependent parameters affecting the inequalities,
Gram-Charlier expansion is used in this paper.
According to Gram-Charlier expansion, PDF of
many distributions can be formed as a series
comprised of normal distribution PDF and its
derivatives. Consider a random variable z with a
continuous distribution and denote its mean and

standard deviation as m,and s,, respectively.
According to Gram-Charlier expansion, for the

standardized variablex = Z‘S"z
V4

function f(x) can be written as follows:

, probability density

F(0=] (0)+ 51 €+ 2] &)+ 2] &) +L (15)

wherej (x) is the PDF of normal distribution. C;

are constant coefficients obtained from cumulants
of random variable.
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= =3 (16)
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(HS, HMCR, PAR, BW)

!
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Rand<=HMICR?

Set the value of the ith decision
variable as a random number in its
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Chioose the value of ith decision
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Fig.1. HSA Flowchart

End

Therefore, after finding moments of output
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variables using PE method, its cumulants are
computed, and Gram-Charlier expansion can be
utilized to rebuild the PDF of output variable.

3. Problem Formulation
Optimal capacitor placement is a mixed integer
nonlinear optimization problem in which a defined
objective function should be minimized while a set
of equality and inequality constraints are met.
Minimize F,,(X,C)

Subject to

G(X,C)=0

H(X,C)£0
where X and C are the state vector and control
vector of the system, respectively. In the problem
of optimal capacitor placement, state vector
represents the magnitude and argument of the
voltage of each busbar, and the control vector
shows the sitting and sizing of capacitors at each
busbar. F.,; , G(X,C) and H(X,C) are the objective

function, and equality and inequality constraints.
The deterministic solution of this problem is a
well-studied subject of many papers in literature.
However, when dealing with this problem as a
probabilistic one, the definition of its structure will
change asfollows:

(17)

3.1. Probabilistic M ulti-Objective Function

The multi-objective function used in this paper
consists of three parts, namely capacitor cost,
power loss, and voltage regulation. The last two
parts are probabilistic dependent and state
variables, respectively, and their expected value
will be used in objective function. These objectives
are detailed in the next subsections.

3.1.1. Expected Value of Power Loss

A remarkable amount of power used in distribution
systems is due to line losses. So, a main objective
of optimal capacitor placement problem is to
minimize power loss. As a dependent variable, the
expected value of power loss obtained from PE
method is used in this paper. The formulation to
obtain different moments of any function of several
random variablesisillustrated in section 2.1.

3.1.2. Expected Value of Voltage Regulation

One negative aspect of distribution systems is their
considerable voltage drop at the end of long
feeders. A common criterion to investigate the
voltage quality in distribution systems is voltage
regulation. In this paper, busbar voltages are state
variables. So, their expected values can be used to

34

calculate the voltage regulation index. For a system
of n busbars, thisindex is defined as follows.

n 2
VRean = 8 [L- Vifiy (18)
i=1

A combination of these indices has been used to
minimize the objective function. Weighting factors
have been assigned to each index regarding the
cost of saving energy on power loss and voltage
drop of the system and the cost of capacitor units.
Fapj =CLPLyen +C2VR, oy +C3.CC (19)
Where, C1, C2 and C3 are weighting factors,
PLean @NAVR, ., @re the expected values of power
loss and voltage regulation, respectively, and CC is
the capacitor cost which is the product of number
of capacitors and the unit cost.

3.2. Probabilistic Constraints

3.2.1. Power Equalities

In electrical systems, generated power should be
equal to the demand. So the probabilistic power
flow eguations should be satisfied for any
combination of active and reactive load demands,
and capacitors placed at different buses:
Py, - Py, =0 (20
Qg - Qu, =-Q, (21)
where P, and Q, are active and reactive powers
injected to bus j; P, and Q are active and
reactive power demands at bus j; and Q, isthe total

reactive power injected to bus j by capacitor(s)
placed at that bus.

3.2.2. Bus Voltage Limit

In electrical systems, one of the main targets is to
feed the loads while keeping the frequency and
voltage in an admissible range. When dealing with
uncertainties of loads, bus voltages will be
probabilistic variables as well. So, the maximum
and minimum alowable voltage amplitude at all
buses should be considered in optimal capacitor
planning problem as follow:

Viin + gy <V <V, - Dy (22)
Wherear, and by, aretwo valuesfound from the
voltage CDF of each busthat guarantee bus voltage
to be in the admissible range with a probability of
R%.

3.2.3. Maximum Line Current

Feeders of power system can handle different
current amplitudes based on their gender, operating
conditions, weather conditions, etc. So, as a safety
rule, current amplitude in a line, which is a
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probabilistic variable, should not exceed its
maximum allowable limit.
I €1 max = Croe (23)

wherecgro, is a value found from the current

amplitude CDF of each line that guarantees line
current amplitude to be less than the maximum
allowable value with a probability of R.

3.3. Assessment Procedure of Probabilistic

Inequalities
In each iteration of HSA, the validity of new
harmony should be checked. In probabilistic
optimal capacitor  problem, probabilistic
inequalities should be met for each harmony (set of
capacitor size and site). The steps to assess the
probabilistic inequalities of optimal capacitor
placement problem introduced in this paper are
mentioned here consecutively:

- For new harmony, find the bus voltage and line
current moments, using PE method.

- Using GC expansion, find the bus voltage and
line current CDFs.
Find the voltage and current corresponding to the
required confidence interval (a ., .bgy .9y, )-
Check if the voltage and current found in the
previous step meet the probabilistic inequalities.

4. Simulation Results and Discussion

The proposed procedure of probabilistic optimal
capacitor placement has been tested on a modified
33-bus radial distribution system illustrated in Fig.
2.

1

0

:

[T )

[ -.|V¢ v r»|/

=]
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u
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Fig.2. 33-bus Radial Distribution System

The load demands are considered to have
Generalized Extreme Vaue (GEV) distribution.
Location and scale parameters have been assumed
to have the same value as the original load
demands, and 10 percent of it, respectively. Details
of GEV distribution are presented in Appendix.
Shape parameter of all load demands are supposed
+0.3. This corresponds to consumers that have
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light load most of the time and heavy load, rarely.
Two different scenarios have been considered.
Scenario A: the optimal capacitor placement
problem has been solved for two cases. In the first
case, the deterministic optimal capacitor problem
has been solved in which, load demands were
supposed to have deterministic values equa to the
expected value of their GEV PDF with parameters
mentioned in the previous paragraph. In the second
case, load demands are supposed to be probabilistic
variables with the same GEV parameters. In this
case, the probabilistic optimal capacitor placement
problem has been solved for a confidence interval
of 0.97, meaning that all probabilistic inequalities
(bus voltages and line currents) should be satisfied
97 percent of the time.

Scenario B: in this scenario two different cases
were also considered; in the first case, an
approximate confidence interval of +3s has been
considered to counter probabilistic inequalities. In
this case, the bus voltages and line currents were
assumed to have a normal PDF in which +3s
indicates a confidence interval of 99.87 percent.
Considering this, in the second case of scenario B,
the same problem of probabilistic optimal capacitor
placement has been solved using the Gram-
Charlier method with a confidence interval of
0.9987.

In both scenarios mentioned above, the
maximum permissible current and minimum
permissible voltage have been considered 0.025
and 0.9 per unit, respectively. The results of each
scenario have been compared and the profits of the
method mentioned in this paper have been
discussed.

Table 1. Optima Capacitor Location and Size for
Deterministic Case of Scenario A

Installed KVAR Capacity Bus Number
50 8, 11, 16, 29, 30, 33
100 10
150 18, 31, 32
200 14

Table 2. Optimal Capacitor Location and Size for
probabilistic Case of Scenario A with a confidence interval of
0.97

Installed KVAR Capacity Bus Number
50 9,10, 11, 30
100 12,14, 15
150 16, 18
200 31, 33
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Scenario A: tables 1 and 2 represent the sitting and
sizing of capacitor units for deterministic and
probabilistic cases, respectively. It is clear that
when load demands are considered constant and no
confidence intervals are taken into account, fewer
capacitor banks are needed to minimize the
objective function while assuring the equality and
inequality constraints. However, in case of
stochastic load demands, more capacitor units
should be placed in the network in order to satisfy
the probabilistic inequality constraints considering
a predefined confidence interval.

Bus voltages for both cases of scenario A are well
compared in Fig. 3. Continuous lines show the
exact value (deterministic case) and the expected
value (probabilistic case) of bus voltages. The
confidence intervals of probabilistic case are also
drawn. Fig. 3 shows the effect of considering
stochastic nature of load demands on optimal
capacitor placement problem for a certain degree
of confidence. A similar discussion can be made
for line currents and corresponding figures can be
plotted. However, for the sake of conciseness, only
bus voltages are compared.

1 [ T R R R B B | [ 1
r—l..
[EE ]

11T
)\T"'-.

!
. N
]

- T.-..'_ J_rJ"-I J._l |-—UI|

k- 1

L rmk

.- 1 1 L N N O N I N N N I | 11 1 1
TOEd S RTH AL LD A TOAXINEIIEATEILN KK
TEL e

Fig.3. Comparison of bus voltages obtained from
deterministic method (Blue Line) and expected values of bus
voltages obtained from GC method (Red Line)

Fig. 4 shows the evolution of best fithess found by
HSA method in both cases. It is found from Fig. 4
that there is no maor difference between
deterministic and probabilistic cases fitness.
However, in probabilistic case, a sensible
confidence interval has been met. Thisis one of the
merits of using the method proposed in this paper.
Table 3 too, demonstrates the best objective values
found by HSA.. Probabilistic method also has lower
loss and voltage deviation because of its greater
capacitor investment.

]
ELS ", - £ LN £y

Fig.4. HSA best fitness evolution for deterministic case (Blue
Line) and GC method (Red Line)

Table 3: Comparison of Deterministic and GC-Based
Methods Used in Scenario A
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GCto
N GCfor Determin
Deterministic C1=0.97 istic
Ratio
Loss
(Expected 145.1826 139.906 0.9637
7
Value)
Voltage
Deviation
(Expected 0.1764 0.1446 0.8197
Value)
Total Installed
KVAR 1050 1200 1.1429
Capacity

Scenario B: in this scenario, the probabilistic
optimal capacitor placement is solved for both
methods of 3sigma and GC. Tables 4 and 5 show
the best sitting and sizing of capacitor banks for
3sigma and GC methods, respectively. There is
aso a comparison of these methods best
objectives found by HSA in table 6. It should be
noted that although the expected values of loss and
voltage deviation are lower in 3sigma method, the
capacitor investment is much lower in GC method.
The reason behind this is that by correctly
estimating the bus voltage and line current PDF
and CDF, the exact confidence intervals can be
found. In this way, the excess capacitor investment
to meet the excess confidence interval of 3sigma
would be reduced, while meeting the probabilistic
inequalities of bus voltage and line currents.

Table 4: Optima Capacitor Location and Size for 3sigma
Case of Scenario B (C1=0.9987)

Installed KVAR Bus Number
Capacity
50 11, 12, 13, 15, 16, 23,
26, 29, 30
100 10, 31
150 8, 14, 33
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300 7
350 17

Table 5: Optimal Capacitor Location and Size for GC Case
of Scenario B (CI=0.9987)

Installed KVAR

Capacity Bus Number
50 8,9, 14, 16, 28
100 33
150 18
200 13
250 17
400 32

Table 6: Comparison of 3sigma and GC-Based Methods
Used in Scenario B

3sigma GC for SGsng;r:)a
Cl1=0.9987 Ratio
Loss
(Expected  137.7265  141.0444 1.0241
Value)
Voltage
Deviation
(Expected 0.0942 0.1220 1.2951
Vaue)
Tota
Installed
KVAR 1750 1350 0.7714
Capacity

Fig. 5 and 6 show the expected value of bus
voltage after optimal placement of capacitors found
by HSA for 3sigma and GC method, respectively.
The difference between estimated confidence
intervals found by 3sigma and GC methods is well
indicated in these two figures. Fig 7 aso
demonstrates the evolution of the best fitness found
by HSA for GC and 3sigma methods.

So, by estimating the near-real CDF of bus voltage
and line currents, lower capacitor investment is
needed while inequalities are all met.

1A I

' ' ' ' o ' ' '
R = S A B ) B el R Dl ) e
lochuid="

Fig.5. Expected value of bus voltage magnitudes and
confidence intervals for 3sigma method

roHIA AR

HE

Fig.6. Expected value of bus voltage magnitudes and
confidence intervals for GC method. (C1=0.9987)

Fig.7. HSA best fitness evolution for 3sigma (Blue Line) and
GC method (Red Line)

5.Conclusion

In this paper, a new method to solve the
probabilistic optimal capacitor placement problem
was presented. It was assumed that load demands
have stochastic nature. Therefore, a probabilistic
method was proposed to handle the stochastic
aspect of the optimal capacitor placement problem.
In addition, Harmony Search Algorithm was
exploited to solve the optimization problem. In
order to speed up the optimization problem, Point
Estimation method was utilized instead of Monte
Carlo method to find the bus voltage and line
current moments. Then, Gram-Charlier expansion
has been used to find the near-real CDF of
variables concerning the inequalities. It was shown
that by having the CDF of state and dependent
variables, the probabilistic optimal capacitor
problem can be solved for an arbitrary amount of
confidence interval. The proposed method was
compared with 3-sigma method where commonly
used in literature. Furthermore, it is assumed that
load demands have Generalized Extreme Value
distribution to clearly demonstrate the merits of
this method. The method is verified by testing on a
33-bus radial distribution system. The results show
that the proposed method can be used to assess the
probabilistic aspects of systems with many
uncertain energy sources, like wind, solar, etc.
Besides, it can be used to analyze such systems up
to an arbitrary confidence interval.
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6. Appendix

The probability density function for the generalized
extreme value with scale parameter k , scae
parameter s and location parameter n is defined

as:
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Fig. 8 presents a sample PDF of variable x for
k=03, n=80,and s =8.
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Fig.8. A sample PDF of variable x for k=0.3, n =80, and
s=8
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