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Abstract

The fusion of valuable spectral and spatial features
can significantly improve the performance of high
resolution hyperspectral images classification. In
this paper, we propose a spectral and spatial feature
extraction method based on discriminant analysis.
To increase the class discrimination, we maximize
the between-class scatters and minimize the within-
class scatters. To include the spatial information in
the feature extraction process, we estimate the
spatial scatters in a spatial neighborhood window
with multi-scale fashion. We compare our proposed
method, which is called spectral-spatial discriminant
analysis (SSDA), with some spatial-spectral feature
extraction methods included original spectral bands
plus Gabor filters, gray level co-occurance matrix
(GLCM), and morphology profiles and also with
some popular spectral feature extraction methods
such as nonparametric weighted feature extraction
(NWFE) and locality preserving projection (LPP).
Moreover, we compare SSDA with some recently
proposed spectral-spatial classification approaches.
The experimental results on two real hyperspectral
images show the good performance of SSDA
compared to the competitor methods.

Keywords: Spatial features, spectral features,
discriminant analysis, classification.

Introduction

Hyperspectral remote sensing images are popular due to
their high spectral resolution and are widely used for
land cover discrimination. The design of a competitive
supervised classification algorithm, which assigns one
class label to each pixel of image, after some training
procedures, is one of the most important tasks in the
analysis of hyperspectral images. The acquisition of
spectral information in a contiguous fashion provides a
high capacity for land cover class discrimination.
However, in the context of supervised classification, the
high dimensionality of hyperspectral data introduces
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challenges such as curse of dimensionality or Hughes
phenomenon [1]. To tackle this problem, several
approaches have been introduced. The use of semi-
supervised learning [2]-[3], the kernel based methods
[4], and feature reduction [5-12] are the main solutions.
Feature reduction can be implemented in two general
ways: feature selection and feature extraction. Linear
discriminant analysis (LDA) [13], and generalized
discriminant analysis (GDA) [14], the nonlinear version
of LDA, wuse the Fisher criterion for class
discrimination. Both of the LDA and GDA methods can
extract maximum ¢ — 1 features where c is the number
of classes. Moreover, LDA has singularity problem in a
small sample size situation. The nonparametric
weighted feature extraction (NWFE) [15], which is the
weighted version of LDA, introduces the non-
parametric versions of between-class and within-class
scatter matrices to extract more than ¢ — 1 features and
copes with the singularity problem using a
regularization method. In addition to LDA-based
methods, there are manifold learning based approaches
such as neighborhood preserving embedding (NPE)
[16] and locality preserving projection (LPP) [17] that
the main goal of them is preservation of data structure.
Unsupervised NPE and LPP represent the topological
structure of data using an adjacency graph without
considering the class label information while in the
supervised NPE and LPP only samples within the same
class are considered during the graph construction.

The thematic maps obtained by spectral features
often introduce a salt and pepper noise due to the lack
of consideration of contextual information. So, with
incorporation of neighborhood information (spatial
features) with spectral information, the classification
quality can be significantly improved. The spatial
features can be included in the classification in some
different ways. The contextual information can be
incorporated in the classification procedure using object
extraction [18] or by segmentation-aided classification
[19]. In [20], a classification framework has been
developed that pursues the combination of multiple
features to integrate different types of features extracted
from both linear and nonlinear transformations. This
classification framework is able to cope with the linear
and nonlinear class boundaries present in data. This
approach requires no regularization parameters to
control the weights of considered features. As a result,
the different types of features can be efficiently
integrated in a flexible and collaborative way. In [20],
the posterior class probabilities are modeled by a
multinomial logistic regression (MLR) and the used
input feature is obtained by integration of multiple
features. The original spectral information, the
extended multi-attribute profiles (EMAPs), and two
kernel features constructed over two previously
mentioned sources of information are the linear and
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Fig. 1. The flowchart of proposed method.

nonlinear features which used as input in the MLR
classifier. In [21], a region kernel-based support vector
machine (RKSVM) based on spatial homogeneous
regions and kernel similarity metric has been proposed
to classify the local homogeneous region of each pixel
of hyperspectral image. A key point in the region
classification is to measure the distance (or similarity)
between different regions. In detail, for each pixel x, a
corresponding local region R containing x and its
spatial neighbors is generated by using a distance
similarity neighborhood or an area-filtering-based
morphological neighborhood. Authors in [22] proposed
a spectral-spatial classifier for hyperspectral image
classification that addresses the issue of mixed pixel
characterization. In [22], the spectral information is
characterized both locally and globally for probabilistic
classification. A subspace-based MLR (MLRsub)
method is used to learn the posterior probabilities and a
pixel-based probabilistic support vector machine
(SVM) is used as an indicator to locally determine the
number of mixed components, which participate in each
pixel. Then, the information provided by local and
global probabilities is fused and interpreted to
characterize the mixed pixels. Finally, by using a
Markov random field (MRF) regularizer, the spatial
information is included. The resulting method is called
SVM-MLRsub-MRF.

Moreover, the spatial features such as texture, shape,
and size can be extracted using popular methods such as
Gabor filters [23]-[24], gray level co-occurance matrix
(GLCM) [25], and morphology profile (MP) [26]-[29].
Then, the extracted spatial

features can be fused with spectral features to improve
the classification results. GLCM is a square matrix and
can reveal certain properties about the spatial
distribution of gray levels in the texture image by
considering the relationship between two neighbouring
pixels in the image. A set of filter bank consisting of
Gabor filters with various scales and directions can
acquire localization properties in both of the spatial and
frequency domains. The MPs model the spatial
information by analyzing an interaction of a set of
structure elements which have different shapes and
sizes.

Due to this fact that adjacent pixels in a spatial
window have the same materials with a high
probability, we estimate the spatial scatter matrix to
combine it with within-class and between-class scatter
matrices using a discriminant analysis approach. In this
way, the spectral and spatial information are combined
and the extracted features have more ability for class
discrimination. The proposed method, called spectral-
spatial discriminant analysis (SSDA), is compared with
NWFE, LPP, and some spatial feature extraction
methods such as Gabor filters, GLCM, and MP
combined with spectral bands.

Spectral-spatial discriminant analysis

The flowchart of proposed method, SSDA, is shown in
Fig. 1. The within-class and between-class scatter
matrices are calculated by spectral features using a non-
parametric form. The total scatter matrix is also
estimated. To include the spatial information in the
feature extraction procedure, we calculate the spatial
scatter matrix in a neighborhood window with multiple
scales. The spectral and spatial discriminant
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information is then incorporated using Fisher Criterion.
Finally, using a majority voting rule, the classification
results of individual scales are combined to provide the
final classification map. In the following, each step of
SSDA is described in detail.

To extract the spectral information for -class
discrimination, we calculate the within-class and
between-class scatter matrices, which are denoted by
S,» and S, respectively, as follows:

SW = ?:12?:11 (xi - x]')(xi - x])T (1)
i=lj

Sp = Xy = (2 — x) (% — xj)T 2)
li#—‘l]'

where x; € R¢ is the ith training sample and [; €
{1,2, ..., c} denotes the class label of x;. n and c are the
number of total training samples and the number of
classes respectively. We use the above non-parametric
forms for calculation of scatter matrices for two
reasons:1- to cope with the singularity of within-class
scatter matrix in a small sample size situation, 2-the
rank of between-class scatter matrix is not limited to the
number of classes in the non-parametric form, and so,
we can extract more than ¢ — 1 features. In general, the
neighboring pixels in a spatial homogeneous region
have the same materials and belong to the same class.
In SSDA, we want to preserve the spatial local
neighborhood structure. In other words, the neighbor
pixels in the original spatial space remain neighbor in
the SSDA projected space and vice versa. Let (p;, q;)
be the pixel coordinate of sample x;. The local pixel
neighborhood centered at x; is defined as:

Nx)={x2({@q €lpi—sp +slq€
qgi=s,qi+s 3)

where L = 25+ 1 is the width of the neighborhood
window and is also called scale. The number of scales
is denoted by K in Fig. 1. The neighbors of x; in the
spatial  neighborhood,N(x;), are denoted by
Xi1,Xiz, ., Xip Where p =L?>—1 is the number of
neighbors. The spatial scatter matrix (Sspa) is
calculated as follows:

Sepa = Zta X7, By (%0 — x4)) (e — xi7) @

where x;; € N(x;) is the jth spatial neighbor pixel of x;
and f;; is defined as:

d‘l(xi,xij)

By = Yooy A7 (xpxik) )

where d(a, b) is the Euclidean distance between a and
b. So, B;j is a normalized similarity measure which
measures the spectral distance of central pixel to

neighboring pixels. If there is less distance between the
central pixel (x;) and jth spatial neighbor of x;, (xl- j),
the central pixel and the neighbor pixel have more
similarity with together, and so, they consist of the
same materials and belong to the same class with a high
probability. Therefore, the neighbor pixels with more
pij have more role to calculate the spatial scatter matrix
and to preserve the spatial neighborhood structure of
image. The total scatter matrix is estimated as:

S; =X (x — M)(x; — mT (6)

where M = %Z?zlxi is the mean of training samples.
To cope with the singularity problem, when the number
of training samples is limited, in addition to considering
a non-parametric form for calculation of §,,, we
regularize it as follows:

ST = 0.5S,, + 0.5diag(S,) (7)

After estimation of Sy, Sy, S¢, and Sg,, we combine
the scatter matrices as follows to fuse the spectral and
spatial information:

S =Sy + Sspa )
S, =S, +8S; 9

To increase the class discrimination, we minimize the
within-class scatters and maximize the between-class
scatters and to preserve the local spatial neighborhood,
we minimize the spatial scatters. In other words, for
extraction of m features, SSDA seeks a linear
projection matrix A = [v4,Vy,...,V;,] Which can be
obtained by solving the following generalized
eigenvalue problem:

S, v =1S,v (10)
So, the projected feature vector is obtained as: Y1 =
AmxaXaxi-

Experimental results

The first dataset in our experiment (University of Pavia)
was provided by the Reflective Optics System Imaging
Spectrometer (ROSIS). It has a spatial resolution of 1.3
m per pixel. There is 115 spectral bands in the original
recorded image with a spectral range from 0.43 to 0.86
um, which after removal of noisy channels, 103 bands
are selected. This urban image contains nine classes of
interest and 610%340 pixels. The second dataset used in
our experiments was collected over the valley of
Salinas, Southern California, in 1998 by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). The
Salinas image consists of 224 spectral bands from 0.4 to
2.5 um, with nominal spectral resolution of 10 nm and
with a pixel size of 3.7 m which after removing 20
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absorption channels, 204 bands are selected. This image
contains 512 X217 pixels and 16 classes.

We use the SVM classifier for classification of
projected feature vectors. The polynomial kernel with
default parameters defined in LIBSVM is used in our
experiments [30]. The training samples are selected
randomly and each experiment is repeated 10 times and
the average of results are reported.

Some different criteria are used for evaluation of
feature extraction methods from a classification
accuracy point of view: average accuracy (AA), average
reliability (AR), overall accuracy (OA), and kappa
coefficient [31]. The accuracy (Acc.) and reliability
(Rel.) for each class of data are calculated by:
Acc.=a/A (11)
Rel.= a/B (12)
where « denotes the number of correctly classified
testing samples, A and B are the total testing samples of
class and the total samples which are labeled as that
class respectively. The number of testing samples
whose labels are correctly determined divided to the
total number of testing samples (in percentage) gives
the overall accuracy. Moreover, for assessment of
statistical ~ significance of differences in the
classification results, we use the McNemars test [32]. In
this test, the sign of parameter Z;, indicates whether
classifier 1 outperforms classifier 2 (Z;, > 0) or vice
versa (Z;; < 0), and the difference between
classification accuracy of two methods is statistically
significant if |Z;,| > 1.96. In the SSDA method, we
use the multi-scale spatial neighborhood windows with
L=3%3,5x%5,..,21 x21. For implementation of
Gabor filters, GLCM, and MP, at first, the principal
component analysis (PCA) transform is applied to
hyperspectral image, and then, the spatial features are
extracted from the first principal component (PC1). The
fast version of GLCM, with d = 1,8 = 0, introduced in
[33] with a 7 X 7 square neighbourhood window is
used. 16 features introduced in [25] are extracted from
the GLCM matrices.

We choose the number of scales and directions in the
Gabor filters equal to 6 and 3 respectively. With
applying the opening and closing operators by
reconstruction on a single band image, I, a MP with
Npp = 2n + 1 features is constructed as follows:

MP,(D) ={@1(D), ., 0n (D, Ly1 (D, ., v (D} (13)

where ¢;(I) and y;(I); (i = 1,2, ...,n) are closing and
opening operators by reconstruction respectively. A
disk shape structure element with the radius R €
{1,2,...,n} is used to extract a MP with Npnp=53
features. The 6x3=18 Gabor, 16 GLCM, and 53 MP
features are extracted and combined with d original full
band hyperspectral image (HS) into a vector using
stacking. The feature vectors of Gabor-HS, GLCM-HS,
and MP-HS have 18+d, 16+d, 53+d spectral-spatial

features respectively. For extraction of m features from
these long feature vectors, the PCA transform is used.

In addition to spectral-spatial methods, i.e., Gabor-
HS, GLCM-HS, and MP-HS, we compare our proposed
method with two popular spectral feature extraction
methods, NWFE and supervised LPP. Figs. 2 and 3
show the average accuracy versus the number of
extracted features using a) 15 training samples and b)
30 training samples for Pavia and Salinas datasets
respectively. The accuracy and reliability for each class,
average accuracy, average reliability, overall accuracy,
and kappa coefficient obtained by 5 and 8 extracted
features for Pavia and Salinas datasets are represented
in tables 1 and 2 respectively. For University of Pavia
using 15 training samples, the use of HS provides the
following results: 75.53% average accuracy, 68.54%
average reliability, 60.02% overall accuracy, and 0.52
kappa coefficient. Also, for Salinas dataset using 15
training samples, the following results are achieved by
HS: 88.83% average accuracy, 85.25% average
reliability, 80.48% overall accuracy, and 0.78 kappa
coefficient. The ground truth map (GTM), and the
classification maps obtained by 15 training samples are
shown in Figs. 4 and 5 for Pavia and Salinas datasets
respectively.

Tables 3 and 4 represent the classification results
using 30 training samples for Pavia (with 9 extracted
features) and Salinas (with 7 extracted features)
respectively. The McNemars test results are reported in
table 5. As we can see from the results, SSDA
outperforms other methods in the most cases. This is
expected because SSDA extract spectral and spatial
features simultaneously while in Gabor-HS, GLCM-
HS, and MP-HS, at first the spatial features are
extracted, and then combined with original spectral
bands. After that, a transformation such as PCA is
needed to reduce the dimensionality of stacked feature
vector in Gabor-HS, GLCM-HS, and MP-HS. Also,
NWFE and LPP feature extraction methods just use the
spectral features and do not consider the correlation of
adjacent pixels in an image and so, a salt and pepper
noise is presented in the obtained classification maps.

The highest average accuracies among the first 12
features for University of Pavia and Salinas datasets are
represented in table 6. Each number in the parentheses
is the optimal number of extracted features. The highest
values in each row are shown in bold. As can be seen,
the highest AA is obtained by SSDA in both datasets. In
addition, we compared our proposed method with some
classification approaches [20-[22], which use the both
of spectral and spatial information. The classification
results for University of Pavia are reported. Authors in
[20] use a linear feature hyjpeqr (the original spectral
information), a nonlinear feature hgy4p (Extended
multi-attribute profiles, i.e., EMAP), and also two
kernel features constructed over two previously
mentioned sources of information (spectral and spatial,
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respectively) using the Gaussian radial-basis-function
kernel. The spectral kernel Kji,.qr and the spatial
kernel Kgp4p are built by using the original spectral
data and the EMAP respectively. All nonlinear features
considered in hgy = [Ryinear » Remap, Kiinear» Kemar]-
A suitable subset of features, including only h;j,eq and
heyap, 1.6, Rsypser = [Ruinear » REMap] can be obtained
to have a comparable solution with very competitive
computational cost. The comparison results of proposed
method (SSDA) with types of features considered in
[20] are represented in table 7. The number of features
extracted by SSDA, which achieved the highest OA, is
shown in the parentheses. In this table, totally 3921
samples are used for training and 42776 samples are
used for testing. The OA and computation time are
reported in this table. SSDA provides reasonable overall
classification accuracy compared to classification
approach introduced in [20]. SSDA is implemented
faster than Kjipeqr, Kemap > and hy;;.

In [21], RKSVM using a squared neighborhood (SN)
and a morphological neighborhood (MN) is called
RKSVM-SN and RKSVM-MN, respectively. K& and
Ky denote RKSVM-SN and RKSVM-MN with the
single region kernel respectively. uKZ ™" and

UKt represent RKSVM-SN and RKSVM-MN with
the weighted summation region kernel respectively,

where the combination coefficient u is set as 0.8. Ks[r'w]

and K[! refer to RKSVM-SN and RKSVM-MN with
the stack region kernel respectively. All definition of
single region kernel, weighted summation region
kernel, and stack region kernel can be found in [21].
The comparison results between SSDA and proposed
methods in [21] using 5 and 20 training samples are
reported in table 8. When there is a very small training
set (5 samples per class), SSDA outperforms K}, and
uKy;*Y. But, using 20 training samples, which is
approximately a small training set, RKSVM provides
better performance than SSDA.

The OA results obtained by SSDA and SVM-
MLRsub-MRF (proposed in [22]) are given in table 9
for different number of training samples. In the last
column of this table, 3921samples are used for training,
and 42776 samples are used for testing. Using a large
training set, the scatter matrices in SSDA can be
estimated with a high accuracy. The classification
results show the better performance of SSDA compared
to SVM-MLRsub-MRF using a large training set.

(a) Pavia university (9 class)/SVM classifier/15 training samples

(b) Pavia university (9 class)/SVM classifier/30 training samples
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Table 1. The classification results obtained by 15 training samples and 5 extracted feature for Pavia dataset.

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
N Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc Rel.
o samples
1 Asphalt 6631 78.54 78.90 58.66 67.07 60.46 82.29 60.44 82.35 60.40 79.04 64.95 85.76
2 Meadows 18649 72.93 92.97 74.68 95.15 64.78 85.58 64.78 85.58 62.19 84.54 53.88 86.37
3 Gravel 2099 75.56 48.91 53.36 29.27 35.64 25.21 35.97 25.43 54.69 28.43 62.46 39.88
4 Trees 3064 82.54 76.40 77.42 59.20 75.46 | 85.00 | 75.46 | 85.00 | 74.15 | 93.85 | 82.87 75.88
5 | Painted metal sheets 1345 99.18 99.93 95.61 93.12 98.66 | 98.01 [ 98.66 | 98.01 | 98.81 | 97.01 | 99.33 96.53
6 Bare Soil 5029 79.04 49.53 54.03 56.88 63.89 | 3592 | 63.87 | 3594 | 60.27 | 30.52 | 65.68 31.05
7 Bitumen 1330 75.34 48.90 86.54 35.76 87.97 36.76 87.97 36.76 77.89 41.86 86.24 44.72
8 | Self-Blocking Bricks 3682 50.05 69.84 62.17 54.45 53.61 53.70 53.69 53.61 52.93 69.48 70.15 65.33
9 Shadows 947 99.58 99.79 97.57 99.89 99.68 10(())'0 99.68 10(())'0 99.79 99.47 99.89 100.00
AA and AR 79.20 73.91 73.34 65.64 71.13 66.94 7117 66.96 71.24 69.36 76.16 69.50
OA 74.84 69.36 64.92 64.94 63.83 64.30
Kappa coefficient 0.68 0.61 0.56 0.56 0.55 0.56
Table 2. The classification results obtained by15 training samples and 8 extracted feature for Salinas dataset.
class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
No Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc Rel.
samples
1 Brocoli_green_weeds_1 2009 99.70 | 99.45 108'0 99.41 99.35 99.75 | 99.35 | 99.75 | 98.26 | 89.89 | 99.60 | 99.11
2 Brocoli_green_weeds 2 3726 99.60 | 99.97 | 92.51 | 97.65 99.41 99.52 | 99.41 | 99.52 | 92.40 | 98.85 | 99.28 | 99.73
3 Fallow 1976 99.54 | 98.20 | 99.80 | 93.33 98.13 82.51 | 98.13 | 82.51 | 95.45 | 89.30 | 99.54 | 9048
4 Fallow _rough plow 1394 99.00 98.57 98.85 97.59 98.42 97.44 98.42 97.44 99.43 96.12 99.07 95.50
5 Fallow_smooth 2678 98.58 98.73 94.77 99.22 95.03 98.91 95.03 98.91 92.83 98.77 95.52 99.15
6 Stubble 3959 99.12 10(())'0 94.62 93.42 99.12 99.14 99.12 99.14 99.62 99.60 99.37 99.34
7 Celery 3579 99.69 | 99.97 | 94.52 | 92.10 99.13 99.33 | 99.13 | 99.33 | 9891 | 95.16 | 99.30 | 98.56
8 Grapes_untrained 11271 66.40 82.40 53.15 81.72 59.45 82.54 59.47 82.55 59.28 73.26 37.64 62.56
9 Soil vineyard develop 6203 99.92 97.33 99.74 94.85 97.68 96.51 97.68 96.51 99.15 97.31 98.69 97.70
10 | Corn_senesced green weeds 3278 83.89 91.64 72.15 65.59 74.92 88.60 74.92 88.60 73.76 87.36 80.60 95.83
11 Lettuce romaine 4weeks 1068 92.60 94.37 96.72 91.82 94.01 81.83 94.01 81.83 89.61 89.61 95.60 83.28
12 Lettuce romaine 5 weeks 1927 99.90 88.38 99.27 97.90 99.22 92.77 99.22 92.77 98.03 82.17 98.91 98.50
13 Lettuce_romaine_6 weeks 916 98.14 | 95.23 | 95.09 | 57.38 99.02 84.06 | 99.02 | 84.06 | 98.03 | 83.23 | 9891 | 90.42
14 Lettuce romaine 7 weeks 1070 91.68 96.46 94.11 67.40 89.35 95.41 89.35 95.41 90.65 88.10 90.09 91.03
15 Vineyard untrained 7268 79.64 61.64 68.73 61.83 80.94 58.46 80.94 58.47 65.64 51.75 67.83 41.77
16 Vineyard_vertical_trellis 1807 99.83 108'0 71.56 40.62 93.86 87.20 93.86 87.20 89.37 93.73 95.96 96.01
AA and AR 94.20 | 93.90 | 89.10 | 83.24 92.32 90.25 | 92.32 | 90.25 | 90.03 | 88.39 | 90.99 | 89.94
OA 88.67 81.49 86.07 86.07 83.12 80.43
Kappa coefficient 0.87 0.80 0.85 0.85 0.81 0.78
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Fig. 4. GTM and classification maps obtained by 15 training samples and 5 extracted features for Pavia dataset.
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Table 3. The classification results obtained by 30 training samples and 9 extracted feature for Pavia dataset.

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
N Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
o samples
1 Asphalt 6631 73.96 88.12 81.66 90.07 82.05 | 87.28 | 82.05 | 87.28 | 81.45 | 84.76 | 73.67 87.29
2 Meadows 18649 87.54 97.00 68.80 86.88 65.89 | 85.83 | 65.89 | 85.83 | 61.72 | 85.93 | 4845 80.76
3 Gravel 2099 87.61 50.91 74.89 61.41 7432 | 57.31 7432 | 5731 | 71.22 | 61.50 | 73.03 52.59
4 Trees 3064 78.88 74.55 78.49 80.33 79.90 | 73.78 | 79.86 | 73.77 | 77.68 | 79.23 | 75.59 63.84
5 | Painted metal sheets 1345 97.17 91.53 99.85 99.85 99.63 | 83.65 | 99.63 | 83.65 | 99.78 | 96.34 | 99.70 88.51
6 Bare Soil 5029 78.25 71.56 68.68 39.69 66.18 | 37.56 | 66.18 | 37.56 | 67.99 | 34.10 | 63.39 27.40
7 Bitumen 1330 92.71 64.79 87.52 58.46 84.29 | 59.56 | 84.29 | 59.56 | 88.27 | 5947 | 8233 46.92
8 | Self-Blocking Bricks 3682 76.02 74.96 67.52 71.89 63.88 | 81.13 | 63.88 | 81.13 | 6844 | 77.90 | 60.67 74.00
9 Shadows 947 99.16 97.61 99.89 100.00 | 99.68 108'0 99.68 10(())'0 99.47 | 99.47 | 99.89 100.00
AA and AR 85.70 79.00 80.81 76.51 79.53 | 74.01 | 79.53 | 74.01 | 79.56 | 75.41 | 75.19 69.03
OA 83.44 73.86 72.01 72.00 70.50 62.04
Kappa coefficient 0.79 0.67 0.65 0.65 0.63 0.54
Table 4. The classification results obtained by 30 training samples and 7 extracted feature for Salinas dataset.
class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
No Name of class # Acc. Rel. Acc Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc Rel.
samples
. 100.0 | 100.0
1 Brocoli_green_weeds_1 2009 99.50 0 0 99.95 99.30 99.90 | 99.30 | 99.90 | 98.31 | 95.04 | 99.30 | 99.01
2 Brocoli_green weeds 2 3726 99.19 | 99.73 | 94.77 10(())'0 98.31 99.38 | 98.31 99.38 | 9431 | 98.54 | 98.39 | 99.35
3 Fallow 1976 99.80 | 95.54 | 98.68 | 95.68 96.20 9496 | 96.20 | 9496 | 93.22 | 87.34 | 96.71 | 96.27
4 Fallow rough plow 1394 99.35 99.00 | 93.26 | 96.87 99.00 99.50 | 99.00 | 99.50 | 99.57 | 94.74 | 99.35 | 99.28
5 Fallow_smooth 2678 97.72 | 99.39 | 9597 | 96.47 97.16 99.20 | 97.16 | 99.20 | 9343 | 9698 | 96.90 | 99.35
6 Stubble 3959 99.82 108'0 98.23 | 98.08 99.34 99.47 | 99.34 | 9947 | 99.55 | 99.90 | 99.72 | 99.45
7 Celery 3579 99.69 | 99.69 | 96.93 | 92.85 98.80 97.33 | 98.80 | 97.33 | 99.22 | 95.51 99.02 | 99.11
8 Grapes untrained 11271 74.70 | 80.79 | 7449 | 78.07 58.03 77.32 | 58.02 | 7730 | 61.80 | 76.73 | 47.70 | 68.91
9 Soil vineyard develop 6203 99.36 | 98.89 | 96.36 | 99.15 94.39 98.44 | 9439 | 98.44 | 98.31 | 99.19 | 93.71 | 98.31
10 | Corn_senesced green weeds 3278 9234 | 87.11 8591 | 8523 88.53 86.09 | 88.53 | 86.09 | 79.84 | 86.34 | 89.08 | 89.43
11 Lettuce romaine 4weeks 1068 98.78 97.24 | 97.85 | 81.39 94.29 70.27 | 9429 | 7027 | 93.35 | 78.07 | 94.38 | 63.44
12 Lettuce romaine 5 weeks 1927 108'0 98.42 | 99.22 | 97.01 97.56 97.66 | 97.56 | 97.66 | 95.74 | 96.65 | 94.76 | 98.65
13 Lettuce romaine 6 weeks 916 99.56 | 9530 | 97.49 | 60.54 99.02 76.41 | 99.02 | 76.41 | 98.25 | 81.45 | 99.02 | 91.34
14 Lettuce romaine 7 weeks 1070 9327 | 88.71 88.04 | 78.30 89.81 84.00 | 89.81 | 84.00 | 85.14 | 82.89 | 90.09 | 82.04
15 Vineyard untrained 7268 71.99 | 67.61 | 6489 | 67.78 72.74 55.04 | 72.73 | 55.04 | 7243 | 56.58 | 67.09 | 4643
16 Vineyard vertical trellis 1807 98.23 98.34 | 72.55 | 70.26 96.07 97.75 | 96.07 | 97.75 | 86.88 | 91.33 | 97.29 | 97.88
AA and AR 95.21 94.11 | 90.91 | 87.35 92.41 89.54 | 9241 | 89.54 | 90.58 | 88.58 | 91.41 | 89.27
OA 89.92 86.28 85.07 85.07 84.71 82.11
Kappa coefficient 0.89 0.85 0.84 0.84 0.83 0.80

Table 5. The McNemars test results for Pavia and Salinas datasets.

Pavia, 15 training samples, 5 extracted features

SSDA | MP-HS | Gabor-HS | GLCM-HS | NWFE LPP
SSDA 0 21.96 36.31 36.26 42.44 38.97
MP-HS -21.96 0 15.53 15.47 19.42 17.12
Gabor-HS -36.31 -15.53 0 -1.02 4.32 2.39
GLCM-HS -36.26 | -15.47 1.02 0 4.39 245
NWFE -42.44 | -19.42 -4.32 -4.39 0 -1.82
LPP -38.97 | -17.12 -2.39 -2.45 1.82 0
Salinas, 15 training samples, 8 extracted features
SSDA | MP-HS | Gabor-HS | GLCM-HS | NWFE LPP
SSDA 0 37.29 18.27 18.25 35.20 42.55
MP-HS -37.29 0 -24.50 -24.52 -7.96 5.31
Gabor-HS -18.27 24.50 0 -1.41 17.40 29.72
GLCM-HS -18.25 24.52 1.41 0 17.42 29.74
NWEE -35.20 7.96 -17.40 -17.42 0 13.96
LPP -42.55 -5.31 -29.72 -29.74 -13.96 0
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Pavia, 30 training samples, 9 extracted features
SSDA MP-HS Gabor-HS | GLCM-HS | NWFE LPP
SSDA 0 1591 9.15 9.16 17.40 43.80
MP-HS -15.91 0 42.22 42.22 46.82 72.09
Gabor-HS -9.15 -42.22 0 1.00 6.94 36.21
GLCM-HS -9.16 -42.22 -1.00 0 6.93 36.20
NWFE -17.40 -46.82 -6.94 -6.93 0 32.74
LPP -43.80 -72.09 -36.21 -36.20 -32.74 0
Salinas, 30 training samples, 7 extracted features
SSDA MP-HS Gabor-HS | GLCM-HS | NWFE LPP
SSDA 0 21.28 32.44 32.46 32.94 45.90
MP-HS -21.28 0 6.87 6.89 8.39 22.86
Gabor-HS -32.44 -6.87 0 0.37 2.30 18.91
GLCM-HS -32.46 -6.89 -0.37 0 2.28 18.87
NWFE -32.94 -8.39 -2.30 -2.28 0 13.69
LPP -45.90 -22.86 -18.91 -18.87 -13.69 0

Table 6. The highest average accuracy among the first 12 features.

Dataset No. of training SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
o 15 79.20 76.65 78.63 78.62 76.94 80.43
University of Q) (12) (11 (11) (11) (10)
Pavia 30 85.70 81.86 83.02 83.02 80.92 78.18

® a2) 12 a2) an an
15 94.20 90.31 92.43 92.44 90.45 92.28

Salinas ®) (12) (i1 (12) ™ ™)
30 95.21 91.47 92.55 92.55 91.86 92.87

()] an ® ®) an ®

Table 7. The comparison results between SSDA and proposed method in [20] using totally 3921 training samples for University
of Pavia dataset.

Proposed frame work in [20]
SSDA
hEMAP Klinear KEMAP hall hsubser
0A (229f7e.a6t31res) 97.37 79.50 97.43 97.80 97.53
(S;‘(r)‘;lzs) 93.42 3.56 156.08 166.50 2082.3 5.00

Table 8. The comparison results between SSDA and proposed method in [21] using different number of training samples per class
for University of Pavia dataset.

.. RKSVM-SN proposed in [21] RKSVM-MN proposed in [21]
No- of raining SSbA K? Kt K Kz WK Ky
71.83
5 (3 features) 72.66 72.95 74.62 71.42 71.52 73.37
83.11
20 (8 features) 92.67 92.94 93.09 91.81 91.86 92.86

Table 9. The comparison results between SSDA and proposed method in [22], as a function of the number of training samples per
class where the total number of training samples is given in parentheses, for University of Pavia dataset.

No. of training 20 (180) 40 (360) 60 (540) 80 (720) All samples (3921)
SSDA 83.11 89.72 92.53 95.22 97.61
(8 features) (12 features) (13 features) (17 features) (22 features)
SVM-MLRsub-
MRF [22] 85.88 90.97 92.10 94.57 95.56

Conclusion

The spectral-spatial discriminant analysis method was
proposed in this paper for feature extraction of
hyperspectral ~ images. = The  SSDA  method
simultaneously maximizes the class discrimination and
preserves the spatial local structure of data in the
projected space using the Fisher criterion.

The experimental results showed the good performance
of SSDA in comparison with Gabor-HS, GLCM-HS,
MP-HS, NWFE, LPP, and some recently proposed
spectral-spatial classification approaches.
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