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Abstract 

The fusion of valuable spectral and spatial features 

can significantly improve the performance of high 

resolution hyperspectral images classification. In 

this paper, we propose a spectral and spatial feature 

extraction method based on discriminant analysis. 

To increase the class discrimination, we maximize 

the between-class scatters and minimize the within-

class scatters. To include the spatial information in 

the feature extraction process, we estimate the 

spatial scatters in a spatial neighborhood window 

with multi-scale fashion. We compare our proposed 

method, which is called spectral-spatial discriminant 

analysis (SSDA), with some spatial-spectral feature 

extraction methods included original spectral bands 

plus Gabor filters, gray level co-occurance matrix 

(GLCM), and morphology profiles and also with 

some popular spectral feature extraction methods 

such as nonparametric weighted feature extraction 

(NWFE) and locality preserving projection (LPP). 

Moreover, we compare SSDA with some recently 

proposed spectral-spatial classification approaches. 

The experimental results on two real hyperspectral 

images show the good performance of SSDA 

compared to the competitor methods.  

 

Keywords: Spatial features, spectral features, 

discriminant analysis, classification. 
 

Introduction 

Hyperspectral remote sensing images are popular due to 

their high spectral resolution and are widely used for 

land cover discrimination. The design of a competitive 

supervised classification algorithm, which assigns one 

class label to each pixel of image, after some training 

procedures, is one of the most important tasks in the 

analysis of hyperspectral images. The acquisition of 
spectral information in a contiguous fashion provides a 

high capacity for land cover class discrimination. 

However, in the context of supervised classification, the 

high dimensionality of hyperspectral data introduces 
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challenges such as curse of dimensionality or Hughes 

phenomenon [1]. To tackle this problem, several 

approaches have been introduced. The use of semi-

supervised learning [2]-[3], the kernel based methods 

[4], and feature reduction [5-12] are the main solutions. 

Feature reduction can be implemented in two general 

ways: feature selection and feature extraction. Linear 
discriminant analysis (LDA) [13], and generalized 

discriminant analysis (GDA) [14], the nonlinear version 

of LDA, use the Fisher criterion for class 
discrimination. Both of the LDA and GDA methods can 

extract maximum � − 1 features where � is the number 
of classes. Moreover, LDA has singularity problem in a 

small sample size situation. The nonparametric 

weighted feature extraction (NWFE) [15], which is the 

weighted version of LDA, introduces the non-

parametric versions of between-class and within-class 

scatter matrices to extract more than � − 1 features and 
copes with the singularity problem using a 

regularization method. In addition to LDA-based 

methods, there are manifold learning based approaches 

such as neighborhood preserving embedding (NPE) 
[16] and locality preserving projection (LPP) [17] that 

the main goal of them is preservation of data structure. 

Unsupervised NPE and LPP represent the topological 
structure of data using an adjacency graph without 

considering the class label information while in the 

supervised NPE and LPP only samples within the same 

class are considered during the graph construction.  

     The thematic maps obtained by spectral features 

often introduce a salt and pepper noise due to the lack 
of consideration of contextual information. So, with 

incorporation of neighborhood information (spatial 

features) with spectral information, the classification 
quality can be significantly improved. The spatial 

features can be included in the classification in some 

different ways.  The contextual information can be 
incorporated in the classification procedure using object 

extraction [18] or by segmentation-aided classification 

[19]. In [20], a classification framework has been 

developed that pursues the combination of multiple 

features to integrate different types of features extracted 

from both linear and nonlinear transformations. This 

classification framework is able to cope with the linear 

and nonlinear class boundaries present in data. This 

approach requires no regularization parameters to 
control the weights of considered features. As a result, 

the different types of features can be efficiently 

integrated in a flexible and collaborative way. In [20], 
the posterior class probabilities are modeled by a 

multinomial logistic regression (MLR) and the used 

input feature is obtained by integration of multiple 

features.  The original spectral information, the 

extended multi-attribute profiles (EMAPs), and two 

kernel features constructed over two previously 

mentioned sources of information are the linear and 
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Fig. 1. The flowchart of proposed method. 

 

nonlinear features which used as input in the MLR 
classifier. In [21], a region kernel-based support vector 

machine (RKSVM) based on spatial homogeneous 

regions and kernel similarity metric has been proposed 

to classify the local homogeneous region of each pixel 

of hyperspectral image. A key point in the region 

classification is to measure the distance (or similarity) 

between different regions. In detail, for each pixel �, a 
corresponding local region � containing � and its 
spatial neighbors is generated by using a distance 
similarity neighborhood or an area-filtering-based 

morphological neighborhood. Authors in [22] proposed 

a spectral–spatial classifier for hyperspectral image 
classification that addresses the issue of mixed pixel 

characterization. In [22], the spectral information is 

characterized both locally and globally for probabilistic 
classification. A subspace-based MLR (MLRsub) 

method is used to learn the posterior probabilities and a 

pixel-based probabilistic support vector machine 

(SVM) is used as an indicator to locally determine the 

number of mixed components, which participate in each 

pixel. Then, the information provided by local and 

global probabilities is fused and interpreted to 

characterize the mixed pixels. Finally, by using a 

Markov random field (MRF) regularizer, the spatial 
information is included. The resulting method is called 

SVM-MLRsub-MRF. 

     Moreover, the spatial features such as texture, shape, 
and size can be extracted using popular methods such as 

Gabor filters [23]-[24], gray level co-occurance matrix 

(GLCM) [25], and morphology profile (MP) [26]-[29]. 

Then, the extracted spatial  

 

 

 

features can be fused with spectral features to improve 
the classification results. GLCM is a square matrix and 

can reveal certain properties about the spatial 

distribution of gray levels in the texture image by 

considering the relationship between two neighbouring 

pixels in the image. A set of filter bank consisting of 

Gabor filters with various scales and directions can 

acquire localization properties in both of the spatial and 
frequency domains. The MPs model the spatial 

information by analyzing an interaction of a set of 

structure elements which have different shapes and 
sizes. 

     Due to this fact that adjacent pixels in a spatial 

window have the same materials with a high 

probability, we estimate the spatial scatter matrix to 

combine it with within-class and between-class scatter 

matrices using a discriminant analysis approach. In this 

way, the spectral and spatial information are combined 

and the extracted features have more ability for class 

discrimination. The proposed method, called spectral-
spatial discriminant analysis (SSDA), is compared with 

NWFE, LPP, and some spatial feature extraction 

methods such as Gabor filters, GLCM, and MP 
combined with spectral bands. 

 

Spectral-spatial discriminant analysis 
The flowchart of proposed method, SSDA, is shown in 

Fig. 1. The within-class and between-class scatter 

matrices are calculated by spectral features using a non-

parametric form. The total scatter matrix is also 

estimated. To include the spatial information in the 

feature extraction procedure, we calculate the spatial 
scatter matrix in a neighborhood window with multiple 

scales.  The spectral and spatial discriminant 
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information is then incorporated using Fisher Criterion. 

Finally, using a majority voting rule, the classification 

results of individual scales are combined to provide the 

final classification map. In the following, each step of 

SSDA is described in detail.  

     To extract the spectral information for class 

discrimination, we calculate the within-class and 
between-class scatter matrices, which are denoted by 

�� and �� respectively, as follows: 

 

�� = ∑ ∑ ��� − �
���� − �
�
��

���
�����

�

��                      (1) 

�� = ∑ ∑ ��� − �
���� − �
�
��

���
�����

�

��                       (2) 

where �� ∈ ℛ�  is the �th training sample and �� ∈
�1, 2,… , �  denotes the class label of ��.  ! and � are the 
number of total training samples and the number of 

classes respectively. We use the above non-parametric 

forms for calculation of scatter matrices for two 

reasons:1- to cope with the singularity of within-class 
scatter matrix in a small sample size situation, 2-the 

rank of between-class scatter matrix is not limited to the 

number of classes in the non-parametric form, and so, 

we can extract more than � − 1 features. In general, the 
neighboring pixels in a spatial homogeneous region 

have the same materials and belong to the same class. 

In SSDA, we want to preserve the spatial local 

neighborhood structure. In other words, the neighbor 

pixels in the original spatial space remain neighbor in 

the SSDA projected space and vice versa. Let "#� , $�% 
be the pixel coordinate of sample ��. The local pixel 

neighborhood centered at �� is defined as: 

 

&"��% = �� ≜ "#, $% ∈ (#� − ), #� + )+, $ ∈
$�−),$�+)                                                           (3) 
 

where , = 2) + 1 is the width of the neighborhood 
window and is also called scale. The number of scales 

is denoted by K in Fig. 1. The neighbors of �� in the 

spatial neighborhood,&"��%, are denoted by 

���, ��-, … , ��. where # = ,- − 1 is the number of 
neighbors. The spatial scatter matrix ��/.0� is 

calculated as follows: 

 

�/.0 = ∑ ∑ 1�
��� − ��
���� − ��
�
�.


��
�
���               (4) 

 

where ��
 ∈ &"��% is the 2th spatial neighbor pixel of �� 

and 1�
  is defined as: 

 

1�
 =
�34���,����

∑ �34"��,��5%6
574

                                                    (5) 

 

where 8"9, :% is the Euclidean distance between 9 and 
:. So, 1�
  is a normalized similarity measure which 

measures the spectral distance of central pixel to 

neighboring pixels. If there is less distance between the 

central pixel "��% and 2th spatial neighbor of ��, ���
�, 
the central pixel and the neighbor pixel have more 

similarity with together, and so, they consist of the 

same materials and belong to the same class with a high 

probability. Therefore, the neighbor pixels with more 

1�
  have more role to calculate the spatial scatter matrix 

and to preserve the spatial neighborhood structure of 

image. The total scatter matrix is estimated as: 

 

�; = ∑ "�� − <%"�� − <%��
���                                  (6) 

 

where < = �
�
∑ ��

�
���  is the mean of training samples. 

To cope with the singularity problem, when the number 

of training samples is limited, in addition to considering 

a non-parametric form for calculation of  ��, we 

regularize it as follows: 
 

��
= = 0.5�� + 0.58�AB"��%                                    (7) 
 

After estimation of ��, ��
= , �;, and �/.0, we combine 

the scatter matrices as follows to fuse the spectral and 

spatial information:  

 

�� = ��
= + �/.0                                                         (8) 

 

�- = �� + �;                                                              (9) 
 

To increase the class discrimination, we minimize the 

within-class scatters and maximize the between-class 

scatters and to preserve the local spatial neighborhood, 

we minimize the spatial scatters. In other words, for 

extraction of C features, SSDA seeks a linear 
projection matrix D = (E�, E-, … , EF+ which can be 
obtained by solving the following generalized 

eigenvalue problem: 

�-E = G��E                                                               (10) 
So, the projected feature vector is obtained as: HF×� =
DF×���×�. 

 

Experimental results  
The first dataset in our experiment (University of Pavia) 

was provided by the Reflective Optics System Imaging 
Spectrometer (ROSIS). It has a spatial resolution of 1.3 

C per pixel. There is 115 spectral bands in the original 
recorded image with a spectral range from 0.43 to 0.86 

JC, which after removal of noisy channels, 103 bands 

are selected. This urban image contains nine classes of 

interest and 610×340 pixels. The second dataset used in 
our experiments was collected over the valley of 

Salinas, Southern California, in 1998 by Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). The 

Salinas image consists of 224 spectral bands from 0.4 to 

2.5 JC, with nominal spectral resolution of 10 !C and 
with a pixel size of 3.7 C which after removing 20 
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absorption channels, 204 bands are selected. This image 

contains 512 ×217 pixels and 16 classes.  
     We use the SVM classifier for classification of 

projected feature vectors. The polynomial kernel with 

default parameters defined in LIBSVM is used in our 

experiments [30]. The training samples are selected 

randomly and each experiment is repeated 10 times and 
the average of results are reported.  

     Some different criteria are used for evaluation of 

feature extraction methods from a classification 
accuracy point of view: average accuracy (AA), average 

reliability (AR), overall accuracy (OA), and kappa 

coefficient [31]. The accuracy (Acc.) and reliability 

(Rel.) for each class of data are calculated by:  

K��. = L/K                                                                (11) 
NO�. = L/P                                                                (12) 
where L denotes the number of correctly classified 
testing samples, K and P are the total testing samples of 
class and the total samples which are labeled as that 

class respectively. The number of testing samples 

whose labels are correctly determined divided to the 

total number of testing samples (in percentage) gives 

the overall accuracy. Moreover, for assessment of 

statistical significance of differences in the 
classification results, we use the McNemars test [32]. In 

this test, the sign of parameter Q�- indicates whether 

classifier 1 outperforms classifier 2 "Q�- > 	0% or vice 
versa "Q�- 	< 	0%, and the difference between 

classification accuracy of two methods is statistically 

significant if |Q�-| 	> 	1.96. In the SSDA method, we 
use the multi-scale spatial neighborhood windows with 

, = 3 × 3, 5 × 5,… , 21 × 21. For implementation of 
Gabor filters, GLCM, and MP, at first, the principal 

component analysis (PCA) transform is applied to 

hyperspectral image, and then, the spatial features are 

extracted from the first principal component (PC1). The 

fast version of GLCM, with 8 = 1, Y = 0, introduced in 
[33] with a 7	 × 7 square neighbourhood window is 
used. 16 features introduced in [25] are extracted from 

the GLCM matrices.  

     We choose the number of scales and directions in the 

Gabor filters equal to 6 and 3 respectively. With 
applying the opening and closing operators by 

reconstruction on a single band image, [, a MP with 
&F. = 2! + 1 features is constructed as follows: 
 

\]�"[% = �^�"[%, … , ^�"[%, [, _�"[%, … , _�"[%         (13) 
 

where ^�"[% and _�"[%; "� = 1,2, … , !% are closing and 
opening operators by reconstruction respectively. A 

disk shape structure element with the radius N ∈
�1,2, … , !  is used to extract a MP with &F.=53 

features. The 6×3=18	Gabor, 16 GLCM, and 53 MP 
features are extracted and combined with 8 original full 
band hyperspectral image (HS) into a vector using 

stacking. The feature vectors of Gabor-HS, GLCM-HS, 

and MP-HS have 18+8, 16+8, 53+8 spectral-spatial 

features respectively. For extraction of C features from 
these long feature vectors, the PCA transform is used.  

      In addition to spectral-spatial methods, i.e., Gabor-

HS, GLCM-HS, and MP-HS, we compare our proposed 

method with two popular spectral feature extraction 

methods, NWFE and supervised LPP. Figs. 2 and 3 

show the average accuracy versus the number of 
extracted features using a) 15 training samples and b) 

30 training samples for Pavia and Salinas datasets 

respectively. The accuracy and reliability for each class, 
average accuracy, average reliability, overall accuracy, 

and kappa coefficient obtained by 5 and 8 extracted 

features for Pavia and Salinas datasets are represented 

in tables 1 and 2 respectively. For University of Pavia 

using 15 training samples, the use of HS provides the 

following results: 75.53% average accuracy, 68.54% 

average reliability, 60.02% overall accuracy, and 0.52 

kappa coefficient. Also, for Salinas dataset using 15 

training samples, the following results are achieved by 
HS: 88.83% average accuracy, 85.25% average 

reliability, 80.48% overall accuracy, and 0.78 kappa 

coefficient. The ground truth map (GTM), and the 
classification maps obtained by 15 training samples are 

shown in Figs. 4 and 5 for Pavia and Salinas datasets 

respectively. 
     Tables 3 and 4 represent the classification results 

using 30 training samples for Pavia (with 9 extracted 

features) and Salinas (with 7 extracted features) 

respectively. The McNemars test results are reported in 

table 5. As we can see from the results, SSDA 

outperforms other methods in the most cases. This is 

expected because SSDA extract spectral and spatial 

features simultaneously while in Gabor-HS, GLCM-

HS, and MP-HS, at first the spatial features are 
extracted, and then combined with original spectral 

bands. After that, a transformation such as PCA is 

needed to reduce the dimensionality of stacked feature 
vector in Gabor-HS, GLCM-HS, and MP-HS. Also, 

NWFE and LPP feature extraction methods just use the 

spectral features and do not consider the correlation of 

adjacent pixels in an image and so, a salt and pepper 

noise is presented in the obtained classification maps. 

     The highest average accuracies among the first 12 

features for University of Pavia and Salinas datasets are 
represented in table 6. Each number in the parentheses 

is the optimal number of extracted features. The highest 

values in each row are shown in bold. As can be seen, 
the highest AA is obtained by SSDA in both datasets. In 

addition, we compared our proposed method with some 

classification approaches [20-[22], which use the both 

of spectral and spatial information. The classification 

results for University of Pavia are reported. Authors in 

[20] use a linear feature `���a0= (the original spectral 

information), a nonlinear feature `bcde (Extended 

multi-attribute profiles, i.e., EMAP), and also two 

kernel features constructed over two previously 

mentioned sources of information (spectral and spatial, 
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respectively) using the Gaussian radial-basis-function 

kernel. The spectral kernel f���a0=  and the spatial 

kernel fbcde are built by using the original spectral 

data and the EMAP respectively. All nonlinear features 

considered in `0�� = (`���a0= 	, `bcde, f���a0= , fbcde+. 
A suitable subset of features, including only `���a0= and 

`bcde, i.e., `/g�/a; 	= (`���a0= 	, `bcde+ can be obtained 
to have a comparable solution with very competitive 
computational cost. The comparison results of proposed 

method (SSDA) with types of features considered in 

[20] are represented in table 7. The number of features 
extracted by SSDA, which achieved the highest OA, is 

shown in the parentheses. In this table, totally 3921 

samples are used for training and 42776 samples are 
used for testing. The OA and computation time are 

reported in this table. SSDA provides reasonable overall 

classification accuracy compared to classification 

approach introduced in [20]. SSDA is implemented 

faster than f���a0=, fbcde , and `0�� . 

     In [21], RKSVM using a squared neighborhood (SN) 
and a morphological neighborhood (MN) is called 

RKSVM-SN and RKSVM-MN, respectively. hi
= and 

hc
=   denote RKSVM-SN and RKSVM-MN with the 

single region kernel respectively. Jhi
=j� and  

Jhc
=j� represent RKSVM-SN and RKSVM-MN with 

the weighted summation region kernel respectively, 

where the combination coefficient J is set as 0.8. hi
(=,k+

 

and hc
(=,k+

  refer to RKSVM-SN and RKSVM-MN with 

the stack region kernel respectively. All definition of 

single region kernel, weighted summation region 

kernel, and stack region kernel can be found in [21]. 
The comparison results between SSDA and proposed 

methods in [21] using 5 and 20 training samples are 

reported in table 8. When there is a very small training 

set (5 samples per class), SSDA outperforms hc
=  and 

Jhc
=j�. But, using 20 training samples, which is 

approximately a small training set, RKSVM provides 

better performance than SSDA.  

     The OA results obtained by SSDA and SVM-

MLRsub-MRF (proposed in [22]) are given in table 9 

for different number of training samples. In the last 

column of this table, 3921samples are used for training, 

and 42776 samples are used for testing. Using a large 

training set, the scatter matrices in SSDA can be 

estimated with a high accuracy. The classification 
results show the better performance of SSDA compared 

to SVM-MLRsub-MRF using a large training set. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The average classification accuracy versus the number of extracted features for Pavia dataset using a) 15 training samples, 

and b) 30 training samples. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The average classification accuracy versus the number of extracted features for Salinas dataset using a) 15 training 

samples, and b) 30 training samples.
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Table 1. The classification results obtained by 15 training samples and 5 extracted feature for Pavia dataset. 

 
Table 2. The classification results obtained by15 training samples and 8 extracted feature for Salinas dataset. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4. GTM and classification maps obtained by 15 training samples and 5 extracted features for Pavia dataset. 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. GTM and classification maps obtained by 15 training samples and 8 extracted features for Salinas dataset. 

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

N

o 
Name of class 

# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Asphalt 6631 78.54 78.90 58.66 67.07 60.46 82.29 60.44 82.35 60.40 79.04 64.95 85.76 

2 Meadows 18649 72.93 92.97 74.68 95.15 64.78 85.58 64.78 85.58 62.19 84.54 53.88 86.37 

3 Gravel 2099 75.56 48.91 53.36 29.27 35.64 25.21 35.97 25.43 54.69 28.43 62.46 39.88 

4 Trees 3064 82.54 76.40 77.42 59.20 75.46 85.00 75.46 85.00 74.15 93.85 82.87 75.88 

5 Painted metal sheets 1345 99.18 99.93 95.61 93.12 98.66 98.01 98.66 98.01 98.81 97.01 99.33 96.53 

6 Bare Soil 5029 79.04 49.53 54.03 56.88 63.89 35.92 63.87 35.94 60.27 30.52 65.68 31.05 

7 Bitumen 1330 75.34 48.90 86.54 35.76 87.97 36.76 87.97 36.76 77.89 41.86 86.24 44.72 

8 Self-Blocking Bricks 3682 50.05 69.84 62.17 54.45 53.61 53.70 53.69 53.61 52.93 69.48 70.15 65.33 

9 Shadows 947 99.58 99.79 97.57 99.89 99.68 
100.0

0 
99.68 

100.0

0 
99.79 99.47 99.89 100.00 

AA and AR 79.20 73.91 73.34 65.64 71.13 66.94 71.17 66.96 71.24 69.36 76.16 69.50 

OA 74.84 69.36 64.92 64.94 63.83 64.30 

Kappa coefficient 0.68 0.61 0.56 0.56 0.55 0.56 

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Brocoli_green_weeds_1 2009 99.70 99.45 
100.0

0 
99.41 99.35 99.75 99.35 99.75 98.26 89.89 99.60 99.11 

2 Brocoli_green_weeds_2 3726 99.60 99.97 92.51 97.65 99.41 99.52 99.41 99.52 92.40 98.85 99.28 99.73 

3 Fallow 1976 99.54 98.20 99.80 93.33 98.13 82.51 98.13 82.51 95.45 89.30 99.54 90.48 

4 Fallow_rough_plow 1394 99.00 98.57 98.85 97.59 98.42 97.44 98.42 97.44 99.43 96.12 99.07 95.50 

5 Fallow_smooth 2678 98.58 98.73 94.77 99.22 95.03 98.91 95.03 98.91 92.83 98.77 95.52 99.15 

6 Stubble 3959 99.12 
100.0

0 
94.62 93.42 99.12 99.14 99.12 99.14 99.62 99.60 99.37 99.34 

7 Celery 3579 99.69 99.97 94.52 92.10 99.13 99.33 99.13 99.33 98.91 95.16 99.30 98.56 

8 Grapes_untrained 11271 66.40 82.40 53.15 81.72 59.45 82.54 59.47 82.55 59.28 73.26 37.64 62.56 

9 Soil_vineyard_develop 6203 99.92 97.33 99.74 94.85 97.68 96.51 97.68 96.51 99.15 97.31 98.69 97.70 

10 Corn_senesced_green_weeds 3278 83.89 91.64 72.15 65.59 74.92 88.60 74.92 88.60 73.76 87.36 80.60 95.83 

11 Lettuce_romaine_4weeks 1068 92.60 94.37 96.72 91.82 94.01 81.83 94.01 81.83 89.61 89.61 95.60 83.28 

12 Lettuce_romaine_5 weeks 1927 99.90 88.38 99.27 97.90 99.22 92.77 99.22 92.77 98.03 82.17 98.91 98.50 

13 Lettuce_romaine_6 weeks 916 98.14 95.23 95.09 57.38 99.02 84.06 99.02 84.06 98.03 83.23 98.91 90.42 

14 Lettuce_romaine_7 weeks 1070 91.68 96.46 94.11 67.40 89.35 95.41 89.35 95.41 90.65 88.10 90.09 91.03 

15 Vineyard_untrained 7268 79.64 61.64 68.73 61.83 80.94 58.46 80.94 58.47 65.64 51.75 67.83 41.77 

16 Vineyard_vertical_trellis 1807 99.83 
100.0

0 
71.56 40.62 93.86 87.20 93.86 87.20 89.37 93.73 95.96 96.01 

AA and AR 94.20 93.90 89.10 83.24 92.32 90.25 92.32 90.25 90.03 88.39 90.99 89.94 

OA 88.67 81.49 86.07 86.07 83.12 80.43 

Kappa coefficient 0.87 0.80 0.85 0.85 0.81 0.78 

GTM SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP

GTM SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP
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Table 3. The classification results obtained by 30 training samples and 9 extracted feature for Pavia dataset. 

 
Table 4. The classification results obtained by 30 training samples and 7 extracted feature for Salinas dataset. 

  
Table 5. The McNemars test results for Pavia and Salinas datasets. 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

N

o 
Name of class 

# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Asphalt 6631 73.96 88.12 81.66 90.07 82.05 87.28 82.05 87.28 81.45 84.76 73.67 87.29 

2 Meadows 18649 87.54 97.00 68.80 86.88 65.89 85.83 65.89 85.83 61.72 85.93 48.45 80.76 

3 Gravel 2099 87.61 50.91 74.89 61.41 74.32 57.31 74.32 57.31 71.22 61.50 73.03 52.59 

4 Trees 3064 78.88 74.55 78.49 80.33 79.90 73.78 79.86 73.77 77.68 79.23 75.59 63.84 

5 Painted metal sheets 1345 97.17 91.53 99.85 99.85 99.63 83.65 99.63 83.65 99.78 96.34 99.70 88.51 

6 Bare Soil 5029 78.25 71.56 68.68 39.69 66.18 37.56 66.18 37.56 67.99 34.10 63.39 27.40 

7 Bitumen 1330 92.71 64.79 87.52 58.46 84.29 59.56 84.29 59.56 88.27 59.47 82.33 46.92 

8 Self-Blocking Bricks 3682 76.02 74.96 67.52 71.89 63.88 81.13 63.88 81.13 68.44 77.90 60.67 74.00 

9 Shadows 947 99.16 97.61 99.89 100.00 99.68 
100.0
0 

99.68 
100.0
0 

99.47 99.47 99.89 100.00 

AA and AR   85.70 79.00 80.81 76.51 79.53 74.01 79.53 74.01 79.56 75.41 75.19 69.03 

OA 83.44 73.86 72.01 72.00 70.50 62.04 

Kappa coefficient 0.79 0.67 0.65 0.65 0.63 0.54 

class SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Brocoli_green_weeds_1 2009 99.50 
100.0

0 

100.0

0 
99.95 99.30 99.90 99.30 99.90 98.31 95.04 99.30 99.01 

2 Brocoli_green_weeds_2 3726 99.19 99.73 94.77 
100.0

0 
98.31 99.38 98.31 99.38 94.31 98.54 98.39 99.35 

3 Fallow 1976 99.80 95.54 98.68 95.68 96.20 94.96 96.20 94.96 93.22 87.34 96.71 96.27 

4 Fallow_rough_plow 1394 99.35 99.00 93.26 96.87 99.00 99.50 99.00 99.50 99.57 94.74 99.35 99.28 

5 Fallow_smooth 2678 97.72 99.39 95.97 96.47 97.16 99.20 97.16 99.20 93.43 96.98 96.90 99.35 

6 Stubble 3959 99.82 
100.0

0 
98.23 98.08 99.34 99.47 99.34 99.47 99.55 99.90 99.72 99.45 

7 Celery 3579 99.69 99.69 96.93 92.85 98.80 97.33 98.80 97.33 99.22 95.51 99.02 99.11 

8 Grapes_untrained 11271 74.70 80.79 74.49 78.07 58.03 77.32 58.02 77.30 61.80 76.73 47.70 68.91 

9 Soil_vineyard_develop 6203 99.36 98.89 96.36 99.15 94.39 98.44 94.39 98.44 98.31 99.19 93.71 98.31 

10 Corn_senesced_green_weeds 3278 92.34 87.11 85.91 85.23 88.53 86.09 88.53 86.09 79.84 86.34 89.08 89.43 

11 Lettuce_romaine_4weeks 1068 98.78 97.24 97.85 81.39 94.29 70.27 94.29 70.27 93.35 78.07 94.38 63.44 

12 Lettuce_romaine_5 weeks 1927 
100.0

0 
98.42 99.22 97.01 97.56 97.66 97.56 97.66 95.74 96.65 94.76 98.65 

13 Lettuce_romaine_6 weeks 916 99.56 95.30 97.49 60.54 99.02 76.41 99.02 76.41 98.25 81.45 99.02 91.34 

14 Lettuce_romaine_7 weeks 1070 93.27 88.71 88.04 78.30 89.81 84.00 89.81 84.00 85.14 82.89 90.09 82.04 

15 Vineyard_untrained 7268 71.99 67.61 64.89 67.78 72.74 55.04 72.73 55.04 72.43 56.58 67.09 46.43 

16 Vineyard_vertical_trellis 1807 98.23 98.34 72.55 70.26 96.07 97.75 96.07 97.75 86.88 91.33 97.29 97.88 

AA and AR 95.21 94.11 90.91 87.35 92.41 89.54 92.41 89.54 90.58 88.58 91.41 89.27 

OA 89.92 86.28 85.07 85.07 84.71 82.11 

Kappa coefficient 0.89 0.85 0.84 0.84 0.83 0.80 

Pavia, 15 training samples, 5 extracted features 

 SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

SSDA 0 21.96 36.31 36.26 42.44 38.97 

MP-HS -21.96 0 15.53 15.47 19.42 17.12 

Gabor-HS -36.31 -15.53 0 -1.02 4.32 2.39 

GLCM-HS -36.26 -15.47 1.02 0 4.39 2.45 

NWFE -42.44 -19.42 -4.32 -4.39 0 -1.82 

LPP -38.97 -17.12 -2.39 -2.45 1.82 0 

Salinas, 15 training samples,  8 extracted features 

 SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

SSDA 0 37.29 18.27 18.25 35.20 42.55 

MP-HS -37.29 0 -24.50 -24.52 -7.96 5.31 

Gabor-HS -18.27 24.50 0 -1.41 17.40 29.72 

GLCM-HS -18.25 24.52 1.41 0 17.42 29.74 

NWFE -35.20 7.96 -17.40 -17.42 0 13.96 

LPP -42.55 -5.31 -29.72 -29.74 -13.96 0 
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Table 6. The highest average accuracy among the first 12 features. 

 

 

 

 

 
 

 

 

 

Table 7. The comparison results between SSDA and proposed method in [20] using totally 3921 training samples for University 

of Pavia dataset. 

 

 

 
 

 

 

 

 

Table 8. The comparison results between SSDA and proposed method in [21] using different number of training samples per class 

for University of Pavia dataset. 

 

 

 

 

 

 

 

 

 

Table 9. The comparison results between SSDA and proposed method in [22], as a function of the number of training samples per 

class where the total number of training samples is given in parentheses, for University of Pavia dataset. 

 

 
 

 

 

 

Conclusion 
The spectral-spatial discriminant analysis method was 

proposed in this paper for feature extraction of 

hyperspectral images. The SSDA method 

simultaneously maximizes the class discrimination and 

preserves the spatial local structure of data in the 
projected space using the Fisher criterion.  

 

 

 
 

 

 

 

 

The experimental results showed the good performance 

of SSDA in comparison with Gabor-HS, GLCM-HS, 

MP-HS, NWFE, LPP, and some recently proposed 

spectral-spatial classification approaches. 
 

 

 

Pavia, 30 training samples, 9 extracted features 

 SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

SSDA 0 15.91 9.15 9.16 17.40 43.80 

MP-HS -15.91 0 42.22 42.22 46.82 72.09 

Gabor-HS -9.15 -42.22 0 1.00 6.94 36.21 

GLCM-HS -9.16 -42.22 -1.00 0 6.93 36.20 

NWFE -17.40 -46.82 -6.94 -6.93 0 32.74 

LPP -43.80 -72.09 -36.21 -36.20 -32.74 0 

Salinas, 30 training samples, 7 extracted features 

 SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

SSDA 0 21.28 32.44 32.46 32.94 45.90 

MP-HS -21.28 0 6.87 6.89 8.39 22.86 

Gabor-HS -32.44 -6.87 0 0.37 2.30 18.91 

GLCM-HS -32.46 -6.89 -0.37 0 2.28 18.87 

NWFE -32.94 -8.39 -2.30 -2.28 0 13.69 

LPP -45.90 -22.86 -18.91 -18.87 -13.69 0 

Dataset No. of training SSDA MP-HS Gabor-HS GLCM-HS NWFE LPP 

University of 

Pavia 

15 
79.20 

(5) 

76.65  

(12) 

78.63 

(11) 

78.62  

(11) 

76.94 

(11) 

80.43 

(10) 

30 
85.70 

(9) 

81.86 

(12) 

83.02 

(12) 

83.02 

(12) 

80.92 

(11) 

78.18 

(11) 

Salinas 

15 
94.20 

(8) 

90.31 

(12) 

92.43 

(11) 

92.44 

(12) 

90.45 

(7) 

92.28 

(7) 

30 
95.21 

(7) 

91.47 

(11) 

92.55 

(8) 

92.55 

(8) 

91.86 

(11) 

92.87 

(8) 

 SSDA 
Proposed frame work in [20] 

`bcde f���a0=  fbcde `0�� `/g�/a; 

OA 
97.61 

 (22 features) 
97.37 79.50 97.43 97.80 97.53 

Time 

(seconds) 
93.42 3.56 156.08 166.50 2082.3 5.00 

No. of training SSDA 
RKSVM-SN proposed in [21] RKSVM-MN proposed in [21] 

hi
= Jhi

=j� hi
(=,k+

 hc
=  Jhc

=j� hc
(=,k+

 

5 
71.83 

 (3 features) 
72.66 72.95 74.62 71.42 71.52 73.37 

20 
83.11 

 (8 features) 
92.67 92.94 93.09 91.81 91.86 92.86 

No. of training 20 (180) 40 (360) 60 (540) 80 (720) All samples (3921) 

SSDA 
83.11 

(8 features) 

89.72 

(12 features) 

92.53 

(13 features) 

95.22 

(17 features) 

97.61 

(22 features) 

SVM-MLRsub-

MRF [22] 
85.88 90.97 92.10 94.57 95.56 



IMANI AND GHASSEMIAN: SPECTRAL AND SPATIAL DISCRIMINANT ANALYSIS FOR FUSED:… 

9 

 

References 

[1] G. F. Hughes, “On the mean accuracy of statistical 
pattern recognition,” IEEE Trans. Inf. Theory, vol. 

IT-14, no. 1, pp. 55–63, Jan. 1968. 

[2] G. Camps-Valls, T. V. Bandos, and D. Zhou, 
“Semi-supervised Graph-based Hyperspectral 

Image Classification,” IEEE Trans. on Geoscience 
and Remote Sensing, vol. 45,  no. 10, pp. 3044 - 

3054, Oct. 2007. 

[3] Z. Feng, S. Yang, S. Wang, and L. Jiao, 
“Discriminative Spectral Spatial Margin-Based 

Semisupervised Dimensionality Reduction of 

Hyperspectral Data,” IEEE Geoscience and Remote 
Sensing Letters, vol. 12, no. 2, pp. 224–228, Feb. 

2015. 

[4] Y. Gu, C. Wang, D. You, Y. Zhang, S. Wang, and 

Y. Zhang, “Representative Multiple Kernel 

Learning for Classification in Hyperspectral 

Imagery,” IEEE Trans. on Geoscience and Remote 
Sensing, vol. 50,  no. 7, pp. 2852–2865, July 2012. 

[5] M. Imani and H. Ghassemian, Two Dimensional 
Linear Discriminant Analysis for Hyperspectral 
Data, Journal of Photogrammetric Engineering & 

Remote Sensing (PE&RS), vol. 81, no. 10, pp. 777-

786, Oct. 2015. 

[6] Y. Yuan, G. Zhu, and Q. Wang, “Hyperspectral 

Band Selection by Multitask Sparsity Pursuit,” 

IEEE Trans. on Geoscience and Remote Sensing, 

vol. 53, no. 2, pp. 631–644, Feb.  2015. 

[7] J. Xia, J. Chanussot, P. Du, and X. He, “Spectral–
Spatial Classification for Hyperspectral Data Using 

Rotation Forests With Local Feature Extraction and 
Markov Random Fields,” IEEE Trans. on 

Geoscience and Remote Sensing, vol. 53, no. 5, pp. 

2532–2546, May 2015. 
[8] M. Imani, H. Ghassemian, Feature Extraction Using 

Median-Mean and Feature Line Embedding, 

International Journal of Remote Sensing, vol. 36, 

no. 17, pp. 4297-4314, 2015. 

[9] J.Yan, N. Liu, S. Yan, Q. Yang, W. (P.) Fan, W. 

Wei, and Z. Chen, “Trace-Oriented Feature 

Analysis for Large Scale Text Data Dimension 

Reduction,” IEEE Transactions on Knowledge and 

Data Engineering, vol. 23, no. 7, pp. 1103–1117, 
July 2011. 

[10] J. Qian, J. Yang, and Y. Xu, “Local Structure-
Based Image Decomposition for Feature Extraction 
With Applications to Face Recognition,” IEEE 

Transactions on Image Processing, vol. 22, no. 9, 

pp. 3591–3603, Sept. 2013. 

[11] M. Imani, H. Ghassemian, Ridge regression-based 
feature extraction for hyperspectral data, 

International Journal of Remote Sensing, vol. 36, 

no. 6, pp. 1728–1742, 2015.  

[12] M. Imani, H. Ghassemian, Feature reduction of 
hyperspectral images: discriminant analysis and the 

first principal component, Journal of AI and Data 

Mining, vol. 3, no. 1, pp.1-9, 2015. 

[13] K. Fukunaga, Introduction to Statistical Pattern 

Recognition, San Diego: Academic Press Inc., 

1990. 

[14] G. Baudat and F. Anouar, ‘‘Generalized 

discriminant analysis using a kernel approach,’’ 
Neural Comput., vol. 12, pp. 2385–2404, 2000.  

[15] B. C. Kuo and D. A. Landgrebe, “Nonparametric 
weighted feature extraction for classification,” 
IEEE Trans. Geosci. Remote Sens, vol. 42, no. 5, 

pp. 1096-1105, May 2004. 

[16] X. F. He, D. Cai, S. C. Yan, and H. J. Zhang, 
“Neighborhood preserving embedding,” in Proc. 

10th IEEE Int. Conf. Comput. Vis., vol. 2, pp. 

1208–1213, 2005. 

[17] X. F. He and P. Niyogi, “Locality preserving 
projections,” in Proc. Adv. Neural Inf. Process. 

Syst., vol. 16, pp. 153–160, 2004. 
[18] H. Ghassemian and D. A. Landgrebe, “Object-

Oriented Feature Extraction Method for Image Data 

Compaction,” IEEE Control Systems Mogorine, 
vol. 8, no. 3, pp. 42–48, 1988. 

[19] Y. Tarabalka, J. Chanussot, and J. A. 

Benediktsson, “Segmentation and classification of 

hyperspectral image using watershed 

transformation,” Pattern Recognit., vol. 43, no. 7, 

pp. 2367–2379, Jul. 2010. 

[20] J. Li, X. Huang, P. Gamba, J. M. B. Bioucas-Dias, 
L. Zhang, J. A. Benediktsson, and A. Plaza, 

“Multiple Feature Learning for Hyperspectral 

Image Classification,” IEEE Transactions on 
Geoscience and Remote Sensing, vol. 53, no. 3 pp. 

1592-1606, March 2015. 

[21] P. Jiangtao, Z. Yicong, and C. L. P. Chen, 
“Region-Kernel-Based Support Vector Machines 

for Hyperspectral Image Classification,” IEEE 

Transactions on Geoscience and Remote Sensing, 

vol. 53, no. 3, pp. 4810- 4824, Sept. 2015. 

[22] M. Khodadadzadeh, J. Li, A. Plaza, H. 

Ghassemian, J. M. Bioucas-Dias, and X. Li, 

“Spectral-Spatial Classification of Hyperspectral 

Data Using Local and Global Probabilities for 

Mixed Pixel Characterization,” IEEE Transactions 
on Geoscience and Remote Sensing, vol. 52, no. 10, 

pp. 6298- 6314, Oct. 2014. 

[23] T.P. Weldon, W.E. Higgins, and D.F. Dunn, 
“Efficient Gabor filter design for texture 

segmentation,” PREPRINT of Pattern recognition, 

1996. 

[24] W. Li and Q. Du, “Gabor-Filtering-Based Nearest 

Regularized Subspace for Hyperspectral Image 

Classification,” IEEE Journal Of Selected Topics In 

Applied Earth Observations And Remote Sensing, 

vol. 7, no. 4, pp. 1012–1022, April 2014. 

[25] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, 
“Textural Features for Image Classification,” IEEE 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.12,NO.3, SUMMER 2013 

10 

 

Transactions on Systems, Man, and Cybernetics, 

vol. 3, no. 6, pp. 610–621, Nov. 1973. 

[26] F. Mirzapour and H. Ghassemian, “Improving 
hyperspectral image classification by combining 

spectral, texture, and shape features,” International 

Journal of Remote Sensing, vol. 36, no. 4, pp. 1070-

1096, April 2015. 
[27] J. Atli Benediktsson, J. Aevar Palmason, and J. R. 

Sveinsson, “Classification of Hyperspectral Data 

From Urban Areas Based on Extended 
Morphological Profiles,”IEEE Transactions on 

Geoscience and Remote Sensing, vol. 43, no. 3, pp. 

480–491, March 2005. 
[28] M. Dalla Mura,  J. A. Benediktsson, B. Waske, and 

L. Bruzzone, “Morphological Attribute Profiles for 

the Analysis of Very High Resolution Images,” 

IEEE Transactions on Geoscience and Remote 

Sensing, vol. 48, no. 10, pp. 3747–3762, Oct. 2010. 

[29] M. Dalla Mura,  J. A. Benediktsson, B. Waske, and 
L. Bruzzone, “Extended profiles with 

morphological attribute filters for the analysis of 

hyperspectral data,” International Journal of 
Remote Sensing, vol. 31, no. 22, pp. 5975–5991, 

Nov. 2010. 

[30] C. Chang and C. Lin, “LIBSVM: A library for 
support vector machines,” ACM Transactions on 

Intelligent Systems and Technology, vol. 2, no. 3, 

pp: 27:1–27:27, 2011. 

[31] J. Cohen, A coefficient of agreement from nominal 
scales, Edu. Psychol. Meas., vol. 20, no. 1, pp. 37–

46,1960.  

[32] G. M. Foody, “Thematic map comparison: 
Evaluating the statistical significance of differences 

in classification accuracy,” Photogramm. Eng. 

Remote Sens., vol. 70, no. 5, pp. 627–633, 2004. 
[33] F. Mirzapour and H. Ghassemian, “Using GLCM 

and Gabor filters for classification of PAN images,” 

21st Iranian Conference on Electrical Engineering 

(ICEE 2013), Mashhad, Iran, May 2013. 

 

 

 


