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Abstract

One of the main challenges in tracking radio
occultation (RO) signals of open loop approach
is the excess Doppler estimation accuracy in
lower troposphere. Propagation of RO signals
through the lower troposphere with severe
refractivity gradient results in high phase
acceleration and low signal to noise ratio (SNR)
signal. Because of the high refractivity in the
lower moist troposphere, the received RO
signals by global navigation satellite system
(GNSS) receivers can have large excess
Doppler which may vary rapidly. Due to
limitation on bandwidth and transmitted
information to post processing, we can't use
very high sampling rate at GNSS receivers at
LEO satellite. Therefore, try to enhance the
accuracy of the Doppler predicted models in
the satellite makes the GNSS-RO receivers by
using efficiently frequency estimation method
at GNSS receivers. In this regard, we
investigate the event of RO signal and then the
various frequency estimation methods to
improve the estimates of the Doppler frequency
in post processing are evaluated. The various
frequency estimation methods are investigated
from performance and computational
complexity perspective. Via simulation, the
excess Doppler estimation accuracy in post
processing for different frequency estimation
methods are compared by its root mean
squared error. Based on simulation results, it is
seen that both ESPRIT and Jacobsen with Bias
schemes have the better performance and the
estimation error of them are less than that of
other methods.
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Introduction

A. State of the Art

Atmospheric sounding by means of global
navigation satellite system (GNSS) radio
occultation (RO) may contribute to improving in
numerical weather prediction and climate change
studies. RO occurs when an onboard receiver of
low earth orbit (LEO) spacecraft tracks a GNSS
satellite as it sets or rises through earth's
atmosphere. The recorded phase and amplitude of
the radio waves during the occultation can be
analyzed to determine neutral atmospheric
parameters, including refractivity, density,
pressure, temperature, and humidity, as well as
ionospheric total electron content (TEC) and
refractivity profiles [1].

In the GNSS-RO technique, very challenging
conditions exist for signals passing through the
Earth's lower troposphere. Traditionally, the
modulated GNSS signals are tracked using a phase
locked loop (PLL) that relies on a feedback
process to keep the reference signal sufficiently
close. These errors, in turn, cause significant
number of cycle slips and amplitude suppression.
In tracking of RO signal, another important
parameter is phase acceleration which is derived
from the signal's phase and represents the rate at
which signal's phase changes. Ikonal acceleration
technique allows one to convert the phase and
Doppler frequency changes into refractive
attenuation variations. From such derived
refractive attenuation and amplitude data one can
estimate the integral absorption of radio waves [2].
The value of this parameter in the lower
troposphere is more than 2 kHz/sec which causes
the variation of signal to be very high. Since the
signal is weak and high dynamics, PLL can not be
useful. To tackle this issue, open loop (OL)
tracking is introduced where at first implemented
on SAC-C and later adapted on Constellation
Observing System for Meteorology, lonosphere,
and Climate (COSMIC) [3]. This method relies on
a priori models of atmospheric Doppler and delay
to track the occulting GNSS signal.
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In fact, the high sampling rate of the raw
measurement enables a monitoring of the high
frequency fluctuations and improves the spatial
resolution of the refractivity profile. However,
high sampling rate would demand huge amounts
of data and require intensive ground-based
processing and additional cost. Therefore, due to
the cost constraints and limitation on the amount
of information sent to the post-processing,
reducing the sampling rate is considered. For this
reason, try to enhance the accuracy of the Doppler
predicted models to reduce the sampling rate from
1000 Hz to 50 Hz [4]. However, in the next
receiver to achieve higher resolution, sampling
rate of 100 Hz is used. In tracking RO, using of
efficient excess Doppler estimation methods is
critical, in this regards, we propose methods of
frequency estimation called Jacobsen, Jacobsen
with Bias, Macleod, Quinn, Parabolic and ESPRIT
to improve excess Doppler estimation.

B. Related Works

In [4] and [5], the authors obtained estimation of
excess Doppler based on the variations of
amplitude and phase of the received signal. To do
this, the received information at GNSS receiver
payload is sent to the ground station for these
estimations which this procedure is called post
processing. Propagation of RO signals through the
moist troposphere results in multipath and strong
fluctuation of the phase and amplitude. Therefore,
tracking such signals by PLL may result in large
deviation of the signal phase from the phase
model, updated with the use of feedback from the
received signal [5]. This, in turn, results in random
and systematic error (bias) in the extracted phase
and in the retrieved refractivity. Moreover, the
PLL tracking of the multi tone RO signals is
unstable. Analysis of Doppler frequency results in
+50 kHz and +2 kHz geometric and atmosphere
Doppler, respectively [4] and [5]. The instability
of the PLL tracking in the troposphere motivated
[4], [6] and [7] to consider the OL tracking. In
terms of reproducing the temperature and moisture
profile in the lowest 2.5 km, statistical analysis is
performed on a large number of COSMIC profiles
in a region surrounding Macquarie Island [8].

The principles of the OL tracking of RO signals
outlined in that study, including estimates of the
necessary filter bandwidth and sampling rate. In
real time, a RO signal must be subject to down-
conversion in receiver, by use of the pre-calculated
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phase model, without a feedback from the received
signal. The down-converted RO signal is low-pass
filtered, sampled and transmitted to the ground for
post processing. In previous related works, the
sliding window method is used for estimation of
Doppler frequency which is one of radio
holographic (RH) methods.

RH methods to process RO data in atmospheric
multipath zones are suggested to improve retrieval
accuracy in the moist lower troposphere: back
propagation (BP) [9] and [10], sliding spectral
(SS) [4], canonical transform (CT) [11], [12], full
spectrum inversion (FSI) [13], CT2 [14] and phase
matching (PM) [15]. SS method takes into account
the whole spectral content of the signals in the
small aperture. Different frequency estimation
methods such as multiple signal classification
(MUSIC) technique was used to test SS method by
processing 4 GPS/MET occultations [16]. By
spectral analysis the contributions  from
components of surface reflections were detected in
20% to 30% of CHAMP (Challenging
Minisatellite Payload) occultations. Sokolovskiy
in [17] thoroughly investigated the bias induced by
the noise in RH methods, and gave a physical
explanation. However, false spectral maxima
induced by the noise can often result in retrieval
errors in SS method. Therefore, accuracy of
frequency estimation is very important in SS and
other methods.

In this regard, the best coarse frequency estimation
of the signal is from the peak of the N point
discrete Fourier transform (DFT) of the received
signal. A N point DFT is typically calculated for a
data length of N samples which gives a resolution

2 . .
of ~ For real time spectral analysis, a well-

known computationally efficient method is the
sliding DFT especially in the cases when a new
DFT spectrum is needed every few samples. The
sliding DFT is computationally efficient than the
radix-2 Fast Fourier Transform (FFT). The sliding
DFT performs a N point DFT within a sliding
window of N samples. The window is then shifted
by a sample for the next iteration and a new N
point DFT is calculated which utilizes the old N
point DFT values [18] and [19]. In [20], the
authors investigate a simple DFT-based algorithm
for the single tone frequency estimation. Although
DFT is very effective and, in the case of FFT, fast
enough to be applied in real-time applications, it
may become very inaccurate at the non-coherent
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sampling because of the spectral leakage
phenomena [21]. In [21], the authors introduced a
new set of unbiased analytical estimators for the
frequency of a complex sinusoid and showed that
the new estimators are more accurate than the
previous estimators. Frequency estimators mainly
include non-iterative IpDFT algorithms and
iterative DFT-based algorithms [22]. In [22], the
authors proposed an iterative, exponentially
windowed algorithm. Generally, a two-stage
search can be implemented to improve the
frequency estimation. First, a coarse estimation is
usually performed by an N-point FFT to locate the
index of the largest magnitude. Secondly, a fine
search is executed around the vicinity of the index.
An efficient and low complexity frequency
estimation method based on the DFT samples is
described in [23]. The suggested method can
operate with an arbitrary window function in the
absence or presence of zero-padding. The
frequency estimation performance of the
suggested method is shown to follow the Cramer—
Rao bound (CRB) closely without any error floor
due to estimator bias, even at exceptionally high
signal-to-noise-ratio (SNR) values.

There are many methods for estimation of the
frequency of a signal. The estimation of the
frequency of a signal has been dealt with
extensively in the literature [24] and [25]. Most of
the frequency estimation methods can be grouped
into two classes [26] and [27]: parametric or high-
resolution methods and non-parametric or
periodogram-based methods. Non-parametric
frequency estimation methods are based on the
Fourier transform of the data sequence or its
autocorrelation function. They do not require any
knowledge of the data sequence.

These methods are straightforward to use and
provide reasonably high resolution for sufficiently
long data sequences. The FFT makes it convenient
to calculate the periodogram spectral estimate or
any of its variations [26] and [28]. Also,
periodogram method have high variance, which
does not decrease with increasing data length.
Modified methods with lower variance have been
developed, but with the cost of decreased
resolution. They exploit averaging (Bartlett),
windowing (Blackman-Tukey) or both (Welch) to
lower the variance. All of these methods have
more or less equal properties and performance for
long data lengths. Hence, to increase frequency
resolution, a longer measurement time must be
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used. In order to achieve sub-Herz resolution with
the DFT, a measurement time of several seconds
is required. Classical non-parametric spectral
estimators are still the most robust for low SNR,
but they can not exploit high SNR conditions [29].
In addition, these methods are applicable to all
signal classes and the estimated power spectral
density (PSD) is directly proportional to power.
The main disadvantage of these methods is their
low resolution limited by windowing effects.
MUSIC and ESPRIT are high-resolution methods
which are intended for estimating spectral lines
(frequencies).

Signals in the fields of e.g., communications,
radar, sonar, and geophysical seismology can be
described with sinusoidal model [30]. These
methods are Dbased on an eigenvector
decomposition of autocorrelation matrix of the
data into two subspaces, one associated with the
signal and the other associated with the noise.
Eigenvalues relate to the noise variance and the
methods utilize the orthogonality property
between signal vectors and noise subspace
eigenvectors. High-resolution subspace methods
provide very accurate frequency estimates with
only small differences in statistical performance
and computational load. In addition, they are able
to resolve more closely spaced spectral lines than
classical methods. Note that the fundamental
difference to classical methods is, that subspace
methods are not based on the Fourier transform of
the data sequence or its estimated correlation
function [26]. ESPRIT has been developed
primarily for spatial direction of arrival (DOA)
estimation [29] and [31]. This method exploits
invariance of two time displaced data sets to
determine sinusoid frequencies, powers, and noise
variance. The number of sinusoids must be known
in advance and the algorithm tries to find this
number of sinusoids, the strongest ones. The
performance of ESPRIT is in most cases slightly
better than the performance of MUSIC method.
Moreover, it has lower computational cost and no
problems in separating the signal roots from the
noise roots [29]. The high-resolution methods are
able to resolve spectral peaks separated in
frequency less than 1/T (T being the observation
time of the signal), which is the resolution limit for
the methods based on the periodogram. This class
methods such as the MUSIC method and more
recently, the ESPRIT method [31] have been
proposed in the literature [32], [33], [34], [35] and
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[36]. Quinn [32] uses the complex Fourier
coefficients in order to interpolate the true signal
frequency between the maximum and the second
highest bin. However, Quinn's algorithm has been
shown to have a frequency dependent
performance, [37]. Furthermore, it is highly
desirable, in the context of digital signal processor
(DSP) implementation, to avoid divisions and
functions with long Taylor series expansions.
Zakharov and Tozer [35, 18] present a simple fine
search that relies only on real multiply and
accumulate (MAC) operations to refine the
frequency estimate. The resulting frequency
algorithm, called the dichotomous search of the
periodogram peak, is particularly suited for DSP
implementation. Also, in comparison with Quinn's
algorithm, it achieves the CRB uniformly in
frequency. The same authors propose in [34] a
number of hybrid estimators that combine the
dichotomous search with various interpolation
techniques in order to reduce the computational
complexity. Aboutanios and Reisenfeld [36]
follow similar concept by using Quinn's
interpolation  algorithm  to initialize the
dichotomous search algorithm. This reduces the
number of iterations required for convergence
while achieving the CRB. Based on the existing
works, there is no related works on the excess
Doppler estimation via frequency estimation
methods called Jacobsen, Jacobsen with Bias,
Macleod, Quinn, Parabolic and ESPRIT in RO
system.

C. Our Contributions

In this paper, we study the potential benefits of
various frequency estimation methods in the
estimation of excess Doppler, with the goal of
minimizing frequency estimation error. Besides,
we compare the various frequency estimation
methods in post-processing from computational
complexity and performance. To the best of our
knowledge, no work has investigated the various
frequency estimation methods called Jacobsen,
Jacobsen with Bias, Macleod, Quinn, Parabolic
and ESPRIT in RO system. The goal of this paper
is performance analysis of different frequency
estimators in RO systems and the main results and
original contributions of this paper are the
following:

e We identify the challenges of estimating the
frequency of RO signals and we propose a
framework to study it.
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e We introduce efficient frequency estimation
methods for RO system.

e We Compare the performance of different
proposed frequency estimation methods and
provide the analytical results that show how
precise/effective our introduced estimators are.
This paper is organized as follows. In Section I,
we investigate RO signal processing by using OL
tracking. Then, we investigate the various
frequency estimation methods in Section I1l. The
performance of different frequency estimation
methods is studied in Section IV. Simulation
results are presented in Section V, and conclusions
are in Section V1.

RO Signal Processing by Using OL Tracking
In OL tracking, the signal is down-converted via a
numerically controlled oscillator (NCO), which
produces a frequency given by an onboard
Doppler model pre-calculated in GNSS receiver
without a feedback from received signal. Next, in
order to remove the noise from data i.e., on
amplitude and phase of signal, a zero-phase low-
pass filter was adopted. The baseband signal is
typically then sampled at a rate of 100 Hz.

For simplicity, we use global position system
(GPS) satellite signal for numerical weather
prediction and climate change studies. GPS
satellites broadcast on three frequencies: L1
(1575.42 MHz), L2 (1227.60 MHz) and L5
(1176.45 MHZz) signals. When GPS RO signals are
used for monitoring the lower troposphere, the
ionospheric effect has to be removed. Thus, GPS
L1 signal is enough for the processing of RO. In
this paper all calculations are provided for GPS L1
frequency, thus only processing of L1 signal will
be discussed.

The signal must be down-converted in the receiver
with the use of the frequency model, f,,.04 = fc +
faop, based on predicted GNSS and LEO orbits
and refractivity climatology. An additional error in
the frequency model f,,,4 is introduced by the
receiver clock, A figo, Which depends on the
receiver clock stability and it is reduced in the
recent missions by using more stable oscillators.
Thus after the down-conversion the mean
frequency of the RO signal is shifted from zero
because of neutral atmospheric mismodeling ,
ionospheric mismodeling, receive clock error, and
relativistic effects not modeled by the special
GNSS carrier frequency shift. To minimize noise
aliasing, it must be at first low-pass filtered with
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100 Hz bandwidth, then sampled in phase and
quadrature and down-linked to the ground [4] and
[5].

The sampling rate generally has to be equal to the
spectral bandwidth of the signal. However, since
the spread part of the spectrum occupies only part
of the full spectral band, the sampling rate may be
lower. When the sampling rate is greater or equal
to the full spectral bandwidth of the signal, that is,
~100 Hz, the spectrum is reproduced without
aliasing and the signal may be completely
recovered from its complex samples. Lower
sampling rates may result in aliasing of harmonics
in the signal spectrum. However, if the sampling
rate is not less than the spread part of the spectrum
(where most of the signal power is concentrated),
that is, ~ 50 Hz, then aliasing will not result in
overlapping of harmonics [4] and [5].

In this case, the signal can still be recovered from
its samples with minimal errors after an additional
down-converted which eliminates or substantially
reduces the aliasing. If the sampling rate is smaller
than the speared part of the spectrum, then the
aliasing will leads to the overlapping of harmonics
and the signal cannot be recovered without
corruption [4] and [5].

In OL signal tracking mode, ultimately, the
receiver NCO is not driven by the observations,
but by an a-priori Doppler frequency model [4],
[5] and [6]. Then, the down-converted signal is
passed through the low pass filter. However, in [4],
[5] and [6] noted that the modelling error is + 25
Hz, which it is variable and depend to atmospheric
Doppler model. In order to remove the navigation
data modulation (NDM) and connect the phase, the
sampled signal must be down-converted to shift its
mean frequency as close to zero as possible. Then,
in postprocessing, the received signal is down-
converted by use of the more accurate phase
model. The purpose of this down-conversion is to
remove the NDM and connect the phase between
samples. The NDM can be removed using by two
methods (internal and external) [6]. After
computing of amplitude and accumulated phase,
we can obtain bending angle and impact
parameter. Then, by using of Abel transform, the
refractivity profile can be provided. Finally, the
atmospheric  parameters such as pressure,
temperature and water vapor pressure can be
extracted from the refractivity profile. In Fig. 1,
block diagram of the RO data processing for OL
tracking is shown.
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Frequency Estimation Methods

Retrieval of atmospheric parameters from RO data
often encounters difficulties in the moist lower
troposphere. Under conditions of atmospheric
multipath propagation, calculation of bending
angle from Doppler frequency shift is usually no
applicable. RH methods are suggested to improve
retrieval accuracy in the moist lower troposphere.
SS method uses spectral analysis of the received
signals in small sliding apertures. As a function of
the impact parameter, the bending angle is
computed from the frequency of each spectral
maximum and its corresponding position at the
aperture center. Sorting out the doubtful maxima
can improve accuracy of SS method, especially in
the lower troposphere [38]. Therefore, high
resolution excess Doppler estimation is important
problem at postprocessing in the RO occultation
system and especially in SS method.

\d

=

—
& NDM ren

On-Board Section
Post-processing Section

=
[ =]

Fig 1. Block diagram of the RO data processing.

The high-resolution methods are able to resolve
spectral peaks separated in frequency less than
1/T (T being the observation time of the signal),
which is the resolution limit for the methods based
on the periodogram. To this class pertain methods
such as Pisarenko’s method, the MUSIC and the
Root-MUSIC, the Min-Norm method and more
recently, the ESPRIT method [31]. All the high-
resolution methods provide very accurate
frequency estimates, with only small differences in
their statistical properties. For our comparative
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study, we have selected the ESPRIT method for
two reasons: first, it provides slightly more
accurate estimates than the other methods [26],
and second, ESPRIT is not widely known to the
vibration analysis community. In vibration
analysis, long data records are typically acquired
and therefore a simple FFT algorithm provides
enough resolution for frequency estimation.
Moreover, the requirement of real-time analysis is
another reason that explains why classical
frequency estimation methods such as the
periodogram (probably windowed and averaged)
still remain the most used tools in vibration
analysis. However, as it is shown in [39], if a slight
increase in the computational cost can be afforded,
it is possible to obtain high-accuracy frequency
estimates working with a relatively short data set.
However, in general, periodogram or FFT-based
methods cannot resolve closely spaced
frequencies. Spectral analysis considers the
problem of determining the spectral content (i.e.,
the distribution of power over frequency) of a time
series from a finite set of measurements, by means
of either nonparametric or parametric techniques
[40]. Parametric methods may offer more accurate
spectral estimates than the nonparametric ones.
The parametric approach can thus be used only
when there is enough information about the
studied signal, that allows formulation of a model.
Otherwise the nonparametric approach should be
adopted. The parametric frequency estimation
methods are frequency estimation techniques with
high resolution. There have been several
parametric frequency estimation methods such as:
MUSIC, Root MUSIC , ESPRIT and Pisarenko
[41]. The ESPRIT method is a parametric high-
resolution technique. Note that the nonparametric
methods of spectral estimation rely entirely on the
definitions of PSD to provide spectral estimates.
These methods constitute the “classical means” for
PSD estimation. Nonparametric methods are based
on the FFT. Spectral analysis of sampled signals is
usually based on the DFT, which can be efficiently
calculated with the FFT. Spectral analysis of
sampled signals is usually based on the DFT,
which can be efficiently calculated with the FFT.
Although this approach is popular and suitable for
a wide range of signals, it does not offer a good
solution for the very accurate measurement of the
frequency of individual sinusoids [42]. To begin
with, the frequency resolution in Hertz is
approximately the reciprocal of the measurement
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interval in seconds. Secondly, spectral leakage of
broadband noise and harmonic interference causes
weak signals to be distorted and obscured [28].
These two performance limitations are particularly
troublesome when analyzing short data records,
which are present e.g. in radar and sonar. On the
other hand, to achieve adequate frequency
resolution in a navigation application, very long
data records should be used, leading to prohibitive
processing load and impractical memory
requirements. One approach to deal with this
problem is based on interpolation between the
discrete points of a DFT spectrum, thus achieving
sub-bin resolution for frequency and phase
estimates. This is attained at a cost of increased
processing load [42].

A single complex sinusoid with white Gaussian
noise can be represented in the form
x[n] = Aexp(jon) + w(n], 1)
where A and o are unknown variables which
represent the amplitude and frequency of the
complex sinusoid respectively where w =

M and kyqx is the index of the peak of the

sliding DFT. & is to be estimated from the three
samples around the peak of the sliding DFT where
| 6| < 1/2. The transfer function for N point
sliding DFT filter can be represented as

1-rNz-N
j2km
1-re N z71

2

Jrl < 1.

where r is damping factor which can use to force
the pole of filter to be at a radius of r inside the
unit circle.

Therefore, a particular output bin of sliding DFT
IS written as

2knm

Xe =Xnzox[nlre” v, |r| < 1

)

In practice though a particular output bin can be
found out using the following recursive relation
which basically serves the computational
efficiency purpose

Xi[n] = X [n — 1]rej2’1ilnn
—x[n — N]rN + x[n].

(4)
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The FFT-based methods combine techniques to
reduce the effects of windowing with an iterative
procedure which, at each iteration, detects the
strongest peak and subtracts its effect (to reduce
the interference resulting from spectral leakage).
Doppler frequency estimate with high accuracy in
post-processing is very important. As shown in
Fig. 2, the idea is to estimate the frequency of the
spectral peak k4, based on three DFT samples:
Xk—1, Xi, and Xy, 1 [41]. If we selected kpeqr DY
making it equal to the k index of the largest DFT
magnitude sample, then the maximum estimation
error in ky.q, Would be equal to half the width of
the DFT bin.

However, if it is adopted the frequency-domain
peak sample X;,, and one or two adjacent samples,
the estimate of the peak location could be more
accurate if we it was used simple best or
approximate-fit algorithms. In this section, we
provide a fractional correction term o to be added
to the integer peak index k to determine a fine
estimate of the spectral peak location kjqx
located at the cyclic frequency fione-

Xl 4 _‘_5‘_

|Xk‘ |

X i

-\’p‘. \‘ ° : ]

0 N m

Fig 2. DFT magnitude samples of a spectral tone.
Kpeax =k + 6 ®)
f — kpeakfs (6)

tone N Y

where f; is the time data sample rate in Hz and N
is the DFT size. The sliding DFT bin where the
peak occurs and its immediate neighbors can be
represented as follows:

N-1
Xk =A .l,.nejZT[/N5n + Wk

n=0

()

= Af(6) + Wy,

32

s jor (8)
Xk—l =A rneN(5+1)” + Wk—l
n=0
= Af(5 +1)+ Wh_1,
= jor 9
Xirn =4 ) 1meNo0n + Wy
n=0

=Af(6 —1) + Wiy,
where W is the DFT of w[n] which also is white
and

N-1

fa) = Z N pi2n/Nan

n=0

(10)

The aim is to estimate the value of & from these
three samples X, X,_; and X,,, S0 that & =
21 /N (kpeqr + 6) becomes the fine frequency
estimate.

Many spectral peak location estimation solutions
with different computational complexities have
been described [32], [33], [37], [43], [44] and [45].
Here, we focus on six accurate and
computationally simple, estimators. An example
of a computationally simple peak location
estimation that uses three DFT magnitude samples
[46] and [47] makes use of a correction term given

by

_ | Xpera| — 1 Xpe—al
41Xl = 21 Xpeq1| — 21 X1l

5 (1)

The expression is simple, but it is statistically
biased and performs poorly in the presence of
noise. Some simple changes to (11) improve its
accuracy dramatically [41], for instance by using

the complex DFT values rather than the
magnitudes as follows
| Xes1| — 1 Xp—1l (12)

é

20X = Xpega | = Xpea

The accuracy of the spectral peak location
estimation has been improved and the statistical
bias of (11) has been eliminated. Even more, (12)
provides potential for computation reduction by
avoiding the nontrivial magnitude calculations in
(11). While the solution in (12) works well when a
rectangular time-domain window is applied to the
DFT’s input samples, it is often beneficial or
necessary to use non-rectangular windowing. One
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computationally simple alternative that is useful
when time-domain data windowing has been used
IS given by [41]

PO = 1K)
| Xkl + [ Xp—1] + 1 X sl

(13)

where the scaling constant P can be adjusted for
different window functions [48]. However, (13)
needs the computation of the DFT magnitude
samples. Inspired by (12) and (13), a solution for
use with non-rectangular windowed time samples
has been suggested that does not require DFT
magnitude computations; it is given by [41]

(14)

5= QUXk—1| — 1Xp41)
21X | + 1 Xpe—1| + [ X4

where Q is a window-specific scaling constant [41]
and [49].

The above methods can be used for all symmetric
window functions. However, its estimation
accuracy is related to window function. There is
higher estimation precision with the Hanning
window, while lower accuracy with the
rectangular window. The window length must be
short enough to provide an acceptable frequency
accuracy. Moreover, by increasing in phase
acceleration, to obtain acceptable frequency
accuracy, the window length must be decreased.
Since these methods are simple and quick, they are
widely used in low noise environments. The
disadvantage is that they need different analysis
for different window functions [18]. In [50], the
authors  proposed  parabolic  interpolation
algorithm to correct estimation error which is as
follow

_ | Xiera| — 1 Xp—al
41Xl = 21Xp—1] — 21 X4

(15)

6

In [37], Quinn introduced the following algorithm

ay = R(Xy_1/Xp), (16)
az = R(Xpy1/Xp-1), (17)
5, = % (18)
1—a,
__% (19)
% 1—a,
If8,>0 and §,> 0,6 =5,else  (20)

= 51.
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In [33], Macleod proposed the following
algorithm

g o XX — X Xid (21)
RE2IXp? + Xi—1 X + Xier1 XY
8_\/1+8d2—1 (22)

4d

In [41], Jacobsen developed an estimation method
that uses of a correction term given by

(23)

X1 —X

5= ER{ k-1 k+1 }‘
2Ky — X1 — Xie41

Previous correction terms are effective for high
SNR values, but it comes at almost no additional
computational cost and therefore can be used at
any SNR level. In the high SNR values, previous
correction term have bias, therefore, the correction
bias algorithm is proposed as follow [51]
Xie-1 — Xk+1 } (24)

S =
2Xy = Xe-1 = X1

tan(m/N)
/N ER{

It is well known that when the observation noise is
white and Gaussian, the maximum likelihood
frequency estimate of a single complex
exponential waveform is the peak location of the
discrete-time Fourier transform (DTFT) of the
received signal. Since DTFT computation over the
continuum of [0, 2x] is a formidable operation, the
samples of the DTFT are calculated using the
DFT. Typically an N-point DFT is calculated for
the data length of N samples leading to a resolution
of 2n/N on the frequency estimate. In many
applications, it is desirable to increase the
resolution of the frequency estimate at the cost of
some additional computation. As described in
[52], a two-stage search can be implemented to
improve the frequency estimate. First a coarse
search with an N-point DFT is executed and then
a fine search is implemented around the vicinity of
the peak determined in the first stage. It should be
noted that the resolution of a two-stage search is
limited to the spacing of the grid points used in fine
search. In [32], [33], [37] and [53] an alternative
for the second stage is suggested. Instead of a grid
search, the fine resolution estimate is produced
through a function on DFT samples already
calculated in the first stage. The methods
suggested in [32], [33] and [37], use three DFT
samples, while the method of Provencher uses
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only two DFT samples, [53]. These methods
require very few operations compared with the
grid search and produce a real valued estimate for
the frequency, instead of a discrete grid point. In
[32], Jacobsen has suggested a simple relation for
DFT domain fine frequency estimation. The
suggestion is based on empirical observations and
presented without a proof. In [51], the authors
proposed a derivation for the Jacobsen formula
and present a bias correction. The correction term
Is effective for high SNR values, but it comes at
almost no additional computational cost and thus
can be used at any SNR level. Note that the
ESPRIT algorithm was proposed to estimate the
frequencies of a set of complex exponentials in
noise and it was further developed in the context
of array signal processing [31] and [54]. Here, we
briefly summarize its main characteristics.
Without loss of generality, let us consider a signal
composed of P sinusoids corrupted by noise,

i (25)
x[n] = ZAi cos(2nfin + 6,)
i=1

where w[n] is a white Gaussian noise of power 2.
Assuming that the phases are random with uniform
distribution, the autocorrelation of x[n] is given by

R,[m] = E{x[n]x[n + m]} (26)

A;
+ Z ?cos(ZHfim) + a28[m],
i=1

where §[m] = 1 if m =0, and 0 otherwise.
Using this model, the (M x M) (we assume that
2p < M < N) data covariance matrix is given by

R= (27)
Rx [0] Rx[l] Rx[M - 1]
Rx [1] Rx[O] Rx[M - 2]
Re[M—1] R[M —2] R, [0]
which can be rewritten as
R = APA" + o721, (28)
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where H denotes conjugate and transpose, I is the
(M x M) identify matrix and P is the following
(2p x 2p) diagonal matrix:

AR AR AR A (29)
P = diag| —, ...—,—, -..— |
2 2 2 2
Finally, by defining
a(f) = [1e=I2f . e=iM-D2nf]T(y (30)

X 1).

The matrix A is given by

A= [l wera(fy)a(—fy).wral] - 3D
X 2p).

Analogous to other high-resolution algorithms,
ESPRIT relies on properties of the data covariance
matrix (27). Specifically, performing the singular-
value decomposition of R, we can write

R = UAUY, (32)

where A is a diagonal matrix with real eigenvalues
ordered such that 1; > 1, =---> 1), > 0. Note
that the matrix APAY in equation (25) is rank-
deficient: rank(APA™") = 2p < M. This property
allows to partition the eigenvalues/eigenvectors
pairs into noise eigenvectors, corresponding to
eigenvalues Ay,4q =---= Ay = o?; and signal
eigenvectors corresponding to eigenvalues 1, > - -
- > Ay, > 0% Hence, we can decompose R as

R=UAUY +U,A,UY, (33)

It can be shown that the matrix U, which consists
of the signal eigenvectors, can be written as [54]

U, = AT, (34)

where T is a full-rank matrix. This means that A
and U, span the same subspace. Unlike other
subspace-based approaches, ESPRIT exploits the
special structure of matrices A and U,. In
particular, A can be partitioned into sub-matrices
A; and A, as follows:
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A ] _ [first row]' (35)

- [last row! A,

By the structure of A (denoted as shift-structure),
A; and A, are related by

A, = A, D, (36)

where & is a diagonal matrix with elements
e/?™i i = 1,2,...,P; on the diagonal. In this
way, the frequency estimation problem reduces to
that of estimating @. Similarly to A, the matrix U
can be partitioned into sub-matrices U, and U,.
Now, combining (36) and (34) we have

U,=U,%, (37)
where W is related to @ by
Y =T 1@T. (38)

Since (38) is a similarity transformation, both ¥
and @ have the same eigenvalues, from which we
can obtain the estimated frequencies. Since in
practice U, and U, are noisy estimates, the matrix
W s estimated in (37) by applying a total-least-
squares (TLS) algorithm [55]. Similar to the other
frequency estimation methods considered in this
paper, here we assume that the number of
sinusoids is known; thus, the only parameter to be
selected is the order M of the matrix R. If we want
to estimate p real sinusoids the lowest value for M
is 2p, higher values for M will increase
significantly the performance of the method.
However, M cannot be increased too much since
the computational burden grows as M3. Finally,
the ESPRIT algorithm can be summarized as
follows [55]:

1. Compute the eigen decomposition of the data
covariance matrix of order MR.

2. Form U, by selecting the 2p eigenvectors
corresponding to the largest eigenvalues.

3. Partition U, into U, and U, by deleting the last
row and the first row as in (35).

4. Estimate W by solving U, = U, ¥ in a TLS
sense.

5. Estimate the frequencies f; as — arg(vi)/2m,
where v;,i = 2,4,2,...,2p, are the eigenvalues
of P,
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Comparison of Methods

In applications, implementation complexity is
often an important issue. We calculate the number
of operations, in terms of additions and
multiplications. FFT-based algorithms to obtain
accurate frequency, use three samples around the
peak in the FFT spectrum. Therefore,
computational ~ complexity of  FFT-based
algorithms have the order of O(Nlog,(N))
operations, where N is the number of FFT points.
In the simulation, N is set to 4. Computing the
ESPRIT algorithm would require the order of
O(N?) operations. Therefore, for higher number
of N, the ESPRIT algorithm has higher
computational complexity than that of FFT-based
algorithms. Due to high variation signal phase and
frequency in the troposphere layer, we can set
lower values for N such as 4 and 8. Therefore, in
the lower value of N, the computational
complexity of two algorithms are low and the
computational complexity doesn’t restrict us for
choosing frequency estimation algorithm. In
addition to the computational complexity criteria,
there are other three important criterions, called
real time, accuracy and anti-noise ability, which
can be considered for evaluating the proposed
frequency estimation methods. To fulfill the
instantaneous requirements, the proposed methods
should be simple in principle and easy to be
implemented. Moreover, based on the requirement
of accuracy, the proposed methods can reach
Cramer-Rao low bound and achieve unbiased
estimation. Finally, according to the requirement
of anti-noise ability, the algorithm is not easily
impacted on noise, especially under the low SNR.
We provide a compact summary of the frequency
estimation methods. The Table.l demonstrates
behavior of frequency estimation methods, for
real-time, anti-noise capability, computational
complexity, estimation accuracy and number of
samples comparisons.

Table 1. The Comparison Of Each Frequency
Estimation Methods.

Anti-
noise
capability

Number
of
samples

Real-
time

Estimation
accuracy

Computational

Method ]
complexity

Jacobsen Good | Moderate 0(Nlog,(N)) Moderate 40x 100

Jacobsen

with Bias | ©°%

Good O(Nlog,(N)) Good 40x 100

Macleod Good | Moderate O(Nlog,(N)) Moderate 40x 100

Quinn Good | Bad O0(Nlog,(N)) Bad 40x 100

Parabolic | Good | Bad O0(Nlog,(N)) Bad 40x 100

ESPRIT Bad | Good 0N Good 40x 100
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Simulation Results

In this section, the performance of the proposed
frequency estimation schemes are studied via
computer simulation. Moreover, we present some
simulation results to compare the performance of
the six frequency estimation methods. We model
the GNSS receiver’s input as the sum of simulated
signal and white Gaussian noise. In our simulation
runs, SNR for strong and weak signals are equal to
20 dB and -10 dB, respectively. We choose
sampling frequency rate, 100 Hz in the GNSS
receiver. Furthermore, the length of the window
and occultation time durationare N = 4and T =
40 second, respectively. Sampling of 40 second
duration signal by 100 Hz sampling rate results in
40 x 100 = 4000 samples. The root mean square
error (RMSE) criteria is chosen to evaluate the
proposed algorithms performance. The adopted
RMSE with S trials for each experiment is defined
as follows

(39)
RMSE[f())] =

e

S
Zlfu £

where f and f are the estimated and real
frequency, respectively. Note that all results
provided are averages of 1000 independent runs.

A. Effect of SNR on the excess Doppler
Estimation Error

Here, we illustrate the effect of different values of
SNR on the excess Doppler estimation error for
proposed frequency estimation schemes. We
choose phase acceleration equal to 1829 Hz/s and
sampling frequency rate, 100 Hz in the proposed
algorithms. Fig.3 shows the RMSE vs the SNR for
the six frequency estimation methods (Jacobsen,
Jacobsen with Bias, Macleod, Quinn, Parabolic,
ESPRIT). As can be seen, by increasing the SNR,
the excess Doppler estimation error for all
frequency estimation methods is decreased. Esprit
and Jacobsen with bias methods have Dbetter
performance than that of other methods. As shown
in Fig. 3, the Esprit method mainly has the same
accuracy with Jacobsen with bias method. In low
SNR, both Parabolic and Quinn methods aren’t
robust to noise. Thus, these methods have higher
frequency estimation error than the other methods.
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Fig 3. Excess Doppler estimation error versus SNR
for different estimation algorithms. System
parameters: phase acceleration is 1829 Hz/s and
sampling frequency rate is 100 Hz.

B. Effect of Phase Acceleration on the excess
Doppler Estimation Error

Here, we illustrate the effect of phase acceleration
on the excess Doppler estimation error for
different estimation algorithms. For simulation,
the SNR is set between -10 dB and 20 dB and the
frequency sampling is 100 Hz. Fig. 4 shows the
RMSE versus the phase acceleration for the six
frequency  estimation methods  (Jacobsen,
Jacobsen with Bias, Macleod, Quinn, Parabolic,
ESPRIT). It also shows that using the Esprit and
Jacobsen with Bias estimation methods lead to an
improved accuracy. However, by increasing phase
acceleration value, the RMSE value is also
increased. As shown in Fig. 4, there is smooth
curve at phase acceleration below 2500 Hz/s. From
2500 Hz/s to 3000 Hz/s, due to the fast
acceleration of phase, the frequency estimation
methods do not follow any frequency change
correctly. Therefore, the RMSE value increase
sharply with the increasing of phase acceleration
value.
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Fig 4. Excess Doppler estimation error versus phase
acceleration for different estimation algorithms.
System parameters: SNR is uniform distributed
random variable between -10 dB and 20 dB and

sampling frequency rate is 100 Hz.

Summary and Conclusions

Atmospheric sounding by means of GNSS-RO
may contribute to improvements in numerical
weather prediction and climate change studies. In
other words, the goal of RO systems is to provide
excess Doppler profile as a function of time, to
anchor the variational bias correction of the
climate and weather prediction data, and to
provide better long-term consistency of the climate
and weather analysis. Therefore, the accuracy of
estimated excess Doppler in RO signal processing
methods such as SS method is very important to
reach this goal and better accuracy for weather
prediction. Propagation of RO signals through the
lower troposphere results in significant spreading
of the signal spectrum. For this reason, OL
tracking which tracks large random troposphere
induced phase acceleration more reliably than PLL
has to be applied. One of the challenges in tracking
radio occultation signals of OL approach is the
excess Doppler estimation accuracy. In order to
properly estimate the frequency of a signal, the
efficient frequency estimation methods must be
used to the excess Doppler estimation in the post-
processing. In this regards, in this paper, we
investigated six different high-accuracy frequency
estimation methods: Jacobsen, Jacobsen with Bias,
Macleod, Quinn, Parabolic and ESPRIT were
compared by each other from performance and
computational complexity perspective. Based on
the simulation results, ESPRIT scheme provides
better results than that of other methods. Besides,
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using simulation results, we showed that when the
phase acceleration is increased very high and SNR
is decreased, both ESPRIT and Jacobsen with Bias
schemes have better performance than that of other
schemes. In this situation, the ESPRIT scheme
should be applied since it has the better
performance.
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