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Abstract 

One of the main challenges in tracking radio 

occultation (RO) signals of open loop approach 

is the excess Doppler estimation accuracy in 

lower troposphere. Propagation of RO signals 

through the lower troposphere with severe 

refractivity gradient results in high phase 

acceleration and low signal to noise ratio (SNR) 

signal. Because of the high refractivity in the 

lower moist troposphere, the received RO 

signals by global navigation satellite system 

(GNSS) receivers can have large excess 

Doppler which may vary rapidly. Due to 

limitation on bandwidth and transmitted 

information to post processing, we can't use 

very high sampling rate at GNSS receivers at 

LEO satellite. Therefore, try to enhance the 

accuracy of the Doppler predicted models in 

the satellite makes the GNSS-RO receivers by 

using efficiently frequency estimation method 

at GNSS receivers. In this regard, we 

investigate the event of RO signal and then the 

various frequency estimation methods to 

improve the estimates of the Doppler frequency 

in post processing are evaluated. The various 

frequency estimation methods are investigated 

from performance and computational 

complexity perspective. Via simulation, the 

excess Doppler estimation accuracy in post 

processing for different frequency estimation 

methods are compared by its root mean 

squared error. Based on simulation results, it is 

seen that both ESPRIT and Jacobsen with Bias 

schemes have the better performance and the 

estimation error of them are less than that of 

other methods.  
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Introduction 

 
A. State of the Art 

Atmospheric sounding by means of global 

navigation satellite system (GNSS) radio 

occultation (RO) may contribute to improving in 

numerical weather prediction and climate change 

studies. RO occurs when an onboard receiver of 

low earth orbit (LEO) spacecraft tracks a GNSS 

satellite as it sets or rises through earth's 

atmosphere. The recorded phase and amplitude of 

the radio waves during the occultation can be 

analyzed to determine neutral atmospheric 

parameters, including refractivity, density, 

pressure, temperature, and humidity, as well as 

ionospheric total electron content (TEC) and 

refractivity profiles [1].  

In the GNSS-RO technique, very challenging 

conditions exist for signals passing through the 

Earth's lower troposphere. Traditionally, the 

modulated GNSS signals are tracked using a phase 

locked loop (PLL) that relies on a feedback 

process to keep the reference signal sufficiently 

close. These errors, in turn, cause significant 

number of cycle slips and amplitude suppression. 

In tracking of RO signal, another important 

parameter is phase acceleration which is derived 

from the signal's phase and represents the rate at 

which signal's phase changes.  Ikonal acceleration 

technique allows one to convert the phase and 

Doppler frequency changes into refractive 

attenuation variations. From such derived 

refractive attenuation and amplitude data one can 

estimate the integral absorption of radio waves [2]. 

The value of this parameter in the lower 

troposphere is more than 2 kHz/sec which causes 

the variation of signal to be very high. Since the 

signal is weak and high dynamics, PLL can not be 

useful. To tackle this issue, open loop (OL) 

tracking is introduced where at first implemented 

on SAC-C and later adapted on Constellation 

Observing System for Meteorology, Ionosphere, 

and Climate (COSMIC) [3]. This method relies on 

a priori models of atmospheric Doppler and delay 

to track the occulting GNSS signal. 
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In fact, the high sampling rate of the raw 

measurement enables a monitoring of the high 

frequency fluctuations and improves the spatial 

resolution of the refractivity profile. However, 

high sampling rate would demand huge amounts 

of data and require intensive ground-based 

processing and additional cost. Therefore, due to 

the cost constraints and limitation on the amount 

of information sent to the post-processing, 

reducing the sampling rate is considered. For this 

reason, try to enhance the accuracy of the Doppler 

predicted models to reduce the sampling rate from 

1000 Hz to 50 Hz [4]. However, in the next 

receiver to achieve higher resolution, sampling 

rate of 100 Hz is used. In tracking RO, using of 

efficient excess Doppler estimation methods is 

critical, in this regards, we propose methods of 

frequency estimation called Jacobsen, Jacobsen 

with Bias, Macleod, Quinn, Parabolic and ESPRIT 

to improve excess Doppler estimation. 

 

B. Related Works 

In [4] and [5], the authors obtained estimation of 

excess Doppler based on the variations of 

amplitude and phase of the received signal. To do 

this, the received information at GNSS receiver 

payload is sent to the ground station for these 

estimations which this procedure is called post 

processing. Propagation of RO signals through the 

moist troposphere results in multipath and strong 

fluctuation of the phase and amplitude. Therefore, 

tracking such signals by PLL may result in large 

deviation of the signal phase from the phase 

model, updated with the use of feedback from the 

received signal [5]. This, in turn, results in random 

and systematic error (bias) in the extracted phase 

and in the retrieved refractivity. Moreover, the 

PLL tracking of the multi tone RO signals is 

unstable. Analysis of Doppler frequency results in 

±50 kHz and ±2 kHz geometric and atmosphere 

Doppler, respectively [4] and [5]. The instability 

of the PLL tracking in the troposphere motivated 

[4], [6] and [7] to consider the OL tracking. In 

terms of reproducing the temperature and moisture 

profile in the lowest 2.5 km, statistical analysis is 

performed on a large number of COSMIC profiles 

in a region surrounding Macquarie Island [8].  

The principles of the OL tracking of RO signals 

outlined in that study, including estimates of the 

necessary filter bandwidth and sampling rate. In 

real time, a RO signal must be subject to down-

conversion in receiver, by use of the pre-calculated 

phase model, without a feedback from the received 

signal. The down-converted RO signal is low-pass 

filtered, sampled and transmitted to the ground for 

post processing. In previous related works, the 

sliding window method is used for estimation of 

Doppler frequency which is one of radio 

holographic (RH) methods. 

RH methods to process RO data in atmospheric 

multipath zones are suggested to improve retrieval 

accuracy in the moist lower troposphere: back 

propagation (BP) [9] and [10], sliding spectral 

(SS) [4], canonical transform (CT) [11], [12], full 

spectrum inversion (FSI) [13], CT2 [14] and phase 

matching (PM) [15]. SS method takes into account 

the whole spectral content of the signals in the 

small aperture. Different frequency estimation 

methods such as multiple signal classification 

(MUSIC) technique was used to test SS method by 

processing 4 GPS/MET occultations [16]. By 

spectral analysis the contributions from 

components of surface reflections were detected in 

20% to 30% of CHAMP (Challenging 

Minisatellite Payload) occultations. Sokolovskiy 

in [17] thoroughly investigated the bias induced by 

the noise in RH methods, and gave a physical 

explanation. However, false spectral maxima 

induced by the noise can often result in retrieval 

errors in SS method. Therefore, accuracy of 

frequency estimation is very important in SS and 

other methods. 

In this regard, the best coarse frequency estimation 

of the signal is from the peak of the 𝑁 point 

discrete Fourier transform (DFT) of the received 

signal. A 𝑁 point DFT is typically calculated for a 

data length of 𝑁 samples which gives a resolution 

of 
2𝜋

𝑁
. For real time spectral analysis, a well-

known computationally efficient method is the 

sliding DFT especially in the cases when a new 

DFT spectrum is needed every few samples. The 

sliding DFT is computationally efficient than the 

radix-2 Fast Fourier Transform (FFT). The sliding 

DFT performs a 𝑁 point DFT within a sliding 

window of 𝑁 samples. The window is then shifted 

by a sample for the next iteration and a new 𝑁 

point DFT is calculated which utilizes the old 𝑁 

point DFT values [18] and [19]. In [20], the 

authors investigate a simple DFT-based algorithm 

for the single tone frequency estimation. Although 

DFT is very effective and, in the case of FFT, fast 

enough to be applied in real-time applications, it 

may become very inaccurate at the non-coherent 
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sampling because of the spectral leakage 

phenomena [21]. In [21], the authors introduced a 

new set of unbiased analytical estimators for the 

frequency of a complex sinusoid and showed that 

the new estimators are more accurate than the 

previous estimators. Frequency estimators mainly 

include non-iterative IpDFT algorithms and 

iterative DFT-based algorithms [22]. In [22], the 

authors proposed an iterative, exponentially 

windowed algorithm. Generally, a two-stage 

search can be implemented to improve the 

frequency estimation. First, a coarse estimation is 

usually performed by an N-point FFT to locate the 

index of the largest magnitude. Secondly, a fine 

search is executed around the vicinity of the index.  

An efficient and low complexity frequency 

estimation method based on the DFT samples is 

described in [23]. The suggested method can 

operate with an arbitrary window function in the 

absence or presence of zero-padding. The 

frequency estimation performance of the 

suggested method is shown to follow the Cramer–

Rao bound (CRB) closely without any error floor 

due to estimator bias, even at exceptionally high 

signal-to-noise-ratio (SNR) values. 

There are many methods for estimation of the 

frequency of a signal. The estimation of the 

frequency of a signal has been dealt with 

extensively in the literature [24] and [25]. Most of 

the frequency estimation methods can be grouped 

into two classes [26] and [27]: parametric or high-

resolution methods and non-parametric or 

periodogram-based methods. Non-parametric 

frequency estimation methods are based on the 

Fourier transform of the data sequence or its 

autocorrelation function. They do not require any 

knowledge of the data sequence. 

These methods are straightforward to use and 

provide reasonably high resolution for sufficiently 

long data sequences. The FFT makes it convenient 

to calculate the periodogram spectral estimate or 

any of its variations [26] and [28]. Also, 

periodogram method have high variance, which 

does not decrease with increasing data length. 

Modified methods with lower variance have been 

developed, but with the cost of decreased 

resolution. They exploit averaging (Bartlett), 

windowing (Blackman-Tukey) or both (Welch) to 

lower the variance. All of these methods have 

more or less equal properties and performance for 

long data lengths. Hence, to increase frequency 

resolution, a longer measurement time must be 

used. In order to achieve sub-Herz resolution with 

the DFT, a measurement time of several seconds 

is required. Classical non-parametric spectral 

estimators are still the most robust for low SNR, 

but they can not exploit high SNR conditions [29]. 

In addition, these methods are applicable to all 

signal classes and the estimated power spectral 

density (PSD) is directly proportional to power. 

The main disadvantage of these methods is their 

low resolution limited by windowing effects.  

MUSIC and ESPRIT are high-resolution methods 

which are intended for estimating spectral lines 

(frequencies).  

Signals in the fields of e.g., communications, 

radar, sonar, and geophysical seismology can be 

described with sinusoidal model [30]. These 

methods are based on an eigenvector 

decomposition of autocorrelation matrix of the 

data into two subspaces, one associated with the 

signal and the other associated with the noise. 

Eigenvalues relate to the noise variance and the 

methods utilize the orthogonality property 

between signal vectors and noise subspace 

eigenvectors. High-resolution subspace methods 

provide very accurate frequency estimates with 

only small differences in statistical performance 

and computational load. In addition, they are able 

to resolve more closely spaced spectral lines than 

classical methods. Note that the fundamental 

difference to classical methods is, that subspace 

methods are not based on the Fourier transform of 

the data sequence or its estimated correlation 

function [26]. ESPRIT has been developed 

primarily for spatial direction of arrival (DOA) 

estimation [29] and [31]. This method exploits 

invariance of two time displaced data sets to 

determine sinusoid frequencies, powers, and noise 

variance. The number of sinusoids must be known 

in advance and the algorithm tries to find this 

number of sinusoids, the strongest ones. The 

performance of ESPRIT is in most cases slightly 

better than the performance of MUSIC method. 

Moreover, it has lower computational cost and no 

problems in separating the signal roots from the 

noise roots [29]. The high-resolution methods are 

able to resolve spectral peaks separated in 

frequency less than 1/𝑇 (𝑇 being the observation 

time of the signal), which is the resolution limit for 

the methods based on the periodogram. This class 

methods such as the MUSIC method and more 

recently, the ESPRIT method [31] have been 

proposed in the literature [32], [33], [34], [35] and 
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[36]. Quinn [32] uses the complex Fourier 

coefficients in order to interpolate the true signal 

frequency between the maximum and the second 

highest bin. However, Quinn's algorithm has been 

shown to have a frequency dependent 

performance, [37]. Furthermore, it is highly 

desirable, in the context of digital signal processor 

(DSP) implementation, to avoid divisions and 

functions with long Taylor series expansions. 

Zakharov and Tozer [35, 18] present a simple fine 

search that relies only on real multiply and 

accumulate (MAC) operations to refine the 

frequency estimate. The resulting frequency 

algorithm, called the dichotomous search of the 

periodogram peak, is particularly suited for DSP 

implementation. Also, in comparison with Quinn's 

algorithm, it achieves the CRB uniformly in 

frequency. The same authors propose in [34] a 

number of hybrid estimators that combine the 

dichotomous search with various interpolation 

techniques in order to reduce the computational 

complexity. Aboutanios and Reisenfeld [36] 

follow similar concept by using Quinn's 

interpolation algorithm to initialize the 

dichotomous search algorithm. This reduces the 

number of iterations required for convergence 

while achieving the CRB. Based on the existing 

works, there is no related works on the excess 

Doppler estimation via frequency estimation 

methods called Jacobsen, Jacobsen with Bias, 

Macleod, Quinn, Parabolic and ESPRIT in RO 

system.  
 
C. Our Contributions 

In this paper, we study the potential benefits of 

various frequency estimation methods in the 

estimation of excess Doppler, with the goal of 

minimizing frequency estimation error. Besides, 

we compare the various frequency estimation 

methods in post-processing from computational 

complexity and performance. To the best of our 

knowledge, no work has investigated the various 

frequency estimation methods called Jacobsen, 

Jacobsen with Bias, Macleod, Quinn, Parabolic 

and ESPRIT in RO system.  The goal of this paper 

is performance analysis of different frequency 

estimators in RO systems and the main results and 

original contributions of this paper are the 

following: 

 We identify the challenges of estimating the 

frequency of RO signals and we propose a 

framework to study it. 

 We introduce efficient frequency estimation 

methods for RO system.  

 We Compare the performance of different 

proposed frequency estimation methods and 

provide the analytical results that show how 

precise/effective our introduced estimators are. 

This paper is organized as follows. In Section II, 

we investigate RO signal processing by using OL 

tracking. Then, we investigate the various 

frequency estimation methods in Section III. The 

performance of different frequency estimation 

methods is studied in Section IV. Simulation 

results are presented in Section V, and conclusions 

are in Section VI. 

 
RO Signal Processing by Using OL Tracking 

In OL tracking, the signal is down-converted via a 

numerically controlled oscillator (NCO), which 

produces a frequency given by an onboard 

Doppler model pre-calculated in GNSS receiver 

without a feedback from received signal. Next, in 

order to remove the noise from data i.e., on 

amplitude and phase of signal, a zero-phase low-

pass filter was adopted. The baseband signal is 

typically then sampled at a rate of 100 Hz.  

For simplicity, we use global position system 

(GPS) satellite signal for numerical weather 

prediction and climate change studies. GPS 

satellites broadcast on three frequencies: 𝐿1 

(1575.42 MHz), 𝐿2 (1227.60 MHz) and 𝐿5 

(1176.45 MHz) signals. When GPS RO signals are 

used for monitoring the lower troposphere, the 

ionospheric effect has to be removed. Thus, GPS 

𝐿1 signal is enough for the processing of RO. In 

this paper all calculations are provided for GPS 𝐿1 

frequency, thus only processing of 𝐿1 signal will 

be discussed.  

The signal must be down-converted in the receiver 

with the use of the frequency model, 𝑓𝑚𝑜𝑑 = 𝑓𝑐 +
𝑓𝑑𝑜𝑝, based on predicted GNSS and LEO orbits 

and refractivity climatology. An additional error in 

the frequency model 𝑓𝑚𝑜𝑑 is introduced by the 

receiver clock, Δ 𝑓𝐿𝐸𝑂, which depends on the 

receiver clock stability and it is reduced in the 

recent missions by using more stable oscillators. 

Thus after the down-conversion the mean 

frequency of the RO signal is shifted from zero 

because of neutral atmospheric mismodeling , 

ionospheric mismodeling, receive clock error, and 

relativistic effects not modeled by the special 

GNSS carrier frequency shift. To minimize noise 

aliasing, it must be at first low-pass filtered with 
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100 Hz bandwidth, then sampled in phase and 

quadrature and down-linked to the ground [4] and 

[5].  

The sampling rate generally has to be equal to the 

spectral bandwidth of the signal. However, since 

the spread part of the spectrum occupies only part 

of the full spectral band, the sampling rate may be 

lower. When the sampling rate is greater or equal 

to the full spectral bandwidth of the signal, that is, 

∼100 Hz, the spectrum is reproduced without 

aliasing and the signal may be completely 

recovered from its complex samples. Lower 

sampling rates may result in aliasing of harmonics 

in the signal spectrum. However, if the sampling 

rate is not less than the spread part of the spectrum 

(where most of the signal power is concentrated), 

that is, ∼ 50 Hz, then aliasing will not result in 

overlapping of harmonics [4] and [5].  

In this case, the signal can still be recovered from 

its samples with minimal errors after an additional 

down-converted which eliminates or substantially 

reduces the aliasing. If the sampling rate is smaller 

than the speared part of the spectrum, then the 

aliasing will leads to the overlapping of harmonics 

and the signal cannot be recovered without 

corruption [4] and [5].  

In OL signal tracking mode, ultimately, the 

receiver NCO is not driven by the observations, 

but by an a-priori Doppler frequency model [4], 

[5] and [6]. Then, the down-converted signal is 

passed through the low pass filter. However, in [4], 

[5] and [6] noted that the modelling error is ± 25 

Hz, which it is variable and depend to atmospheric 

Doppler model. In order to remove the navigation 

data modulation (NDM) and connect the phase, the 

sampled signal must be down-converted to shift its 

mean frequency as close to zero as possible. Then, 

in postprocessing, the received signal is down-

converted by use of the more accurate phase 

model. The purpose of this down-conversion is to 

remove the NDM and connect the phase between 

samples. The NDM can be removed using by two 

methods (internal and external) [6]. After 

computing of amplitude and accumulated phase, 

we can obtain bending angle and impact 

parameter. Then, by using of Abel transform, the 

refractivity profile can be provided. Finally, the 

atmospheric parameters such as pressure, 

temperature and water vapor pressure can be 

extracted from the refractivity profile. In Fig. 1, 

block diagram of the RO data processing for OL 

tracking is shown. 

 

Frequency Estimation Methods 

Retrieval of atmospheric parameters from RO data 

often encounters difficulties in the moist lower 

troposphere. Under conditions of atmospheric 

multipath propagation, calculation of bending 

angle from Doppler frequency shift is usually no 

applicable. RH methods are suggested to improve 

retrieval accuracy in the moist lower troposphere. 

SS method uses spectral analysis of the received 

signals in small sliding apertures. As a function of 

the impact parameter, the bending angle is 

computed from the frequency of each spectral 

maximum and its corresponding position at the 

aperture center. Sorting out the doubtful maxima 

can improve accuracy of SS method, especially in 

the lower troposphere [38]. Therefore, high 

resolution excess Doppler estimation is important 

problem at postprocessing in the RO occultation 

system and especially in SS method. 

 

GNSS Signal (Amplitude & Phase)

Step 1.1: Down Convert Signal

GNSS & LEO 

Orbits Information

Refractivity 

Information

Phase Model

Step 1.2: Low Pass Filter

Step 2: Sample I and Q

based on SSF or MSF

Step 4: Estimate excess Doppler

Step 5: Additional down convert

Step 6: NDM removal

Step 8: Bending angle

Step 9: Abel transform

Step 10: Refractivity

Step 11: Atmosphere parameters 

On-Board Section
Post-processing Section

Step 1.3: C/A code removal

Step 3: Sent 

to the 

ground post 

processing

Step 7: RH method

 

Fig 1. Block diagram of the RO data processing. 

 
The high-resolution methods are able to resolve 

spectral peaks separated in frequency less than 

1/𝑇 (𝑇 being the observation time of the signal), 

which is the resolution limit for the methods based 

on the periodogram. To this class pertain methods 

such as Pisarenko’s method, the MUSIC and the 

Root-MUSIC, the Min-Norm method and more 

recently, the ESPRIT method [31]. All the high-

resolution methods provide very accurate 

frequency estimates, with only small differences in 

their statistical properties. For our comparative 
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study, we have selected the ESPRIT method for 

two reasons: first, it provides slightly more 

accurate estimates than the other methods [26], 

and second, ESPRIT is not widely known to the 

vibration analysis community. In vibration 

analysis, long data records are typically acquired 

and therefore a simple FFT algorithm provides 

enough resolution for frequency estimation. 

Moreover, the requirement of real-time analysis is 

another reason that explains why classical 

frequency estimation methods such as the 

periodogram (probably windowed and averaged) 

still remain the most used tools in vibration 

analysis. However, as it is shown in [39], if a slight 

increase in the computational cost can be afforded, 

it is possible to obtain high-accuracy frequency 

estimates working with a relatively short data set. 

However, in general, periodogram or FFT-based 

methods cannot resolve closely spaced 

frequencies. Spectral analysis considers the 

problem of determining the spectral content (i.e., 

the distribution of power over frequency) of a time 

series from a finite set of measurements, by means 

of either nonparametric or parametric techniques 

[40]. Parametric methods may offer more accurate 

spectral estimates than the nonparametric ones. 

The parametric approach can thus be used only 

when there is enough information about the 

studied signal, that allows formulation of a model. 

Otherwise the nonparametric approach should be 

adopted. The parametric frequency estimation 

methods are frequency estimation techniques with 

high resolution. There have been several 

parametric frequency estimation methods such as: 

MUSIC, Root MUSIC , ESPRIT and Pisarenko 

[41]. The ESPRIT method is a parametric high-

resolution technique. Note that the nonparametric 

methods of spectral estimation rely entirely on the 

definitions of PSD to provide spectral estimates. 

These methods constitute the ”classical means” for 

PSD estimation. Nonparametric methods are based 

on the FFT. Spectral analysis of sampled signals is 

usually based on the DFT, which can be efficiently 

calculated with the FFT. Spectral analysis of 

sampled signals is usually based on the DFT, 

which can be efficiently calculated with the FFT. 

Although this approach is popular and suitable for 

a wide range of signals, it does not offer a good 

solution for the very accurate measurement of the 

frequency of individual sinusoids [42]. To begin 

with, the frequency resolution in Hertz is 

approximately the reciprocal of the measurement 

interval in seconds. Secondly, spectral leakage of 

broadband noise and harmonic interference causes 

weak signals to be distorted and obscured [28]. 

These two performance limitations are particularly 

troublesome when analyzing short data records, 

which are present e.g. in radar and sonar. On the 

other hand, to achieve adequate frequency 

resolution in a navigation application, very long 

data records should be used, leading to prohibitive 

processing load and impractical memory 

requirements. One approach to deal with this 

problem is based on interpolation between the 

discrete points of a DFT spectrum, thus achieving 

sub-bin resolution for frequency and phase 

estimates. This is attained at a cost of increased 

processing load [42]. 

A single complex sinusoid with white Gaussian 

noise can be represented in the form 

 

𝑥[𝑛] = 𝐴 exp(𝑗𝜔𝑛) + 𝑤[𝑛], (1) 

 

where 𝐴 and 𝜔 are unknown variables which 

represent the amplitude and frequency of the 

complex sinusoid respectively where 𝜔 =
2𝜋(𝑘𝑝𝑒𝑎𝑘+𝛿)

𝑁
 and 𝑘𝑝𝑒𝑎𝑘 is the index of the peak of the 

sliding DFT. 𝛿 is to be estimated from the three 

samples around the peak of the sliding DFT where 

| 𝛿 | <  1/2. The transfer function for 𝑁 point 

sliding DFT filter can be represented as 

 

𝐻(𝑧) =
1−𝑟𝑁𝑧−𝑁

1−𝑟𝑒
𝑗2𝑘𝜋

𝑁 𝑧−1

, |𝑟| <  1.  (2) 

 

 

where 𝑟 is damping factor which can use to force 

the pole of filter to be at a radius of 𝑟 inside the 

unit circle. 

Therefore, a particular output bin of sliding DFT 

is written as 

 

𝑋𝑘 = ∑ 𝑥[𝑛]𝑟𝑛𝑒−
2𝑘𝑛𝜋

𝑁𝑁−1
𝑛=0 , |𝑟| <  1 

(3) 

 

 

In practice though a particular output bin can be 

found out using the following recursive relation 

which basically serves the computational 

efficiency purpose 

 

𝑋𝑘[𝑛] = 𝑋𝑘[𝑛 − 1]𝑟𝑒
𝑗2𝑘𝑛𝜋

𝑁

− 𝑥[𝑛 − 𝑁]𝑟𝑁 + 𝑥[𝑛]. 

(4) 
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The FFT-based methods combine techniques to 

reduce the effects of windowing with an iterative 

procedure which, at each iteration, detects the 

strongest peak and subtracts its effect (to reduce 

the interference resulting from spectral leakage). 

Doppler frequency estimate with high accuracy in 

post-processing is very important. As shown in 

Fig. 2, the idea is to estimate the frequency of the 

spectral peak 𝑘𝑝𝑒𝑎𝑘 based on three DFT samples: 

𝑋𝑘−1, 𝑋𝑘, and 𝑋𝑘+1 [41]. If we selected 𝑘𝑝𝑒𝑎𝑘 by 

making it equal to the k index of the largest DFT 

magnitude sample, then the maximum estimation 

error in 𝑘𝑝𝑒𝑎𝑘 would be equal to half the width of 

the DFT bin. 

However, if it is adopted the frequency-domain 

peak sample 𝑋𝑘, and one or two adjacent samples, 

the estimate of the peak location could be more 

accurate if we it was used simple best or 

approximate-fit algorithms. In this section, we 

provide a fractional correction term δ to be added 

to the integer peak index 𝑘 to determine a fine 

estimate of the spectral peak location 𝑘𝑝𝑒𝑎𝑘 

located at the cyclic frequency 𝑓𝑡𝑜𝑛𝑒. 

 

 
Fig 2. DFT magnitude samples of a spectral tone. 

 

𝑘𝑝𝑒𝑎𝑘 = 𝑘 + 𝛿 (5) 

 

𝑓𝑡𝑜𝑛𝑒 =
𝑘𝑝𝑒𝑎𝑘𝑓𝑠

𝑁
, 

(6) 

 

 

where 𝑓𝑠 is the time data sample rate in Hz and 𝑁 

is the DFT size. The sliding DFT bin where the 

peak occurs and its immediate neighbors can be 

represented as follows: 

 

𝑋𝑘 = 𝐴 ∑ 𝑟𝑛𝑒𝑗2𝜋/𝑁𝛿𝑛 + 𝑊𝑘

𝑁−1

𝑛=0

= 𝐴𝑓(𝛿) + 𝑊𝑘, 

(7) 

 

𝑋𝑘−1 = 𝐴 ∑ 𝑟𝑛𝑒
𝑗2𝜋

𝑁(𝛿+1)𝑛 + 𝑊𝑘−1

𝑁−1

𝑛=0

= 𝐴𝑓(𝛿 + 1) + 𝑊𝑘−1, 

(8) 

 

𝑋𝑘+1 = 𝐴 ∑ 𝑟𝑛𝑒
𝑗2𝜋

𝑁(𝛿−1)𝑛 + 𝑊𝑘+1

𝑁−1

𝑛=0

= 𝐴𝑓(𝛿 − 1) + 𝑊𝑘+1, 

(9) 

 

 
where 𝑊𝑘 is the DFT of 𝑤[𝑛] which also is white 

and 

 

𝑓(𝛼) = ∑ 𝑟𝑛𝑒𝑗2𝜋/𝑁𝛼𝑛

𝑁−1

𝑛=0

. 
(10) 

 

 

The aim is to estimate the value of δ from these 

three samples 𝑋𝑘, 𝑋𝑘−1 and 𝑋𝑘+1 so that 𝜔̂ =
 2𝜋/𝑁(𝑘𝑝𝑒𝑎𝑘 + 𝛿) becomes the fine frequency 

estimate.  

Many spectral peak location estimation solutions 

with different computational complexities have 

been described [32], [33], [37], [43], [44] and [45]. 

Here, we focus on six accurate and 

computationally simple, estimators. An example 

of a computationally simple peak location 

estimation that uses three DFT magnitude samples 

[46] and [47] makes use of a correction term given 

by   

 

𝛿 =
|𝑋𝑘+1| − |𝑋𝑘−1|

4|𝑋𝑘| − 2|𝑋𝑘+1| − 2|𝑋𝑘−1|
 

(11) 

 

 

The expression is simple, but it is statistically 

biased and performs poorly in the presence of 

noise. Some simple changes to (11) improve its 

accuracy dramatically [41], for instance by using 

the complex DFT values rather than the 

magnitudes as follows 

 

𝛿 =
|𝑋𝑘+1| − |𝑋𝑘−1|

2|𝑋𝑘| − |𝑋𝑘+1| − |𝑋𝑘−1|
 

(12) 

 

 

The accuracy of the spectral peak location 

estimation has been improved and the statistical 

bias of (11) has been eliminated. Even more, (12) 

provides potential for computation reduction by 

avoiding the nontrivial magnitude calculations in 

(11). While the solution in (12) works well when a 

rectangular time-domain window is applied to the 

DFT’s input samples, it is often beneficial or 

necessary to use non-rectangular windowing. One 
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computationally simple alternative that is useful 

when time-domain data windowing has been used 

is given by [41] 

 

𝛿 =
𝑃(|𝑋𝑘+1| − |𝑋𝑘−1|)

|𝑋𝑘| + |𝑋𝑘−1| + |𝑋𝑘+1|
 

(13) 

 

 

where the scaling constant P can be adjusted for 

different window functions [48]. However, (13) 

needs the computation of the DFT magnitude 

samples. Inspired by (12) and (13), a solution for 

use with non-rectangular windowed time samples 

has been suggested that does not require DFT 

magnitude computations; it is given by [41] 

 

𝛿 =
𝑄(|𝑋𝑘−1| − |𝑋𝑘+1|)

2|𝑋𝑘| + |𝑋𝑘−1| + |𝑋𝑘+1|
 

(14) 

 

 

where 𝑄 is a window-specific scaling constant [41] 

and [49]. 

The above methods can be used for all symmetric 

window functions. However, its estimation 

accuracy is related to window function. There is 

higher estimation precision with the Hanning 

window, while lower accuracy with the 

rectangular window. The window length must be 

short enough to provide an acceptable frequency 

accuracy. Moreover, by increasing in phase 

acceleration, to obtain acceptable frequency 

accuracy, the window length must be decreased. 

Since these methods are simple and quick, they are 

widely used in low noise environments. The 

disadvantage is that they need different analysis 

for different window functions [18]. In [50], the 

authors proposed parabolic interpolation 

algorithm to correct estimation error which is as 

follow  

 

𝛿 =
|𝑋𝑘+1| − |𝑋𝑘−1|

4|𝑋𝑘| − 2|𝑋𝑘−1| − 2|𝑋𝑘+1|
 

(15) 

 

 

In [37], Quinn introduced the following algorithm 

 

𝛼1 = ℜ(𝑋𝑘−1/𝑋𝑘), (16) 

𝛼2 = ℜ(𝑋𝑘+1/𝑋𝑘−1), (17) 

𝛿1 =
𝛼1

1 − 𝛼1
, (18) 

𝛿2 =
𝛼2

1 − 𝛼2
, (19) 

𝐼𝑓 𝛿1 > 0  𝑎𝑛𝑑  𝛿2 > 0, 𝛿 = 𝛿2 𝑒𝑙𝑠𝑒 𝛿
= 𝛿1. 

(20) 

 

 

In [33], Macleod proposed the following 

algorithm 

 

𝑑 =  
ℜ{𝑋𝑘−1𝑋𝑘

∗ − 𝑋𝑘+1𝑋𝑘
∗}

ℜ{2|𝑋𝑘|2 + 𝑋𝑘−1𝑋𝑘
∗ + 𝑋𝑘+1𝑋𝑘

∗}
, 

(21) 

𝛿 =
√1 + 8𝑑2 − 1

4𝑑
. 

(22) 

 

In [41], Jacobsen developed an estimation method 

that uses of a correction term given by 

 

𝛿 = ℜ {
𝑋𝑘−1 − 𝑋𝑘+1

2𝑋𝑘 − 𝑋𝑘−1 − 𝑋𝑘+1
}, 

(23) 

 

 

Previous correction terms are effective for high 

SNR values, but it comes at almost no additional 

computational cost and therefore can be used at 

any SNR level. In the high SNR values, previous 

correction term have bias, therefore, the correction 

bias algorithm is proposed as follow [51] 

 

𝛿 =
tan(𝜋/𝑁)

𝜋/𝑁
ℜ {

𝑋𝑘−1 − 𝑋𝑘+1

2𝑋𝑘 − 𝑋𝑘−1 − 𝑋𝑘+1
}, 

(24) 

 

 

It is well known that when the observation noise is 

white and Gaussian, the maximum likelihood 

frequency estimate of a single complex 

exponential waveform is the peak location of the 

discrete-time Fourier transform (DTFT) of the 

received signal. Since DTFT computation over the 

continuum of [0, 2π] is a formidable operation, the 

samples of the DTFT are calculated using the 

DFT. Typically an N-point DFT is calculated for 

the data length of N samples leading to a resolution 

of 2π/N on the frequency estimate. In many 

applications, it is desirable to increase the 

resolution of the frequency estimate at the cost of 

some additional computation. As described in 

[52], a two-stage search can be implemented to 

improve the frequency estimate. First a coarse 

search with an N-point DFT is executed and then 

a fine search is implemented around the vicinity of 

the peak determined in the first stage. It should be 

noted that the resolution of a two-stage search is 

limited to the spacing of the grid points used in fine 

search. In [32], [33], [37] and [53] an alternative 

for the second stage is suggested. Instead of a grid 

search, the fine resolution estimate is produced 

through a function on DFT samples already 

calculated in the first stage. The methods 

suggested in [32], [33] and [37], use three DFT 

samples, while the method of Provencher uses 
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only two DFT samples, [53]. These methods 

require very few operations compared with the 

grid search and produce a real valued estimate for 

the frequency, instead of a discrete grid point. In 

[32], Jacobsen has suggested a simple relation for 

DFT domain fine frequency estimation. The 

suggestion is based on empirical observations and 

presented without a proof. In [51], the authors 

proposed a derivation for the Jacobsen formula 

and present a bias correction. The correction term 

is effective for high SNR values, but it comes at 

almost no additional computational cost and thus 

can be used at any SNR level. Note that the 

ESPRIT algorithm was proposed to estimate the 

frequencies of a set of complex exponentials in 

noise and it was further developed in the context 

of array signal processing [31] and [54]. Here, we 

briefly summarize its main characteristics. 

Without loss of generality, let us consider a signal 

composed of 𝑃 sinusoids corrupted by noise,  

 

𝑥[𝑛] = ∑ 𝐴𝑖 cos(2𝜋𝑓𝑖𝑛 + 𝜃𝑖

𝑃

𝑖=1

)

+ 𝑤[𝑛], 𝑛 = 0, … , 𝑁 − 1 

(25) 

 

 

where 𝑤[𝑛] is a white Gaussian noise of power 𝜎2. 

Assuming that the phases are random with uniform 

distribution, the autocorrelation of 𝑥[𝑛] is given by 

 

𝑅𝑥[𝑚] = 𝔼{𝑥[𝑛]𝑥[𝑛 + 𝑚]} 

+ ∑
𝐴𝑖

2
cos(2𝜋𝑓𝑖𝑚

𝑃

𝑖=1

) + 𝜎2𝛿[𝑚], 

(26) 

 

 

where 𝛿[𝑚]  =  1 if 𝑚 = 0, and 0 otherwise. 

Using this model, the (𝑀 × 𝑀) (we assume that 

2𝑝 < 𝑀 < 𝑁) data covariance matrix is given by 

 

𝑹= 

(

𝑅𝑥[0]

𝑅𝑥[1]
            

𝑅𝑥[1]

𝑅𝑥[0]
⋯

𝑅𝑥[𝑀 − 1]

𝑅𝑥[𝑀 − 2]
⋮ ⋱ ⋮

𝑅𝑥[𝑀 − 1] 𝑅𝑥[𝑀 − 2] ⋯ 𝑅𝑥[0]

), 

(27) 

 

 

which can be rewritten as 

 

𝑹 =  𝑨𝑷𝑨𝐻  + 𝜎2𝑰, (28) 

 

 

where 𝐻 denotes conjugate and transpose, 𝑰 is the 

(𝑀 ×  𝑀) identify matrix and 𝑷 is the following 

(2𝑝 × 2𝑝) diagonal matrix: 

 

𝑷 =  diag (
A1

2

2
, … ,

AP
2

2
,
AP

2

2
, … ,

A1
2

2
). 

(29) 

 

 

Finally, by defining 

 

𝑎(𝑓) = [1𝑒−𝑗2𝜋𝑓 … 𝑒−𝑗(𝑀−1)2𝜋𝑓]
T

(𝑀

× 1). 

(30) 

 

 

The matrix 𝑨 is given by 

 

𝑨 = [𝑎(𝑓1), … , 𝑎(𝑓𝑝), 𝑎(−𝑓𝑝), … , 𝑎(𝑓1)]
T

(𝑀

× 2𝑝). 

(31) 

 

 

Analogous to other high-resolution algorithms, 

ESPRIT relies on properties of the data covariance 

matrix (27). Specifically, performing the singular-

value decomposition of 𝑹, we can write 

 

𝑹 = 𝑼𝜦𝑼H, (32) 

 

 

where 𝜦 is a diagonal matrix with real eigenvalues 

ordered such that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑀 > 0. Note 

that the matrix 𝐴𝑃𝐴𝐻 in equation (25) is rank-

deficient: rank(𝑨𝑷𝑨𝐻) = 2𝑝 < 𝑀. This property 

allows to partition the eigenvalues/eigenvectors 

pairs into noise eigenvectors, corresponding to 

eigenvalues 𝜆2𝑝+1 = · · · = 𝜆𝑀 = 𝜎2; and signal 

eigenvectors corresponding to eigenvalues 𝜆1 ≥ · ·
 · ≥  𝜆2𝑝  > 𝜎2. Hence, we can decompose 𝑅 as 

 

𝑹 = 𝑼𝑠𝜦𝑠𝑼𝑠
H + 𝑼𝑛𝜦𝑛𝑼𝑛

H, (33) 

 

 

It can be shown that the matrix 𝑼𝑠, which consists 

of the signal eigenvectors, can be written as [54] 

 

𝑼𝑠 = 𝑨𝑻, (34) 

 

 

where 𝑻 is a full-rank matrix. This means that 𝑨 

and 𝑼𝑠 span the same subspace. Unlike other 

subspace-based approaches, ESPRIT exploits the 

special structure of matrices 𝑨 and 𝑼𝑠. In 

particular, 𝑨 can be partitioned into sub-matrices 

𝑨1 and 𝑨2 as follows: 
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𝑨 = [
𝑨1

last row
] = [

first row
𝑨2

]. 
(35) 

 

 

By the structure of 𝑨 (denoted as shift-structure), 

𝑨1 and 𝑨2 are related by 

 

𝑨2 = 𝑨1𝚽, (36) 

 

 

where 𝚽 is a diagonal matrix with elements 

𝑒𝑗2𝑛𝑓𝑖 , 𝑖 =  1, 2, . . . , 𝑃; on the diagonal. In this 

way, the frequency estimation problem reduces to 

that of estimating 𝚽. Similarly to 𝑨, the matrix 𝑼𝑠 

can be partitioned into sub-matrices 𝑼1 and 𝑼2. 

Now, combining (36) and (34) we have 

 

𝑼2 = 𝑼1𝚿, (37) 

 

 

where 𝚿 is related to 𝚽 by 

 

𝚿 = 𝑻−1𝜱𝑻. (38) 

 

Since (38) is a similarity transformation, both 𝚿 

and 𝜱 have the same eigenvalues, from which we 

can obtain the estimated frequencies. Since in 

practice 𝑼1 and 𝑼2 are noisy estimates, the matrix 

𝚿 is estimated in (37) by applying a total-least-

squares (TLS) algorithm [55]. Similar to the other 

frequency estimation methods considered in this 

paper, here we assume that the number of 

sinusoids is known; thus, the only parameter to be 

selected is the order 𝑀 of the matrix 𝑹. If we want 

to estimate p real sinusoids the lowest value for 𝑀 

is 2𝑝, higher values for 𝑀 will increase 

significantly the performance of the method. 

However, 𝑀 cannot be increased too much since 

the computational burden grows as 𝑀3. Finally, 

the ESPRIT algorithm can be summarized as 

follows [55]: 

1. Compute the eigen decomposition of the data 

covariance matrix of order 𝑀𝑅. 

2. Form 𝑼𝑠 by selecting the 2𝑝 eigenvectors 

corresponding to the largest eigenvalues. 

3. Partition 𝑼𝑠 into 𝑼1 and 𝑼2 by deleting the last 

row and the first row as in (35).  

4. Estimate  𝚿̂ by solving 𝑼2 = 𝑼1𝚿 in a TLS 

sense. 

5. Estimate the frequencies  𝑓𝑖 as − arg(𝜈𝑖)/2𝜋, 

where 𝜈𝑖 , 𝑖 =  2, 4, 2, . . . , 2𝑝, are the eigenvalues 

of Ψ̂. 

 

Comparison of Methods 

In applications, implementation complexity is 

often an important issue. We calculate the number 

of operations, in terms of additions and 

multiplications. FFT-based algorithms to obtain 

accurate frequency, use three samples around the 

peak in the FFT spectrum. Therefore, 

computational complexity of FFT-based 

algorithms have the order of 𝑂(𝑁 log2(𝑁)) 

operations, where 𝑁 is the number of FFT points. 

In the simulation, 𝑁 is set to 4. Computing the 

ESPRIT algorithm would require the order of 

𝑂(𝑁3) operations. Therefore, for higher number 

of 𝑁, the ESPRIT algorithm has higher 

computational complexity than that of FFT-based 

algorithms. Due to high variation signal phase and 

frequency in the troposphere layer, we can set 

lower values for 𝑁 such as 4 and 8. Therefore, in 

the lower value of 𝑁, the computational 

complexity of two algorithms are low and the 

computational complexity doesn’t restrict us for 

choosing frequency estimation algorithm. In 

addition to the computational complexity criteria, 

there are other three important criterions, called 

real time, accuracy and anti-noise ability, which 

can be considered for evaluating the proposed 

frequency estimation methods. To fulfill the 

instantaneous requirements, the proposed methods 

should be simple in principle and easy to be 

implemented. Moreover, based on the requirement 

of accuracy, the proposed methods can reach 

Cramer-Rao low bound and achieve unbiased 

estimation. Finally, according to the requirement 

of anti-noise ability, the algorithm is not easily 

impacted on noise, especially under the low SNR. 

We provide a compact summary of the frequency 

estimation methods. The Table.I demonstrates 

behavior of frequency estimation methods, for 

real-time, anti-noise capability, computational 

complexity, estimation accuracy and number of 

samples comparisons. 

 
Table I. The Comparison  Of Each Frequency 

Estimation Methods. 

Method 
Real-

time 

Anti-

noise 

capability 

Computational 

complexity 

Estimation 

accuracy 

Number 

of 

samples 

Jacobsen Good Moderate 𝑂(𝑁 log2(𝑁)) Moderate 40× 100 

Jacobsen 

with Bias 
Good Good 𝑂(𝑁 log2(𝑁)) Good 40× 100 

Macleod Good Moderate 𝑂(𝑁 log2(𝑁)) Moderate 40× 100 

Quinn Good Bad 𝑂(𝑁 log2(𝑁)) Bad 40× 100 

Parabolic Good Bad 𝑂(𝑁 log2(𝑁)) Bad 40× 100 

ESPRIT   Bad Good 𝑂(𝑁3) Good 40× 100 
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Simulation Results 

In this section, the performance of the proposed 

frequency estimation schemes are studied via 

computer simulation. Moreover, we present some 

simulation results to compare the performance of 

the six frequency estimation methods. We model 

the GNSS receiver’s input as the sum of simulated 

signal and white Gaussian noise. In our simulation 

runs, SNR for strong and weak signals are equal to 

20 dB and -10 dB, respectively. We choose 

sampling frequency rate, 100 Hz in the GNSS 

receiver. Furthermore, the length of the window 

and occultation time duration are 𝑁 =  4 and 𝑇 =
 40 second, respectively. Sampling of 40 second 

duration signal by 100 Hz sampling rate results in 

40 × 100 = 4000 samples. The root mean square 

error (RMSE) criteria is chosen to evaluate the 

proposed algorithms performance. The adopted 

RMSE with S trials for each experiment is defined 

as follows  

 

𝑅𝑀𝑆𝐸[𝑓(𝑖)] = √
1

𝑆
∑[|𝑓𝑖𝑗 − 𝑓𝑖|

2
]

𝑆

𝑗=1

 

(39) 

 

 

where 𝑓 and 𝑓 are the estimated and real 

frequency, respectively. Note that all results 

provided are averages of 1000 independent runs. 

 

A. Effect of SNR on the excess Doppler 

Estimation Error 

Here, we illustrate the effect of different values of 

SNR on the excess Doppler estimation error for 

proposed frequency estimation schemes. We 

choose phase acceleration equal to 1829 Hz/s and 

sampling frequency rate, 100 Hz in the proposed 

algorithms. Fig.3 shows the RMSE vs the SNR for 

the six frequency estimation methods (Jacobsen, 

Jacobsen with Bias, Macleod, Quinn, Parabolic, 

ESPRIT). As can be seen, by increasing the SNR, 

the excess Doppler estimation error for all 

frequency estimation methods is decreased. Esprit 

and Jacobsen with bias methods have better 

performance than that of other methods. As shown 

in Fig. 3, the Esprit method mainly has the same 

accuracy with Jacobsen with bias method. In low 

SNR, both Parabolic and Quinn methods aren’t 

robust to noise. Thus, these methods have higher 

frequency estimation error than the other methods.  

 

 
Fig 3. Excess Doppler estimation error versus SNR 

for different estimation algorithms. System 

parameters: phase acceleration is 1829 Hz/s and 

sampling frequency rate is 100 Hz. 

 

 

B. Effect of Phase Acceleration on the excess 

Doppler Estimation Error 

Here, we illustrate the effect of phase acceleration 

on the excess Doppler estimation error for 

different estimation algorithms. For simulation, 

the SNR is set between -10 dB and 20 dB and the 

frequency sampling is 100 Hz. Fig. 4 shows the 

RMSE versus the phase acceleration for the six 

frequency estimation methods (Jacobsen, 

Jacobsen with Bias, Macleod, Quinn, Parabolic, 

ESPRIT). It also shows that using the Esprit and 

Jacobsen with Bias estimation methods lead to an 

improved accuracy. However, by increasing phase 

acceleration value, the RMSE value is also 

increased. As shown in Fig. 4, there is smooth 

curve at phase acceleration below 2500 Hz/s. From 

2500 Hz/s to 3000 Hz/s, due to the fast 

acceleration of phase, the frequency estimation 

methods do not follow any frequency change 

correctly. Therefore, the RMSE value increase 

sharply with the increasing of phase acceleration 

value. 
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Fig 4. Excess Doppler estimation error versus phase 

acceleration for different estimation algorithms. 

System parameters: SNR is uniform distributed 

random variable between -10 dB and 20 dB and 

sampling frequency rate is 100 Hz. 

 

Summary and Conclusions 

Atmospheric sounding by means of GNSS-RO 

may contribute to improvements in numerical 

weather prediction and climate change studies. In 

other words, the goal of RO systems is to provide 

excess Doppler profile as a function of time, to 

anchor the variational bias correction of the 

climate and weather prediction data, and to 

provide better long-term consistency of the climate 

and weather analysis. Therefore, the accuracy of 

estimated excess Doppler in RO signal processing 

methods such as SS method is very important to 

reach this goal and better accuracy for weather 

prediction. Propagation of RO signals through the 

lower troposphere results in significant spreading 

of the signal spectrum. For this reason, OL 

tracking which tracks large random troposphere 

induced phase acceleration more reliably than PLL 

has to be applied. One of the challenges in tracking 

radio occultation signals of OL approach is the 

excess Doppler estimation accuracy. In order to 

properly estimate the frequency of a signal, the 

efficient frequency estimation methods must be 

used to the excess Doppler estimation in the post-

processing. In this regards, in this paper, we 

investigated six different high-accuracy frequency 

estimation methods: Jacobsen, Jacobsen with Bias, 

Macleod, Quinn, Parabolic and ESPRIT were 

compared by each other from performance and 

computational complexity perspective. Based on 

the simulation results, ESPRIT scheme provides 

better results than that of other methods. Besides, 

using simulation results, we showed that when the 

phase acceleration is increased very high and SNR 

is decreased, both ESPRIT and Jacobsen with Bias 

schemes have better performance than that of other 

schemes. In this situation, the ESPRIT scheme 

should be applied since it has the better 

performance. 
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