
MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

1

Hyper Nested Graph: Data Model for

Big Data

Ali Asghar Safaei1

Receive :2016/04/20 Accepted: 2016/07/26

Abstract

in the era of information, data which are

worthwhile asset of human, organizations and

enterprises have become such sophisticated that

the conventional approaches and methods are

not usable anymore, or not efficient at least.

Such complexity which is known as the Big Data

problem is the affordable extraction of value

from big data sets that we are encountered in

many recent applications e.g., e-business,

scientific research, monitoring, search engines,

social networking, etc.. Big Data complexities

are instantiated by three major dimensions,

high Volume, high Variety, and high Velocity

(a.k.a. 3Vs). The first and most essential step in

data management (also for Big Data

management) is designing and employing a

proper data model, as the footstone of the other

data management activities such as R&D of DB

languages, DBMSs, tools, methods, algorithms,

etc.. In this paper, a proper data model for Big

Data is designed and proposed in which the

properties required for Big Data problem (i.e.,

to be integrated, complete, scalable, flexible,

compatible, and efficient) are considered. As a

data model, data representation is designed and

implicit integrity constraints are presented for

the proposed HNG (Hyper Nested Graph) data

model. Experimental evaluation results show

that the proposed data model outperforms other

currently used data models such as the

document-based, graph document-based, and

graph-based data models in terms of response

time.

Keywords- data model, Hyper-Nested Graph,

big data, NoSQL, conceptual database modeling

1 Department of BioMedical Informatics, Faculty of Medical

Sciences, Tarbiat Modares University, Tehran. Iran.

aa.safaei@modares.ac.ir

1. INTRODUCTION

 Since in the current present, the grow rate of

information is beyond the Moor rule, additional

information has caused many issues and challenges.

The main goal is to benefit the potential of the data

to obtain the attainable value from knowledge and

value hidden in the massive volume of data. The

idea of discovering data is known as Big Data

which includes various applications, such as e-

business and e-commerce, banking, leadership,

monitoring, and scientific research (such as

astronomy, medicine, genetics, geography, etc.).

 As estimations show, the amount of commercial

data in almost all companies through the world

grows nearly twice every 1.2 years [1]. The total

amount of generated data of 2011 in the world that

was 1.8 zettabyte (around 1021 byte), which grows

around 9 times every 5 years [2]. So, as Gartner

Institute has also stated, the problem of Big Data is

one of 10 strategic technology domains and

scientific areas in the current and future time.

IDC (one of efficient pioneer in Big Data domain)

defines the Big Data problem as affordable value

extraction of massive and various data, which is

captured, discovered and analyzed very rapidly [1].

Resolving Big Data problem which is in fact

converting the data to value, includes different

stages such as capturing, storage, transmission,

management, processing, analyzing and finally

visualizing data and the results [3, 4].

Big data is an abstract term that in addition to have

a big volume, includes some further characteristics.

At the present, although the importance of big data

generally has been known, but still there is no

standard definition for it. However, the most

prevalent one, defines the big data as data set

having high volume, high variety, and high velocity

(3Vs) [3, 4, 50]:

-Volume: high volume of data (in several petabyte

or zettabytes)

-Variety: data variety (as type of data, and sources

generating data)

-Velocity: high velocity of data (both for input and

output data, in other words, high speed data arrival

and data processing)

(Of course, some other definitions even add the

fourth “V” as ‘Value’, ‘Veracity’, or ‘Variability’.)

mailto:aa.safaei@modares.ac.ir

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

2

 Unfortunately, common systems, devices and

technologies lack capability of managing data sets

with these characteristics and consequently, the

exploitation and gaining value form such data sets,

mostly is not achievable. So, the term Big Data

issues the problem of offering technologies,

systems, devices, methods, models and structures,

in which we can extract underlying knowledge

from such data sets and convert them to value. The

most significant challenges to do this, are as follow:

-Data representation

 Different of datasets have heterogeneous and

diverse data type, structure, meaning, organization,

granularity and etc.. Data representation tries to

handle these diversities, and makes data meaningful

and applicable for analyzers and interpreters (either

users or applications). So, improper data

representation may lead to missing real value of

data and appearing problem in efficient retrieval

and analyze of data. Data representation must be

designed and determined in conceptual, logical and

physical levels, in order to be able to capture and

manage data, to be applicable thereafter. The most

fundamental part of data representation is designing

and using the data model.

In this paper, an appropriate data model for big data

is proposed.

- Data compression and redundancy reduction

Generally, data inherently and potentially have

redundancy (even if would not repeated explicitly,

often are derived from others). Compression and

reduction of data redundancy can have an

undeniable role in decreasing the costs, and

efficient handling of big data.

- Data lifecycle management

 In traditional data management (the Relational

model), essentially, the final snapshot of data (the

last value) is stored and used. In contrast, in big

data, it is very different. So, managing data

lifecycle and respecting data freshness and data

quality, along with keeping historical data as well

as using technique like summarization, memory

management and so on, play significant roles in

making a tradeoff between efficiency and data

quality in knowledge discovery and value

extraction.

-Mechanisms and algorithms for data processing

and analyzing

Considering big data characteristics, traditional

techniques, algorithms and mechanism for data

processing and analyzing need to be revised, in

order to be able to process fast, high volume and

various data in real-time.

-Scalability and extensibility

 In accordance to high growth rate in scales of the

big data problem (e.g., size, speed, variety),

scalability and extensibility should be considered in

all levels and dimensions of the solutions (from

suitable architecture for the system, to employment

of appropriate computational models like Map-

Reduce, and even designing of details such as

address space).

-Visualization

Regards to special characteristics of big data,

visualization is very challenging in representing

results of processing and analysis, and requires

some proper models, methods, and tools.

Among these challenges which relate to big data

handling, data representation (i.e., data modeling)

which is the foundation of data management, may

be the most important one.

Generally, data modeling can be done in three

levels: conceptual level, logical level and physical

level (figure 1).

Fig. 1. Levels (layers) of data model

 In conceptual level, data domain in related

application is determined and represented in an

abstract format (including entities as representative

agent for real instances, their characteristics, along

with the relationships between entities) like ERD

diagrams and Class diagram in UML.

 In logical level, independent of the platform in

which data are stored and managed on,

representation of the entities and relationships

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

3

based on a theoretical designed model is provided.

The logical model includes model of

representation, set of constraints on that

representation model, and a set of operators for

manipulation of the data. For example, in the

Relational model [5] as an example of logical data

model, data representation is in the form of table,

there are some implicit constraints in Relational

model such as need for determination of the key in

every table, and some operators for manipulation of

the tables, like what are defined in Relational

Algebra (R.A.), e.g., selection, projection, join,

etc.. [6]

 In physical level, physical low-level details

required for storage and retrieval of data are

modeled and determined in accordance to the

destination platform's characteristics.

Figure 2 shows an example of data modeling in

different levels, for a simple business application.

a) Conceptual Model

b) Logical model

c) Physical model

Fig. 2: data modeling in (a) Conceptual (b) Logical,

and (c) Physical levels

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

4

The conceptual model, because of its high level of

abstraction, does not concern on any specific

constraint of the data. So, it does not embrace any

essential constraint of big data to model. Physical

model, which greatly depends on underlying

platform and hardware details, should be designed

tightly regarding to the platform.

What should be considered about a new issue in

data management (like big data problem) and

resolve its challenges in logical level of abstraction

is logical data model which is also known as

namely as data model (like relational data model,

object oriented, object-relational and XML models,

or NoSQL data model).

In this study, the appropriate data model for big

data problem and the way of addressing to big data

requirements and triplet characters (3Vs) have been

discussed.

The rest of this study has been structured as follow:

related work are discussed in section 2. In section

3, common data model is examined. The proposed

data model is described and explained in section 4,

and empirically evaluated in section 5. Finally, in

section 6 it will be concluded and some of the

future work are addressed.

2. RELATED WORK

Data modeling concepts and principles are

provided in many chapters of database design

books [31-35]. Graph data models are motivated by

real-life applications where information about

interconnectivity of its pieces is a salient feature. A

complete and useful survey of Graph data models

concentrating in data structures, query languages,

and integrity constraints is presented in [16].

Summarizing, main proposals on Graph data

(database) models and their characteristics is

provided in table 1 [16].

In [18] a model for management of graph data is

proposed to provide analysts with a set of simple,

well-defined, and adaptable components to perform

complex graph modeling and advanced analysis

tasks.

The Hypernode db-model was described in a

sequence of papers [36-38]. A hypernode is a

directed graph whose nodes can themselves be

graphs (or hypernodes), allowing nesting of graphs.

Hypernodes can be used to represent simple (flat)

and complex objects (hierarchical, composite, and

cyclic) as well as mappings and records. A key

feature is its inherent ability to encapsulate

information.

The Hypernode model was introduced by Levene

and Poulovassilis [38], who define the model and a

declarative logic-based language structured as a

sequence of instructions (hypernode programs),

used for querying and updating hypernodes. The

implementation of a storage system based on the

hypernode model is presented in [39].

In a second version [37], the notion of schema and

type checking is introduced via the idea of types

(primitive and complex), that are also represented

by nested graphs.

The main features of the Hypernode model are: it is

based on a nested graph structure which is simple

and formal; it has the ability to model arbitrary

complex objects in a straightforward manner; it can

provide the underlying data structure of an object-

oriented data model; it can enhance the usability of

a complex objects database system via a graph-

based user interface.

As drawbacks, we can mention that data

redundancy can be generated by its basic value

labels, and that restrictions in the schema level are

limited, for example the specification of restrictions

for missing information or multivalued relations is

not possible.

GROOVY (Graphically Represented Object-

Oriented data model with Values [23]) is a proposal

of object-oriented db-model which is formalized

using hypergraphs, that is, a generalization of

graphs where the notion of edge is extended to

hyperedge, which relates an arbitrary set of nodes

[40]. The model defines a set of structures for an

object data model: value schemas, objects over

value shemas, value functional dependencies,

object schemas, objects over objects schemas and

class schemas. The model shows that these

structures can be defined in terms of hypergraphs.

GROOVY influenced the development of the

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

5

Hypernode model providing another approach to

modeling complex objects. If we compare both

models, we can see that hypergraphs can be

modeled by hypernodes by encapsulating the

contents of each hyperedge within a further

hypernode. In contrast, the multilevel nesting

provided by hypernodes cannot easily be captured

by hypergraphs [36].

A survey of some graph query languages (including

GraphLog, G, GRAM, GraphDB, GooD, G-Log,

and GUL) is provided in [41]. A quantitative study

and performance comparison of some open-source

graph databases is presented in [42]. Current

applications and implementations of graph

databases, giving an overview of the different types

available and their application is studied in [25].

Also, [21] reports on a comparison of one NoSQL

graph database called Neo4j with a common

relational database system, MySQL, for use as the

underlying technology in the development of a

software system to record and query data

provenance information.

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

6

Table 1: Main proposals on Graph Database Models and their characteristics (“√” indicates support and “±”}” partial support) [16]

LDM [22], Hypernode [38], GOOD [24], GROOVI [23], GMOD [43], Simatic-XT [44], Gram [45], PaMaL [46], GOAL [47], Hypernode2 [36], Hypernode3 [37], GGL [48],

GDM [49].

Characteristics | Database Model

LDM Hypernode GOOD GROOVY GMOD Simatic-

XT

Gram Pamal GOAL Hypernode2 Hypernode3 GGL GDM

1984 1990 1990 1991 1992 1992 1992 1993 1993 1994 1995 1995 2002

Basic

Foundation

Graph model

Hypergraphs

Hypernode

Object Oriented

model

Digragh

Node Labeled

Edge Labeled

Support:

Schema

Complex objects

Higher-order

relations

Tuples

Sets

N-ary relations

Grouping

Derivation and

Inheritance

Nested relations

Query

Language

Algebraic -

Procedural

Logic -

Declarative

Graphical

Query

Trans formation

Path queries

Integrity

Constraints

Schema-Instance

Consistency

Identity and

Referential

Integrity

Functional

Dependencies

Implementation

Motivation Complex

objects

Complex

objects

Graphical

Interfaces

General Hyper

media

Tramport

networks

Hyperte

xt

Graphical

Interfaces

Graphical

Interfaces

Complex

objects

Hypertext Genomi

cs

Complex objects

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

7

3. BACKGROUND: CURRENTLY USED DATA

MODELS

Various logical data models have been introduced

and used during these years; from obsoleted

Hierarchical [7] and Network [8] models (which

emphasize the physical level, and offer the user

the means to navigate the database at the record

level, thus providing low level operations to

derive more abstract structures), or special

purpose models such as the Functional or

Deductive models, to the traditional Relational

data models which has been introduced in 1969

by Edgar F. Codd [5, 9] and is still used in many

classic business applications.

Popularity and perdurability of the Relational data

model has some important reasons as follows:

+ It is very simple and understandable for

everyone

 It is based on concept of the relation in set theory

and nearby everyone knows rows and columns of

a table

+ Powerful theoretical background

Theoretical tools such as the R.A. (Relational

Algebra), D.R.C. (Domain Relational Calculus),

and T.R.C. (Tuple Relational Calculus) and also

complete and powerful software tools such as

DBMSs (e.g., Oracle, MS SQL Server, IBM DB2,

PostgreSQL, My SQL, Informix, etc.).

+ Pervasive research activities

A vast amount of researches in all fields related to

data management using the Relational data model

had been performed that have caused many of

these aspects (e.g., normalization, query,

optimization, integrity, security and etc.) to

become a routine process. But, despite these

advantages, the relational data model has some

essential defects.

- Improper performability in some new

applications such as CAD, CAM, etc.

- Insufficient support of new data types e.g.,

voice, image, etc.

- Lack of support for nested relations, recursive

query, updatable view, etc.

- Passive data (data are distinct from related

functionalities)

- Inefficient support of long-running translations

In order to resolve defects of the Relational data

model, some other data models were introduced

(e.g., O.O. [10] O. R. [11], XML [12] and NoSQL

data models [13, 14, 17]).

O.O. (Object-oriented) data model in which

representation of data was in form of classes and

concepts in object oriented paradigm (such as the

abstraction, encapsulation and inheritance) was

also applied, could not be accepted by developers

because of reasons such as its complexity. So,

advantages of these two models, the Relational

and the object-oriented data models were merged

and a new compound, attractive and suitable data

model called Object Relational (O.R.) was

provided. We can say that the traditional

Relational model is now extended and nearly

substituted by the O.R. data model.

The O.R. data model, as a hybrid one, also uses

table for its data representation. So, both in both

in relational and object-relational models,

structure and scheme of data should be predefined

and fixed (i.e., structured data model). To relax

this limitation, the XML (as a data model) was

proposed. Data representation in XML data model

is in form of XML elements. Although, semantics

of data should be described by an XML element

(which is composed of a couple of tags describing

their bounding data item), but existence and

location of the elements in the XML document is

arbitrary (i.e., semi-structured). Elements in an

XML document implicitly have a tree structure.

DBMSs have two options for supporting XML

data model; they are either Native XML or XML-

enabled. Both of the Relational and Object-

Relational data models, rather than being

structured, have another critical defect; they are

not scalable. In other words, whenever size of the

system scales, the performability will be

damaged. For example, in a healthcare

application, assume that patients' data are stored

in a table in O.R. data model. To discover that

from whom a specific patient has been infected,

we should self-join the patient table for many

times in order to compare patients’ data and find

the first cause of the diseases.

 DBMSs, mostly fail to perform such a

heavyweight operation, especially when the

number of required join operation is too much.

So, Relational and Object-Relational data models

are not scalable, besides they are week in

supporting relationships.

 NoSQL data models which have better

scalability, include column-based, document-

based, key-value, and Graph data models. The

most important advantages of NoSQL data

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL. 14, NO 3, AUTUMN 2014

8

models include (horizontal) scalability, to be low-

cost, scheme-free, and efficient support of

relationships.

Among NoSQL models, Graph data model is the

one the most widely used. The data model

proposed in this paper, is also based on the graph

model.

In general, NoSQL graph data model is based on

the graph theory in which, each graph consists of

nodes, edges and their properties. A graph

database would provide index-free adjacency;

each element indicates its related and adjacent

element by a direct pointer, without using index

and lookup operation. Graph model is very

appropriate and efficient especially for

applications that have a network essence (e.g.,

social networking).

As an especial case, in some of applications, the

RDF (Resource Description Format) is used that

is a framework for description of arbitrary

resources. Its main application is data fusion in

semantic web. RDF [15] is a recommendation of

the W3C designed originally to represent

metadata. The broad goal of RDF is to define a

mechanism for describing resources that makes

no assumptions about a particular application

domain, nor defines (a priori) the semantics of

any application domain.

One of the main advantages (features) of the RDF

model is its ability to interconnect resources in an

extensible way. Thus, RDF models information

with graph-like structure, where basic notions of

graph theory like node, edge, path, neighborhood,

connectivity, distance, degree, etc., play a central

role [16].

Existence of the required tools such as RDF

schema, OWL language (which provide ontology

definition and complex inductions), SPARQL (as

a high level query language for graph data) has

made RDF usage so pervasive.

Also, there are many data management systems

which are briefly introduced in section 5, but

none of these data models support big data

properly [14]. So, unfortunately, there is no

integrated and proper data model for the big data

problem and it is an open issue in the context. In

the next section, properties of a proper data model

for the Big Data problem is discussed and then,

the proposed data model is presented.

4. THE PROPOSED DATA MODEL

As stated before, designing proper data model is a

fundamental issue in data management and in

fact, it is the footstone of the other research

activities (e.g., development of system, tools,

languages, methods and algorithm). Essentially a

data model includes (a) data representation, (b)

integrity constraints that should be enforced and

satisfied, and (c) a set of operators for data

manipulation [9]. As a well-known example, in

the Relational data model, data representation is

in form of table (i.e., a relation which is infect a

set of tuples); there are integrity constraints that

should be satisfied implicitly (e.g., rows in table

as tuples in the relation must be unique, so we

need the key in each table); and many operators

for manipulation of data in tables such as the

Selection, Projection, Join and etc.. The

Relational data model, is appropriate for

traditional business applications but not for

modern applications such as social networking,

since it is structured, is not scalable, and doesn’t

support relationship, efficiently. Semi-structured

data models such as the XML and NoSQL data

models although resolve such defects partially,

but they don’t satisfy criteria of a proper data

model for the big data problem. In order to design

a proper data model, first let’s discuss important

properties of such a data model and then

introduce the proposed data model.

4-1- Properties of a proper data model

 The most important properties for a proper data

model for the big data problem are:

- Integrated

Although, there exist data models that can be

employed separately for each of three

dimensions of the big data problem, but we

need an integrated data model that can

support all of them together, entirely.

- Complete

It should support all of the required

functionality, with no additional thing (e.g.,

model, structure, language, API, environment,

system, tools, etc.) required. Ideally, the

model should be computationally complete

(such as the Object-Relational data model).

- Scalable

One of the most important defects of the

Relational data model is that it is NOT

scalable. Scalability for data model means

that, whenever size of the problem scales out

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

9

for example K times, system can continue its

operation with a tolerable overhead and cost.

This is important for the big data problem in

which volume of data has a high growth-rate.

- Flexible

It is also important for data model of the big

data problem to be flexible enough to

represent various type of data (e.g.,

structured, semi-structured, unstructured,

etc.).

- Compatible

Compatibility with legacy systems and data

models makes data integration possible, and

also helps interoperability and usability of

legacy systems and applications.

- Efficient

Since data storage (retrieval) in (from) the

storage media is really costly and is usually

the bottleneck of systems, efficiency is very

important in all levels and aspects of data

management (especially in data model, as its

footstone). For the big data problem in which

data in/out must be fast, efficiency is much

more critical. In general, efficiency includes

both, performance (e.g., response time) and

utilization (e.g., memory space). So, a proper

data model for the big data should have a

good performance and resource utilization.

 4-2- Design principles

 In order to design a data model for big data that

can properly satisfy the properties mentioned

above, some principle must be conformed. First

of all, the designed data model must adhere and

be compatible with the previous data models

(e.g., use them as the design primitives).

Accordingly, as is stated later, the proposed data

model uses O.R., XML and NoSQL data models.

Selection of the proper base-model and required

properties is described briefly below.

Among the NoSQL data models (that generally

are scalable and flexible), the Graph data model

is used more in new applications [19, 20]. It is

also more powerful than its similar data models

(for example tree-like models such as the XML

data model, since it provides navigation in all

directions (rather than parent-to-child direction)).

So, the graph data model [19, 20] is selected as

the base data model to be modified such that the

required properties can be satisfied in the

proposed data model.

The other design principle is abstraction (in the

proper level). Since the variety is one of the

important characteristics of big data, in order to

be flexible enough to handle various types of data

(e.g., structured, semi-structured and unstructured

data) together in one integrated data model,

proper abstraction level must be determined and

conformed.

Finally, an integrated proposed data model

obviously must be correct and ambiguity-free. So,

required implicit integrity constraints for the new

data model must be determined and enforced.

Additionally, it is better that the proposed data

model to be computationally complete.

Accordingly, the proposed data model which is

based on the NOSQL Graph data model and

modified to satisfy the mentioned required

properties is introduced below.

4-3- The proposed Hyper Nested Graph (HNG)

data model

As discussed before, a data model includes data

representation, set of implicit integrity

constraints, and set of operators.

(a) Data representation

The proposed data model is based on the graph

data model [19, 20]. A graph

 includes V: set of nodes, E:

set of edges, D: set of direction of edges, L: labels

of nodes or edges, and W: weights of nodes or

edges. Extended versions of basic graph include

nested graph (i.e., contains hyper nodes), hyper

graph (contains hyper edges), and attributed

graph. The proposed data model is an extended

graph model in which both nodes and edges are

hyper and nested (so, called Hyper Nested Graph

(HNG)). By nested node, we mean that each node

can contain one or some nodes inside; and by

nested edge we mean that an edge is an abstract

form some links between its corresponding nodes,

each one indicating one relationship between its

source and destination nodes (figure 3).

Fig. 3: schematic view of HNG

For both nodes and edges in HNG, a header part

contains metadata while the context part, contains

Hypernode

Hypernode Hyper

edge

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL. 14, NO 3, AUTUMN 2014

10

the content of the object (i.e., node or edge). O-id

(Object-identifier) O-name (Object-name) are

some of the most important fields in the header

part of each object. Object identifier (which must

be unique) can be generated and handled in of

these ways: user generated, system generated, or

derived from object's primary key (whenever the

object is a node containing data tuples) or URI

(when the object is a resource in web, e.g., a web

page or multimedia file).

Also, when the object is an edge, header part can

contain metadata such as the

unidirectional/bidirectional, weight, priority,

control data, etc. The header part of objects can

be semi-structured, as an XML element. The

content part for each node (as a nested node)

contains content in forms of structured data (e.g.,

value of an attribute for an entity instance, a tuple

of attributes (i.e., a row), a table, a nested table,

etc.), semi-structured data (e.g., an XML element

which itself can contain nested elements),

unstructured data (e.g., documents in various

types including text, voice, image, video, etc.), or

event can contain one or more other nodes inside

it (recursive definition) (figure 4).

Fig. 4: example of (a) structured data, (b) semi-structured

data, (c) unstructured data, and (d) nested node

In order to establish a connection between a node

to its nested nodes, ref (reference) data type can

be used which is in fact a pointer to the

corresponding object. This nested and

hierarchical structure is so common and well-

known that is employed in many different

contexts (e.g., file system in operating systems to

manage directories, sub-directories, and files).

Content part of a nested edge which represent

relationships between the nodes also can be

implemented as an XML element.

(b) Integrity constraints

In general, integrity constraints are classified into

explicit constraints (which are explicitly defined

by developers, and are application-dependent),

and implicit constraints (which must be enforced

implicitly by the system on every database which

use that data model). For example, in the

conventional Relational data model, the need for

a primary key for each of tables is an implicit

integrity constraint while for instance,

36 for table of students is an explicit

constraints which many not be held for age

attribute of other tables, e.g., employee.

On the other hand, integrity constraints can be

grouped in schema-instance consistency, identity

and referential integrity, and functional and

inclusion dependencies. Examples of these are,

labels with unique names [21], typing constraints

on nodes [22], functional dependencies [23],

domain and range of properties [24].

Designing a data model, its implicit integrity

constraints also must be determined and defined

by the designers and enforced by the systems. The

most essential implicit integrity constraints that

must be held and enforced for every database that

uses the proposed hyper nested graph data model,

can be classified into these two classes: those that

are generic for all graph-based data models, and

(a)

(b)

(c)

(d)

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

11

those that are specific to the proposed hyper

nested graph.

Some of generic graph-based data models’

integrity constraints are [16]:

- Schema instance consistency

- Identification of models, attributes, and

relations

- Path constraints

which must be enforced in HNG data

model, since it is also graph-based.

Moreover, due to the modifications and

extensions applied for preparing the proposed

HNG data model, these HNG-specific integrity

constraints also must be enforced implicitly.

i) Finite nesting

 Because of the recursive nature of HNG’s

definition (in which each node itself can contain

node(s)), similar to other recursive equations, we

need boundary conditions: nesting (of nodes)

must be finite (i.e., non-endless).

Although each node can contain contents (e.g.,

structured, semi-structured or unstructured data),

or can contain other nodes inside, but the number

of this nesting must be bounded. This is because

systems that are used in practice, be able to

implement and handle such nested nodes. As an

example, suppose that the maximum number of

nesting allowed for a node is set to 32, as one of

the data management products limitations.

Figure 5 illustrates a schematic example of an

infinite nested hypernode.

Fig. 5: schematic example of an infinite nested node

ii) Acyclic nesting

 In general, cycle (loop) in HNG is not forbidden

as an implicit integrity constraint and inter-nodes

cycle is allowed (it may be used for modeling and

representing relationships between objects in the

real word). But, nesting of the nodes in HNG

must be acyclic. In other words, references to the

nodes inside a particular node named N must not

be such that return to the N itself. Such intra-

node cycle (figure 6) which constructs an infinite

loop is not meaningful and is not event acceptable

in theory. So, intra-node cycle is not allowed.

Fig. 6: schematic example of an intra-node cycle

iii) Referential integrity

 Similar to the referential integrity in the

Relational data model, references in HNG data

model must be valid. So, dangling, missed, or

wrong references must be prevented. Options

such as restricted, cascade, trigger or even no-

action can be implemented and used in case of

deletion or update of references. As an example,

restricted option would prevent the devastative

modification (delete/update) on the referred node,

while the cascade option would substitute the

updated/deleted node by its (logical/structural)

successor or predecessor.

As discussed above, implicit integrity constraints

of a data model must be implemented and

enforced by the underlying systems (e.g., DBMS)

for every database which use that data model. So,

data management systems that would use the

proposed HNG data model must implement and

enforce such integrity constraints.

Providing efficient practical solutions for

enforcing such integrity constraints can be done

as future work.

5. EXPERIMENTAL EVALUATION

 Evaluation of the proposed Hyper Nested Graph

(HNG) data model for big data problem is

performed experimentally via implementation

and practical comparison of HNG with the other

alternatives. Since the proposed HNG data model

is a graph-based model, Neo4j which is an open-

source graph-based data management system is

used for extension and implementation of HNG

data model.

5-1- Experimental setup

YCSB (Yahoo! Cloud Serving Benchmark) [26,

27], which is used as data set and query set for

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL. 14, NO 3, AUTUMN 2014

12

this experimental evaluation is a standard

benchmark publicly available. Different CRUD

operations (such as insert, update, and query), and

also a mixture of such operations are executed on

a data set of the big data and some desired metrics

are measured. The underlying machine has

platform of Linux Ubuntu 12.04 and SuperMicro

server with 8 cores and 40 GB RAM. The

proposed Hyper Nested Graph (HNG) data model

is compared with the document-based (e.g.,

MongoDB [28]), Graph document-based (e.g.,

OrientDB [29]), and Graph (e.g., Neo4j [30])

NoSQL data models.

Average case for several runs of different

scenarios is computed for the most important

parameters such as response-time in the best-case

and average-case. Also, two other metrics that

are defined in YCSB are measured and illustrated.

The metric is defined as Response time: The time

interval from submission of a request to its

completion.

5-2- Experimental results

Using the YCSB [26, 27] as the tested, data sets

with 10e3, 10e6 and 10e10 data items were

generated, each one containing 1KB data with 10

different fields and different CRUD operations

run on them [17]. Average values for desired

metrics are computed and illustrated in figures

below to compare different data models. Figures

5 through 7 show response time of compared data

models for different operations (each using a data

set with 10e3, 10e6, and 10e10 data items,

respectively).

Fig. 7: response time of different operations for 10e3

data items

Fig. 8: response time of different operations for 10e6

data items

Fig. 9: response time of different operations for 10e10

data items

Summarizing, as is shown if figures 7 through 9,

although the document-based data model has

better efficiency when handling small data sets,

graph-based data models outperform document-

based model in terms of response time while the

size of data sets increases.

Also, the proposed Hyper Nested Graph (HNG)

data model has better performance rather than the

pure graph data model and graph document-based

data model. It can be induced from these practical

experiments that the proposed HNG data model

will have an acceptable efficiency when used for

managing Big Data.

6. CONCLUSION AND FUTURE WORK

A proper designed data model should have some

characteristics. The most necessary ones for a

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

13

data model designed for the Big Data problem are

to be integrated, complete, scalable, flexible,

compatible, and efficient.

In this paper, a proper data model for big data is

designed and presented. In the proposed HNG

(Hyper-Nested Graph) data model that is based

on the NoSQL Graph data model and extended to

meet the required conditions and characteristics,

both nodes and edges are nested. Sub-nodes of

each node that can be accessed via a ref

(reference type) can store either structured (e.g.,

scalar-value, row, or table), semi-structured (e.g.,

an XML element or document), or unstructured

(e.g., text, image, voice, or video) data.

Choosing such level of abstraction provides

compatibility with the older data models, beside a

good flexibility.

Powerful support of relationships in Graph-based

data models, beside fast and convenient Travers

capability make it possible to have a good

efficiency and scalability while removing the

defect of traditional data models (e.g., the

Relational) in supporting relationships.

Nesting, which is used in HNG (to overcome

being big in the Big Data problem), is also a well-

known approach in many other contexts (e.g., file

system of OSs) and there exist many good

practices even for its implementation.

Experimental evaluation results show that the

proposed HNG data model outperforms other data

models which are usually used (e.g., document-

based, Graph Document-based, and Graph data

models), in terms of response time.

Data model is the footstone of data management

activities. So, for each new data model, such

activities can be followed. Some of such future

works include:

- Implicit integrity constraints for the HNG

- Set of required operators

- Providing theoretical and formal tools such as

HNG algebra (similar to the Relational

Algebra)

- SQL-like database language for HNG

- Developing data management systems and tools

supporting HNG as data model

Moreover, issues such as optimization, security,

transaction management (ACID-compliant or

CAP-based) can be followed for completing HNG

data model and employing in real-world Big Data

applications.

References

[1] James Manyika, Michael Chui, Brad Brown,

Jacques Bughin, Richard Dobbs, Charles

Roxburgh, Angela Hung Byers, Big data: The

Next Frontier forInnovation, Competition, and

Productivity, McKinsey Global Institute, 2012.

[2] Gantz J, Reinsel D (2011) Extracting value from

chaos. IDC iView, pp 1–12 .

[3] Philip Chen, C. L., and Chun-Yang Zhang.

"Data-intensive applications, challenges,

techniques and technologies: A survey on Big

Data." Information Sciences 275 (2014): 314-

347.

[4] Chen, Min, Shiwen Mao, and Yunhao Liu. "Big

Data: A Survey." Mobile Networks and

Applications 19.2 (2014): 171-209.

[5] Codd, E. F. 1970. A Relational Model of Data

for Large Shared Data Banks. Communications

of the ACM 13, 6, 377–387.

[6] Codd, E. F. 1983. A Relational Model of Data

for Large Shared Data Banks. Communications

of the ACM 26, 1, 64–69.

[7] Tsichritzis, D. C. and Lochovsky, F. H. 1976.

Hierarchical Data-Base Management: A Survey.

ACM Computing Surveys 8, 1, 105–123.

[8] Taylor, R. W. and Frank, R. L. 1976. CODASYL

Data-Base Management Systems. ACM

Computing Surveys 8, 1, 67–103.

[9] Codd, E. F. 1980. Data Models in Database

Management. In Proc. of the 1980 Workshop on

Data abstraction, Databases and Conceptual

Modeling. ACM Press, 112–114.

[10] Kim, W. 1990. Object-Oriented Databases:

Definition and Research Directions. IEEE

Transactions on Knowledge and Data

Engineering (TKDE) 2, 3, 327–341.

[11] Nori, Anil, et al. "Data model for object-

relational data." U.S. Patent Application

11/228,731.

[12] Buneman, P. 1997. Semistructured Data. In

Proc. of the 16th Symposium on Principles of

Database Systems (PODS). ACM Press, 117–

121.

[13] Bray, T., Paoli, J., and Sperberg-McQueen, C.

M. Extensible Markup Language (XML) 1.0,

W3C Recommendation 10 February 1998.

http://www.w3.org/TR/1998/REC-xml-

19980210.R.

[14] Han, Jing, et al. "Survey on NoSQL database."

Pervasive computing and applications (ICPCA),

2011 6th international conference on. IEEE,

2011.

[15] Klyne, G. and Carroll, J. 2004. Resource

Description Framework (RDF) Concepts and

Abstract Syntax.

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL. 14, NO 3, AUTUMN 2014

14

http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/

[16] Angles, Renzo, and Claudio Gutierrez. "Survey

of graph database models." ACM Computing

Surveys (CSUR) 40.1 (2008): 1.

[17] Hecht, Robin, and S. Jablonski. "NoSQL

Evaluation." International Conference on Cloud

and Service Computing. 2011.

[18] Ghrab, Amine, et al. Analytics-Aware Graph
Database Modeling. Technical report, 2014.

[19] Kunii, Hideko S. "Graph Data Model." Graph

Data Model. Springer Japan, 1990. 7-20.

[20] Robinson, Ian, Jim Webber, and Emil Eifrem.

Graph databases. " O'Reilly Media, Inc.", 2013.

[21] Vicknair, Chad, et al. "A comparison of a
graph database and a relational database: a
data provenance perspective." Proceedings
of the 48th annual Southeast regional
conference. ACM, 2010.

[22] Kuper, G. M. and Vardi, M. Y. 1993. The

Logical Data Model. ACM Transactions on

Database Systems (TODS) 18, 3, 379–413.

[23] Levene, M. and Poulovassilis, A. 1991. An

Object-Oriented Data Model Formalised

Through Hypergraphs. Data & Knowledge

Engineering (DKE) 6, 3, 205–224.

[24] Gyssens, M., Paredaens, J., den Bussche, J. V.,

and Gucht, D. V. 1990. A Graph-Oriented

Object Database Model. In Proc. of the 9th

Symposium on Principles of Database Systems

(PODS). ACM Press, 417–424.

[25] Buerli, Mike, and C. P. S. L. Obispo. "The
current state of graph databases."
Department of Computer Science, Cal Poly
San Luis Obispo, mbuerli@ calpoly. edu
(2012): 1-7.

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam,

Raghu Ramakrishnan, Russell Sears:

Benchmarking Cloud Serving Systems with

YCSB,Yahoo! Research,Santa Clara, CA, USA

[27] Cooper, Brian F., et al. "Benchmarking cloud

serving systems with YCSB."Proceedings of the

1st ACM symposium on Cloud computing. ACM,

2010.

[28] Chodorow, Kristina. MongoDB: the definitive

guide. " O'Reilly Media, Inc.", 2013.

[29] Developers, OrientDB. "OrientDB." Hybrid

Document-Store and Graph NoSQL Database

{online} (2012).

[30] Miller, Justin J. "Graph Database Applications

and Concepts with Neo4j." Proceedings of the

Southern Association for Information Systems

Conference, Atlanta, GA, USA March 23rd-

24th. 2013.

[31] Allen, Sharon, and Evan Terry. Beginning

relational data modeling. Apress, 2005.

[32] Navathe, S. B. 1992. Evolution of Data

Modeling for Databases. Communications of the

ACM 35, 9, 112–123.

[33] Hull, R. and King, R. 1987. Semantic Database

Modeling: Survey, Applications, and Research

Issues. ACM Computing Surveys 19, 3, 201–

260.

[34] Ter Bekke, Johan H., and J. H. Ter Bekke.

Semantic data modeling. Hemel Hempstead:

Prentice Hall, 1992.

[35] Hull, R. and King, R. 1987. Semantic Database

Modeling: Survey, Applications, and

ResearchIssues. ACM Computing Surveys 19, 3,

201–260.

[36] Poulovassilis, A. and Levene, M. 1994. A

Nested-Graph Model for the Representation and

Manipulation of Complex Objects. ACM

Transactions on Information Systems (TOIS) 12,

1, 35–68.

[37] Levene, M. and Loizou, G. 1995. A Graph-

Based Data Model and its Ramifications. IEEE

Transactions on Knowledge and Data

Engineering (TKDE) 7, 5, 809–823.

[38] Levene, M. and Poulovassilis, A. 1990. The

Hypernode Model and its Associated Query

Language. In Proc. of the 5th Jerusalem Conf. on

Information technology. IEEE Computer Society

Press, 520–530.

[39] Tuv, E., Poulovassilis, A., and Levene, M. 1992.

A Storage Manager for the Hypernode Model. In

Proc. of the 10th British National Conference on

Databases. Number 618 in LNCS. Springer-

Verlag, 59–77.

[40] Berge, C. 1973. Graphs and Hypergraphs. North-

Holland, Amsterdam.

[41] Wood, Peter T. "Query languages for graph

hdatabases." ACM SIGMOD Record 41.1

(2012): 50-60.

[42] McColl, Robert Campbell, et al. "A performance

evaluation of open source graph databases."

Proceedings of the first workshop on Parallel

programming for analytics applications. ACM,

2014.

[43] Andries, M., Gemis, M., Paredaens, J., Thyssens,

I., and den Bussche, J. V. 1992. Concepts for

Graph-Oriented Object Manipulation. In Proc. of

the 3rd Int. Conf. on Extending Database

Technology (EDBT). LNCS, vol. 580. Springer,

21–38.

[44] Mainguenaud, M. 1992. Simatic XT: A Data

Model to Deal with Multi-scaled Networks.

Computer, Environment and Urban Systems 16,

281–288.

[45] Amann, B. and Scholl, M. 1992. Gram: A Graph

Data Model and Query Language. In European

SAFAEI HYPER NESTED GRAPH: DATA MODEL FOR BIG DATA

15

Conference on Hypertext Technology (ECHT).

ACM, 201–211.

[46] Gemis, M. and Paredaens, J. 1993. An Object-

Oriented Pattern Matching Language. In Proc. of

the First JSSST Int. Symposium on Object

Technologies for Advanced Software. Springer-

Verlag, 339–355.

[47] Hidders, J. and Paredaens, J. 1993. GOAL, A

Graph-Based Object and Association Language.

Advances in Database Systems: Implementations

and Applications, CISM, 247–265.

[48] Graves, M., Bergeman, E. R., and Lawrence, C.

B. 1995a. A Graph-Theoretic Data Model for

Genome Mapping Databases. In Proc. of the

28th Hawaii Int. Conf. on System Sciences

(HICSS). IEEE Computer Society, 32.

[49] Hidders, J. 2002. Typing Graph-Manipulation

Operations. In Proc. of the 9th Int. Conf. on

Database Theory (ICDT). Springer-Verlag, 394–

409.

[50]Safaei Ali A. 2016. Real-time Processing of

Streaming Big Data. Journal of Real-time

Systems (Real-Time Syst.) 52, 2, 1-44. DOI

10.1007/s11241-016-9257-0.

