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Abstract

in the era of information, data which are
worthwhile asset of human, organizations and
enterprises have become such sophisticated that
the conventional approaches and methods are
not usable anymore, or not efficient at least.
Such complexity which is known as the Big Data
problem is the affordable extraction of value
from big data sets that we are encountered in
many recent applications e.g., e-business,
scientific research, monitoring, search engines,
social networking, etc.. Big Data complexities
are instantiated by three major dimensions,
high Volume, high Variety, and high Velocity
(a.k.a. 3Vs). The first and most essential step in
data management (also for Big Data
management) is designing and employing a
proper data model, as the footstone of the other
data management activities such as R&D of DB
languages, DBMSs, tools, methods, algorithms,
etc.. In this paper, a proper data model for Big
Data is designed and proposed in which the
properties required for Big Data problem (i.e.,
to be integrated, complete, scalable, flexible,
compatible, and efficient) are considered. As a
data model, data representation is designed and
implicit integrity constraints are presented for
the proposed HNG (Hyper Nested Graph) data
model. Experimental evaluation results show
that the proposed data model outperforms other
currently used data models such as the
document-based, graph document-based, and
graph-based data models in terms of response
time.
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1. INTRODUCTION

Since in the current present, the grow rate of
information is beyond the Moor rule, additional
information has caused many issues and challenges.
The main goal is to benefit the potential of the data
to obtain the attainable value from knowledge and
value hidden in the massive volume of data. The
idea of discovering data is known as Big Data
which includes various applications, such as e-
business and e-commerce, banking, leadership,
monitoring, and scientific research (such as
astronomy, medicine, genetics, geography, etc.).

As estimations show, the amount of commercial
data in almost all companies through the world
grows nearly twice every 1.2 years [1]. The total
amount of generated data of 2011 in the world that
was 1.8 zettabyte (around 102! byte), which grows
around 9 times every 5 years [2]. So, as Gartner
Institute has also stated, the problem of Big Data is
one of 10 strategic technology domains and
scientific areas in the current and future time.

IDC (one of efficient pioneer in Big Data domain)
defines the Big Data problem as affordable value
extraction of massive and various data, which is
captured, discovered and analyzed very rapidly [1].
Resolving Big Data problem which is in fact
converting the data to value, includes different
stages such as capturing, storage, transmission,
management, processing, analyzing and finally
visualizing data and the results [3, 4].

Big data is an abstract term that in addition to have
a big volume, includes some further characteristics.
At the present, although the importance of big data
generally has been known, but still there is no
standard definition for it. However, the most
prevalent one, defines the big data as data set
having high volume, high variety, and high velocity
(3Vs) [3, 4, 50]:

-Volume: high volume of data (in several petabyte
or zettabytes)

-Variety: data variety (as type of data, and sources
generating data)

-Velocity: high velocity of data (both for input and
output data, in other words, high speed data arrival
and data processing)

(Of course, some other definitions even add the
fourth “V” as ‘Value’, ‘Veracity’, or ‘Variability’.)
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Unfortunately, common systems, devices and
technologies lack capability of managing data sets
with these characteristics and consequently, the
exploitation and gaining value form such data sets,
mostly is not achievable. So, the term Big Data
issues the problem of offering technologies,
systems, devices, methods, models and structures,
in which we can extract underlying knowledge
from such data sets and convert them to value. The
most significant challenges to do this, are as follow:
-Data representation

Different of datasets have heterogeneous and
diverse data type, structure, meaning, organization,
granularity and etc.. Data representation tries to
handle these diversities, and makes data meaningful
and applicable for analyzers and interpreters (either
users or applications). So, improper data
representation may lead to missing real value of
data and appearing problem in efficient retrieval
and analyze of data. Data representation must be
designed and determined in conceptual, logical and
physical levels, in order to be able to capture and
manage data, to be applicable thereafter. The most
fundamental part of data representation is designing
and using the data model.

In this paper, an appropriate data model for big data
is proposed.
- Data compression and redundancy reduction
Generally, data inherently and potentially have
redundancy (even if would not repeated explicitly,
often are derived from others). Compression and
reduction of data redundancy can have an
undeniable role in decreasing the costs, and
efficient handling of big data.
- Data lifecycle management

In traditional data management (the Relational
model), essentially, the final snapshot of data (the
last value) is stored and used. In contrast, in big
data, it is very different. So, managing data
lifecycle and respecting data freshness and data
quality, along with keeping historical data as well
as using technique like summarization, memory
management and so on, play significant roles in
making a tradeoff between efficiency and data
quality in knowledge discovery and value
extraction.

-Mechanisms and algorithms for data processing
and analyzing

Considering big data characteristics, traditional
techniques, algorithms and mechanism for data
processing and analyzing need to be revised, in
order to be able to process fast, high volume and
various data in real-time.

-Scalability and extensibility

In accordance to high growth rate in scales of the
big data problem (e.g., size, speed, variety),
scalability and extensibility should be considered in
all levels and dimensions of the solutions (from
suitable architecture for the system, to employment
of appropriate computational models like Map-
Reduce, and even designing of details such as
address space).

-Visualization

Regards to special characteristics of big data,
visualization is very challenging in representing
results of processing and analysis, and requires
some proper models, methods, and tools.

Among these challenges which relate to big data
handling, data representation (i.e., data modeling)
which is the foundation of data management, may
be the most important one.

Generally, data modeling can be done in three
levels: conceptual level, logical level and physical
level (figure 1).

Fig. 1. Levels (layers) of data model

In conceptual level, data domain in related
application is determined and represented in an
abstract format (including entities as representative
agent for real instances, their characteristics, along
with the relationships between entities) like ERD
diagrams and Class diagram in UML.

In logical level, independent of the platform in
which data are stored and managed on,
representation of the entities and relationships
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based on a theoretical designed model is provided.
The logical model includes model of
representation, set of constraints on that
representation model, and a set of operators for
manipulation of the data. For example, in the
Relational model [5] as an example of logical data
model, data representation is in the form of table,
there are some implicit constraints in Relational
model such as need for determination of the key in
every table, and some operators for manipulation of
the tables, like what are defined in Relational
Algebra (R.A.), e.g., selection, projection, join,
etc.. [6]

In physical level, physical low-level details
required for storage and retrieval of data are
modeled and determined in accordance to the
destination platform's characteristics.

Figure 2 shows an example of data modeling in
different levels, for a simple business application.

Time Product

Store

a) Conceptual Model

Time
Date Product
Date Description Product ID
Month Product Description
Month Description Category
Year Category Description
Week Unit Price
Week Description Created
s dtsa
Sales
Store ID (FK)
Product ID (FK),
Date (FK)
Tterns Sold
Sales Amount
Store
Store ID
Store Description
Region
Region Name
Created
b) Logical model
DIM TIME DIM PRODUCT

DATE_ID: INTEGER PRODUCT _ID: INTEGER

DATE_DESC: VARCHAR(30) | |PROD_DESC: VARCHAR(S0)
MONTH_ID: INTEGER CATEGORY_ID: INTEGER
MONTH_DESC: YARCHAR(30) | CATEGORY_DESC: VARCHAR(S0)
YEAR: INTEGER UNIT_PRICE: FLOAT

WEEK_ID: INTEGER CREATED: DATE

WEEK_DESC: VARCHAR(30)

FACT SALES

STORE_ID: INTEGER
PRODUCT _ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

DIM_STORE
STORE_ID: INTEGER

STORE_DESC: VARCHAR(S0)
REGION_ID: INTEGER
REGION_NAME: YARCHAR(S0)
CREATED: DATE

c) Physical model

Fig. 2: data modeling in (a) Conceptual (b) Logical,
and (c) Physical levels
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The conceptual model, because of its high level of
abstraction, does not concern on any specific
constraint of the data. So, it does not embrace any
essential constraint of big data to model. Physical
model, which greatly depends on underlying
platform and hardware details, should be designed
tightly regarding to the platform.

What should be considered about a new issue in
data management (like big data problem) and
resolve its challenges in logical level of abstraction
is logical data model which is also known as
namely as data model (like relational data model,
object oriented, object-relational and XML models,
or NoSQL data model).

In this study, the appropriate data model for big
data problem and the way of addressing to big data
requirements and triplet characters (3Vs) have been
discussed.

The rest of this study has been structured as follow:

related work are discussed in section 2. In section
3, common data model is examined. The proposed
data model is described and explained in section 4,
and empirically evaluated in section 5. Finally, in
section 6 it will be concluded and some of the
future work are addressed.

2. RELATED WORK

Data modeling concepts and principles are
provided in many chapters of database design
books [31-35]. Graph data models are motivated by
real-life applications where information about
interconnectivity of its pieces is a salient feature. A
complete and useful survey of Graph data models
concentrating in data structures, query languages,
and integrity constraints is presented in [16].
Summarizing, main proposals on Graph data
(database) models and their characteristics is
provided in table 1 [16].

In [18] a model for management of graph data is
proposed to provide analysts with a set of simple,
well-defined, and adaptable components to perform
complex graph modeling and advanced analysis
tasks.

The Hypernode db-model was described in a
sequence of papers [36-38]. A hypernode is a
directed graph whose nodes can themselves be
graphs (or hypernodes), allowing nesting of graphs.
Hypernodes can be used to represent simple (flat)
and complex objects (hierarchical, composite, and
cyclic) as well as mappings and records. A key
feature is its inherent ability to encapsulate
information.

The Hypernode model was introduced by Levene
and Poulovassilis [38], who define the model and a
declarative logic-based language structured as a
sequence of instructions (hypernode programs),
used for querying and updating hypernodes. The
implementation of a storage system based on the
hypernode model is presented in [39].

In a second version [37], the notion of schema and
type checking is introduced via the idea of types
(primitive and complex), that are also represented
by nested graphs.

The main features of the Hypernode model are: it is
based on a nested graph structure which is simple
and formal; it has the ability to model arbitrary
complex objects in a straightforward manner; it can
provide the underlying data structure of an object-
oriented data model; it can enhance the usability of
a complex objects database system via a graph-
based user interface.

As drawbacks, we can mention that data
redundancy can be generated by its basic value
labels, and that restrictions in the schema level are
limited, for example the specification of restrictions
for missing information or multivalued relations is
not possible.

GROOVY (Graphically Represented Object-
Oriented data model with Values [23]) is a proposal
of object-oriented db-model which is formalized
using hypergraphs, that is, a generalization of
graphs where the notion of edge is extended to
hyperedge, which relates an arbitrary set of nodes
[40]. The model defines a set of structures for an
object data model: value schemas, objects over
value shemas, value functional dependencies,
object schemas, objects over objects schemas and
class schemas. The model shows that these
structures can be defined in terms of hypergraphs.
GROOVY influenced the development of the
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Hypernode model providing another approach to
modeling complex objects. If we compare both
models, we can see that hypergraphs can be
modeled by hypernodes by encapsulating the
contents of each hyperedge within a further
hypernode. In contrast, the multilevel nesting
provided by hypernodes cannot easily be captured
by hypergraphs [36].

A survey of some graph query languages (including
GraphLog, G, GRAM, GraphDB, GooD, G-Log,
and GUL) is provided in [41]. A quantitative study
and performance comparison of some open-source
graph databases is presented in [42]. Current
applications and implementations of graph
databases, giving an overview of the different types
available and their application is studied in [25].
Also, [21] reports on a comparison of one NoSQL

graph database called Neo4j with a common
relational database system, MySQL, for use as the
underlying technology in the development of a
software system to record and query data
provenance information.
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Table 1: Main proposals on Graph Database Models and their characteristics (“\** indicates support and “+”}” partial support) [16]

LDM [22], Hypernode [38], GOOD [24], GROOVI [23], GMOD [43], Simatic-XT [44], Gram [45], PaMaL [46], GOAL [47], Hypernode2 [36], Hypernode3 [37], GGL [48],

GDM [49].
LDM Hypernode GOOD GROOVY GMOD Simatic- Gram Pamal GOAL Hypernode2 Hypernode3 GGL GDM
Characteristics | Database Model XT
1984 1990 1990 1991 1992 1992 1992 1993 1993 1994 1995 1995 2002
Graph model +f o o N ] N 7 7
Basic Hypergraphs o
Foundation Hypernode 7 i 7 7 7
Object Oriented A N i i 7 7
model
Node Labeled o N ] o T i 7 Nj 7 7 7 - 5
Digragh Edge Labeled 7 ] 7 7 r 7 i 7 7
Schema f ] N T = i 7 - - 7
Complex objects f f o i Nj i - - - 7
Higher-order f W ¥ T 7 7 ]
relations
Support: Tuples ] - "
Sets f T
N-ary relations J i
Grouping N ] N i i i
Derivation and f N o + i
Inheritance
Nested relations N W f i i 7
Algebraic - A 7 i 7
Query Procedural
Language Logic - i N N i 7
Declarative
Graphical W W
Query / A f o A o o o o
Trans formation f N i 7 7
Path queries + + W r + + ¥ ¥ ¥
Schema-Instance A N ] i 7 7 7 7 n 5
Integrity Consistency
Constraints Identity and N + + + ¥
Referential
Integrity
Functional W i
Dependencies
Implementation N N N N 7 7 7 7
Motivation Complex Complex Graphical General Hyper Tramport | Hyperte Graphical Graphical Complex Hypertext Genomi Complex objects
objects objects Interfaces media networks xt Interfaces Interfaces objects cs

6
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3. BACKGROUND: CURRENTLY USED DATA
MODELS
Various logical data models have been introduced
and used during these years; from obsoleted
Hierarchical [7] and Network [8] models (which
emphasize the physical level, and offer the user
the means to navigate the database at the record
level, thus providing low level operations to
derive more abstract structures), or special
purpose models such as the Functional or
Deductive models, to the traditional Relational
data models which has been introduced in 1969
by Edgar F. Codd [5, 9] and is still used in many
classic business applications.
Popularity and perdurability of the Relational data
model has some important reasons as follows:
+ It is very simple and understandable for
everyone
It is based on concept of the relation in set theory
and nearby everyone knows rows and columns of
atable
+ Powerful theoretical background
Theoretical tools such as the R.A. (Relational
Algebra), D.R.C. (Domain Relational Calculus),
and T.R.C. (Tuple Relational Calculus) and also
complete and powerful software tools such as
DBMSs (e.g., Oracle, MS SQL Server, IBM DB2,
PostgreSQL, My SQL, Informix, etc.).
+ Pervasive research activities
A vast amount of researches in all fields related to
data management using the Relational data model
had been performed that have caused many of
these aspects (e.g., normalization, query,
optimization, integrity, security and etc.) to
become a routine process. But, despite these
advantages, the relational data model has some
essential defects.
- Improper performability in some new
applications such as CAD, CAM, etc.
- Insufficient support of new data types e.g.,
voice, image, etc.
- Lack of support for nested relations, recursive
query, updatable view, etc.
- Passive data (data are distinct from related
functionalities)
- Inefficient support of long-running translations
In order to resolve defects of the Relational data
model, some other data models were introduced
(e.g., 0.0. [10] O. R. [11], XML [12] and NoSQL
data models [13, 14, 17]).

0.0. (Object-oriented) data model in which
representation of data was in form of classes and
concepts in object oriented paradigm (such as the
abstraction, encapsulation and inheritance) was
also applied, could not be accepted by developers
because of reasons such as its complexity. So,
advantages of these two models, the Relational
and the object-oriented data models were merged
and a new compound, attractive and suitable data
model called Object Relational (O.R.) was
provided. We can say that the traditional
Relational model is now extended and nearly
substituted by the O.R. data model.

The O.R. data model, as a hybrid one, also uses
table for its data representation. So, both in both
in relational and object-relational models,
structure and scheme of data should be predefined
and fixed (i.e., structured data model). To relax
this limitation, the XML (as a data model) was
proposed. Data representation in XML data model
is in form of XML elements. Although, semantics
of data should be described by an XML element
(which is composed of a couple of tags describing
their bounding data item), but existence and
location of the elements in the XML document is
arbitrary (i.e., semi-structured). Elements in an
XML document implicitly have a tree structure.
DBMSs have two options for supporting XML
data model; they are either Native XML or XML-
enabled. Both of the Relational and Object-
Relational data models, rather than being
structured, have another critical defect; they are
not scalable. In other words, whenever size of the
system scales, the performability will be
damaged. For example, in a healthcare
application, assume that patients' data are stored
in a table in O.R. data model. To discover that
from whom a specific patient has been infected,
we should self-join the patient table for many
times in order to compare patients’ data and find
the first cause of the diseases.

DBMSs, mostly fail to perform such a
heavyweight operation, especially when the
number of required join operation is too much.
So, Relational and Object-Relational data models
are not scalable, besides they are week in
supporting relationships.

NoSQL data models which have better
scalability, include column-based, document-
based, key-value, and Graph data models. The
most important advantages of NoSQL data
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models include (horizontal) scalability, to be low-
cost, scheme-free, and efficient support of
relationships.

Among NoSQL models, Graph data model is the
one the most widely used. The data model
proposed in this paper, is also based on the graph
model.

In general, NoSQL graph data model is based on
the graph theory in which, each graph consists of
nodes, edges and their properties. A graph
database would provide index-free adjacency;
each element indicates its related and adjacent
element by a direct pointer, without using index
and lookup operation. Graph model is very
appropriate and  efficient  especially  for
applications that have a network essence (e.g.,
social networking).

As an especial case, in some of applications, the
RDF (Resource Description Format) is used that
is a framework for description of arbitrary
resources. Its main application is data fusion in
semantic web. RDF [15] is a recommendation of
the W3C designed originally to represent
metadata. The broad goal of RDF is to define a
mechanism for describing resources that makes
no assumptions about a particular application
domain, nor defines (a priori) the semantics of
any application domain.

One of the main advantages (features) of the RDF
model is its ability to interconnect resources in an
extensible way. Thus, RDF models information
with graph-like structure, where basic notions of
graph theory like node, edge, path, neighborhood,
connectivity, distance, degree, etc., play a central
role [16].

Existence of the required tools such as RDF
schema, OWL language (which provide ontology
definition and complex inductions), SPARQL (as
a high level query language for graph data) has
made RDF usage so pervasive.

Also, there are many data management systems
which are briefly introduced in section 5, but
none of these data models support big data
properly [14]. So, unfortunately, there is no
integrated and proper data model for the big data
problem and it is an open issue in the context. In
the next section, properties of a proper data model
for the Big Data problem is discussed and then,
the proposed data model is presented.

4. THE PROPOSED DATA MODEL
As stated before, designing proper data model is a
fundamental issue in data management and in
fact, it is the footstone of the other research
activities (e.g., development of system, tools,
languages, methods and algorithm). Essentially a
data model includes (a) data representation, (b)
integrity constraints that should be enforced and
satisfied, and (c) a set of operators for data
manipulation [9]. As a well-known example, in
the Relational data model, data representation is
in form of table (i.e., a relation which is infect a
set of tuples); there are integrity constraints that
should be satisfied implicitly (e.g., rows in table
as tuples in the relation must be unique, so we
need the key in each table); and many operators
for manipulation of data in tables such as the
Selection, Projection, Join and etc.. The
Relational data model, is appropriate for
traditional business applications but not for
modern applications such as social networking,
since it is structured, is not scalable, and doesn’t
support relationship, efficiently. Semi-structured
data models such as the XML and NoSQL data
models although resolve such defects partially,
but they don’t satisfy criteria of a proper data
model for the big data problem. In order to design
a proper data model, first let’s discuss important
properties of such a data model and then
introduce the proposed data model.
4-1- Properties of a proper data model
The most important properties for a proper data
model for the big data problem are:
- Integrated
Although, there exist data models that can be
employed separately for each of three
dimensions of the big data problem, but we
need an integrated data model that can
support all of them together, entirely.
- Complete
It should support all of the required
functionality, with no additional thing (e.g.,
model, structure, language, API, environment,
system, tools, etc.) required. Ideally, the
model should be computationally complete
(such as the Object-Relational data model).
- Scalable
One of the most important defects of the
Relational data model is that it is NOT
scalable. Scalability for data model means
that, whenever size of the problem scales out
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for example K times, system can continue its

operation with a tolerable overhead and cost.

This is important for the big data problem in

which volume of data has a high growth-rate.
- Flexible

It is also important for data model of the big

data problem to be flexible enough to

represent various type of data (e.g.,
structured, semi-structured, unstructured,
etc.).

- Compatible

Comepatibility with legacy systems and data
models makes data integration possible, and
also helps interoperability and usability of
legacy systems and applications.
- Efficient
Since data storage (retrieval) in (from) the
storage media is really costly and is usually
the bottleneck of systems, efficiency is very
important in all levels and aspects of data
management (especially in data model, as its
footstone). For the big data problem in which
data in/out must be fast, efficiency is much
more critical. In general, efficiency includes
both, performance (e.g., response time) and
utilization (e.g., memory space). So, a proper
data model for the big data should have a
good performance and resource utilization.
4-2- Design principles
In order to design a data model for big data that
can properly satisfy the properties mentioned
above, some principle must be conformed. First
of all, the designed data model must adhere and
be compatible with the previous data models
(e.g., use them as the design primitives).
Accordingly, as is stated later, the proposed data
model uses O.R., XML and NoSQL data models.
Selection of the proper base-model and required
properties is described briefly below.
Among the NoSQL data models (that generally
are scalable and flexible), the Graph data model
is used more in new applications [19, 20]. It is
also more powerful than its similar data models
(for example tree-like models such as the XML
data model, since it provides navigation in all
directions (rather than parent-to-child direction)).
So, the graph data model [19, 20] is selected as
the base data model to be modified such that the
required properties can be satisfied in the
proposed data model.

The other design principle is abstraction (in the
proper level). Since the variety is one of the
important characteristics of big data, in order to
be flexible enough to handle various types of data
(e.g., structured, semi-structured and unstructured
data) together in one integrated data model,
proper abstraction level must be determined and
conformed.

Finally, an integrated proposed data model
obviously must be correct and ambiguity-free. So,
required implicit integrity constraints for the new
data model must be determined and enforced.
Additionally, it is better that the proposed data
model to be computationally complete.
Accordingly, the proposed data model which is
based on the NOSQL Graph data model and
modified to satisfy the mentioned required
properties is introduced below.

4-3- The proposed Hyper Nested Graph (HNG)
data model

As discussed before, a data model includes data
representation, set of implicit integrity
constraints, and set of operators.

(a) Data representation

The proposed data model is based on the graph
data model [19, 20]. A graph
G =< V,E,D,L,W = includes V: set of nodes, E:
set of edges, D: set of direction of edges, L: labels
of nodes or edges, and W: weights of nodes or
edges. Extended versions of basic graph include
nested graph (i.e., contains hyper nodes), hyper
graph (contains hyper edges), and attributed
graph. The proposed data model is an extended
graph model in which both nodes and edges are
hyper and nested (so, called Hyper Nested Graph
(HNG)). By nested node, we mean that each node
can contain one or some nodes inside; and by
nested edge we mean that an edge is an abstract
form some links between its corresponding nodes,
each one indicating one relationship between its
source and destination nodes (figure 3).

Hypernode Hyper

AdA

Hypernode

Fig. 3: schematic view of HNG

For both nodes and edges in HNG, a header part
contains metadata while the context part, contains
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the content of the object (i.e., node or edge). O-id
(Object-identifier) O-name (Object-name) are
some of the most important fields in the header
part of each object. Object identifier (which must
be unique) can be generated and handled in of
these ways: user generated, system generated, or
derived from object's primary key (whenever the
object is a node containing data tuples) or URI
(when the object is a resource in web, e.g., a web
page or multimedia file).

Also, when the object is an edge, header part can
contain metadata such as the
unidirectional/bidirectional,  weight, priority,
control data, etc. The header part of objects can
be semi-structured, as an XML element. The
content part for each node (as a nested node)
contains content in forms of structured data (e.qg.,
value of an attribute for an entity instance, a tuple
of attributes (i.e., a row), a table, a nested table,
etc.), semi-structured data (e.g., an XML element
which itself can contain nested elements),
unstructured data (e.g., documents in various
types including text, voice, image, video, etc.), or
event can contain one or more other nodes inside
it (recursive definition) (figure 4).

10

(d)
Fig. 4: example of (a) structured data, (b) semi-structured
data, (c) unstructured data, and (d) nested node

In order to establish a connection between a node
to its nested nodes, ref (reference) data type can
be used which is in fact a pointer to the
corresponding  object.  This nested and
hierarchical structure is so common and well-
known that is employed in many different
contexts (e.g., file system in operating systems to
manage directories, sub-directories, and files).
Content part of a nested edge which represent
relationships between the nodes also can be
implemented as an XML element.

(b) Integrity constraints

In general, integrity constraints are classified into
explicit constraints (which are explicitly defined
by developers, and are application-dependent),
and implicit constraints (which must be enforced
implicitly by the system on every database which
use that data model). For example, in the
conventional Relational data model, the need for
a primary key for each of tables is an implicit
integrity ~ constraint  while  for  instance,
18 = age =36 for table of students is an explicit
constraints which many not be held for age
attribute of other tables, e.g., employee.

On the other hand, integrity constraints can be
grouped in schema-instance consistency, identity
and referential integrity, and functional and
inclusion dependencies. Examples of these are,
labels with unique names [21], typing constraints
on nodes [22], functional dependencies [23],
domain and range of properties [24].

Designing a data model, its implicit integrity
constraints also must be determined and defined
by the designers and enforced by the systems. The
most essential implicit integrity constraints that
must be held and enforced for every database that
uses the proposed hyper nested graph data model,
can be classified into these two classes: those that
are generic for all graph-based data models, and
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those that are specific to the proposed hyper
nested graph.
Some of generic graph-based data models’
integrity constraints are [16]:

- Schema instance consistency

- Identification of models, attributes, and

relations

- Path constraints

which must be enforced in HNG data

model, since it is also graph-based.
Moreover, due to the modifications and
extensions applied for preparing the proposed
HNG data model, these HNG-specific integrity
constraints also must be enforced implicitly.
i) Finite nesting
Because of the recursive nature of HNG'’s
definition (in which each node itself can contain
node(s)), similar to other recursive equations, we
need boundary conditions: nesting (of nodes)
must be finite (i.e., non-endless).
Although each node can contain contents (e.g.,
structured, semi-structured or unstructured data),
or can contain other nodes inside, but the number
of this nesting must be bounded. This is because
systems that are used in practice, be able to
implement and handle such nested nodes. As an
example, suppose that the maximum number of
nesting allowed for a node is set to 32, as one of
the data management products limitations.
Figure 5 illustrates a schematic example of an
infinite nested hypernode.

Fig. 5: schematic example of an infinite nested node

i) Acyclic nesting

In general, cycle (loop) in HNG is not forbidden
as an implicit integrity constraint and inter-nodes
cycle is allowed (it may be used for modeling and
representing relationships between objects in the
real word). But, nesting of the nodes in HNG
must be acyclic. In other words, references to the
nodes inside a particular node named N must not
be such that return to the N itself. Such intra-
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node cycle (figure 6) which constructs an infinite
loop is not meaningful and is not event acceptable
in theory. So, intra-node cycle is not allowed.

Fig. 6: schematic example of an intra-node cycle

iii) Referential integrity

Similar to the referential integrity in the
Relational data model, references in HNG data
model must be valid. So, dangling, missed, or
wrong references must be prevented. Options
such as restricted, cascade, trigger or even no-
action can be implemented and used in case of
deletion or update of references. As an example,
restricted option would prevent the devastative
modification (delete/update) on the referred node,
while the cascade option would substitute the
updated/deleted node by its (logical/structural)
successor or predecessor.

As discussed above, implicit integrity constraints
of a data model must be implemented and
enforced by the underlying systems (e.g., DBMS)
for every database which use that data model. So,
data management systems that would use the
proposed HNG data model must implement and
enforce such integrity constraints.

Providing efficient practical solutions for
enforcing such integrity constraints can be done
as future work.

5. EXPERIMENTAL EVALUATION

Evaluation of the proposed Hyper Nested Graph
(HNG) data model for big data problem is
performed  experimentally via implementation
and practical comparison of HNG with the other
alternatives. Since the proposed HNG data model
is a graph-based model, Neo4j which is an open-
source graph-based data management system is
used for extension and implementation of HNG
data model.

5-1- Experimental setup

YCSB (Yahoo! Cloud Serving Benchmark) [26,
27], which is used as data set and query set for
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this experimental evaluation is a standard
benchmark publicly available. Different CRUD
operations (such as insert, update, and query), and
also a mixture of such operations are executed on
a data set of the big data and some desired metrics
are measured. The underlying machine has
platform of Linux Ubuntu 12.04 and SuperMicro
server with 8 cores and 40 GB RAM. The
proposed Hyper Nested Graph (HNG) data model
is compared with the document-based (e.g.,
MongoDB [28]), Graph document-based (e.g.,
OrientDB [29]), and Graph (e.g., Neo4j [30])
NoSQL data models.

Average case for several runs of different
scenarios is computed for the most important
parameters such as response-time in the best-case
and average-case. Also, two other metrics that
are defined in YCSB are measured and illustrated.
The metric is defined as Response time: The time
interval from submission of a request to its
completion.

5-2- Experimental results

Using the YCSB [26, 27] as the tested, data sets
with 10e3, 10e6 and 10el0 data items were
generated, each one containing 1KB data with 10
different fields and different CRUD operations
run on them [17]. Average values for desired
metrics are computed and illustrated in figures
below to compare different data models. Figures
5 through 7 show response time of compared data
models for different operations (each using a data
set with 10e3, 10e6, and 10el0 data items,
respectively).

Doc. Based Graph Doc-based

Graph model HNG
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1086
1073.5
1156
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INSERT QUERY MIXED

Fig. 7: response time of different operations for 10e3
data items
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Fig. 8: response time of different operations for 10e6
data items
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Fig. 9: response time of different operations for 10e10
data items

Summarizing, as is shown if figures 7 through 9,
although the document-based data model has
better efficiency when handling small data sets,
graph-based data models outperform document-
based model in terms of response time while the
size of data sets increases.

Also, the proposed Hyper Nested Graph (HNG)
data model has better performance rather than the
pure graph data model and graph document-based
data model. It can be induced from these practical
experiments that the proposed HNG data model
will have an acceptable efficiency when used for
managing Big Data.

6. CONCLUSION AND FUTURE WORK
A proper designed data model should have some
characteristics. The most necessary ones for a
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data model designed for the Big Data problem are
to be integrated, complete, scalable, flexible,
compatible, and efficient.
In this paper, a proper data model for big data is
designed and presented. In the proposed HNG
(Hyper-Nested Graph) data model that is based
on the NoSQL Graph data model and extended to
meet the required conditions and characteristics,
both nodes and edges are nested. Sub-nodes of
each node that can be accessed via a ref
(reference type) can store either structured (e.g.,
scalar-value, row, or table), semi-structured (e.g.,
an XML element or document), or unstructured
(e.g., text, image, voice, or video) data.
Choosing such level of abstraction provides
compatibility with the older data models, beside a
good flexibility.
Powerful support of relationships in Graph-based
data models, beside fast and convenient Travers
capability make it possible to have a good
efficiency and scalability while removing the
defect of traditional data models (e.g., the
Relational) in supporting relationships.
Nesting, which is used in HNG (to overcome
being big in the Big Data problem), is also a well-
known approach in many other contexts (e.g., file
system of OSs) and there exist many good
practices even for its implementation.
Experimental evaluation results show that the
proposed HNG data model outperforms other data
models which are usually used (e.g., document-
based, Graph Document-based, and Graph data
models), in terms of response time.
Data model is the footstone of data management
activities. So, for each new data model, such
activities can be followed. Some of such future
works include:
- Implicit integrity constraints for the HNG
- Set of required operators
- Providing theoretical and formal tools such as
HNG algebra (similar to the Relational
Algebra)
- SQL-like database language for HNG
- Developing data management systems and tools
supporting HNG as data model

Moreover, issues such as optimization, security,
transaction management (ACID-compliant or
CAP-based) can be followed for completing HNG
data model and employing in real-world Big Data
applications.
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