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Abstract

Performance of automatic speech recognition
(ASR) systems degrades in noisy conditions
due to mismatch between training and test
environments. Many methods have been
proposed for reducing this mismatch in ASR
systems. In recent years, deep neural networks
(DNNs) have been widely used in ASR systems
and also robust speech recognition and feature
extraction. In this paper, we propose to use
deep belief network (DBN) as a post-
processing method for de-noising Mel
frequency cepstral coefficients (MFCCs). In
addition, we use deep belief network for
extracting  tandem  features  (posterior
probability of phones occurrence) from de-
noised MFCCs (obtained from previous stage)
to obtain more robust and discriminative
features. The final robust feature vector
consists of de-noised MFCCs concatenated to
mentioned tandem features. Evaluation results
on Aurora2 database show that the proposed
feature vector performs better than similar
and conventional techniques, where it
increases recognition accuracy in average by
28% in comparison to MFCCs.

Keywords: MFCC, Tandem feature, DBN,
Robustness, Speech recognition

1. Introduction

Automatic speech recognition (ASR) , as defined
in [1], is : (( the process of converting the speech
signal into its corresponding sequence of words
or other linguistic entities using algorithms
implemented in a device, a computer or computer
clusters)) [1]. ASR systems have a wide range of
applications nowadays: voice command and
control in home entertainment systems (e.g.
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Smart TVs), content based audio search, voice
search and interacting using mobile devices ( such
as Siri on iPhone)[1]. Due to extension of such
real-world applications, robustness of ASR
systems in noisy conditions is more important
than before. The performance of ASR systems
degrade rapidly when there is a mismatch
between training and test conditions [1]. This
mismatch can be created due to contamination of
speech signal with noise, speaker variations and
so environment effects on speech signal [1].
Generally, robustness methods can be divided
into three main categories: methods which
performs in the signal level for removing noise
from the speech signal (speech enhancement
methods [2]), methods in the feature level which
compensate noise effects on speech features and
finally model adaptation methods [1].

Robustness methods in the feature level, generally
are divided into two main groups. Methods of
first group, change the feature extraction process
to obtain more robust features such as Phase
Auto-Correlation (PAC) features [3]. In the
second group, a linear or non-linear
transformation is applied to the feature vectors to
compensate noise effects on them, such as:
Cepstral mean and variance Normalization
(CMVN) [2] and MV A processing [4].

One of the robust features extraction methods in
noisy condition is tandem method [2, 5]. In this
method, a multi-layer perceptron (MLP) is used
to map traditional features to posterior probability
features which have more discrimination
property[5].

Recently, deep neural networks (DNNs) are
widely used in speech recognition systems for
acoustic modeling [6, 7] and also feature
extraction and transformation [1, 8]. DNNs are
artificial neural networks with multiple hidden
layers between input and output layer [9]. DNNs
can model complex structures and they have a
high capability for modeling, learning and
extracting features [10, 11, and 12].

A DNN with several layers and nonlinear
functions in each layer is capable to model
complex structure and discover data dependency
[13]. Thus, as mentioned before, plus to acoustic
modeling [6, 7], DNNs have been used for speech
enhancement [14, 15] and also for feature
extraction and transformation in ASR. Two types
of DNNSs, Deep belief network (DBN) [8, 11] and
auto-encoder [16, 17], have been used for
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dimension reduction and feature extraction from
raw data.

In [14], a DNN has been used to directly learn a
spectral mapping from the spectrogram of
corrupted speech to desired clean speech where
authors have been shown that their method leads
to significant improvements of predicted speech
intelligibility and quality in reverberation noisy
conditions. In [15], authors used DNN for
regression-based speech enhancement and they
have shown that their method compared with
logarithmic mean square error (MSE) achieves
significant improvements for various objective
quality measure.

In [12], authors compared shallow and deep
neural network in feature learning and
representation for speech recognition. They
demonstrated that DNNs can extract more
invariant and discriminant features at higher level
layers. This property enables DNNs to generalize
better than shallow network in mismatched

2. Deep belief network (DBN)

The DBN is a multi-layer neural network which
has a large number of neurons in each layer. The
basic problem of DBN is occurred on its training
phase. When free parameters of network are
randomly initialized, back propagation algorithm
can be trapped in a local minimum. To avoid this
problem in DBN, instead of random initializing,
in a unsupervised pre-training step, each pair of
network layers are greedy and separately trained
using restricted Boltzmann machine (RBM) [18,
19]. So, DBN is a generative model created by
stacking RBMs. After pre-training step, in
supervised step, back propagation algorithm is
performed to train DBN for classification or
estimation where an output layer is added to
DBN.

As mentioned earlier, DBN has been used in the
feature extraction and mapping [8, 11]. In [8],
authors used DBN to reduce mismatch between
far-field and near-field speech where they used

Robust
signal + MFCC Extraction |—.| MNoise reduction using DBN }—‘-{ Tandem extraction using DBN m PCA Feature
i vector

Figure 1: Proposed method structure

conditions. Also, authors in [12] have shown that
these representations become insensitive to small
perturbations when network depth is increased.

In this paper, we propose to use DBN in two
manners. First, we use DBN to map noisy
MFCCs to clean ones. After that, we use DBN to
extract tandem features from mapped MFCCs.
Finally, we concatenate mapped MFCCs to
extracted tandems in order to obtain our proposed
discriminative and robust speech feature vector.
The remainder of this paper is organized as
follows. Section 2 discusses DBN theory briefly.
Section 3, introduces the tandem system
framework for robust feature extraction. Section
4, explains our method for extracting robust
MFCCs. Section 5 includes our experimental
setup conditions. In Section 6, we report our
results. Finally, we give our conclusions in
Section 7.
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robust inputs for DBN for this purpose. In [11],
authors used DBN to learn a de-noising Mel filter
bank where its input is noisy spectral amplitude
and its output is de-noised Mel filter bank
energies. In [20], authors used DBN for speech
enhancement and so robust speech recognition. In
this case, DBN inputs includes a central frame
and its neighbors where we expect that DBN
removes noise from the central frame and
reconstruct it.

As mentioned previously, recently DBN was used
instead of GMMs in combination with

Hidden Markov model (HMM) [6, 7]. In this
case, four major techniques are used for DBN
training to make it robust to noise [21]. These
techniques includes: multi-condition training of
speech, training with enhanced features, noise
aware training and dropout training [21].

3. Tandem system

Most successful ASR systems is based on hidden
Markov model (HMM). In HMM based systems,
we can use Gaussian mixture model (GMM) or
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Artificial neural network (ANN) to estimate the
observation probability in HMM states. A way
for combining these two systems is the tandem
method [5]. In this method, in the first step,
conventional features such as perceptual linear
prediction (PLP) coefficients) or MFCCs are
extracted from speech signal.  Then, these
features are mapped to posterior probabilities
using a MLP where principle component analysis
(PCA) is performed on mapped features for
feature de-correlation [5].

In tandem method, due to DBN capability in
feature mapping, MLP can be replaced by DBN
[22]. Results in [22] show that DBN perform
better than MLP in extracting tandem features.

4. Proposed method

Due to mentioned properties of DBN such as
good training and its power in feature
representation and also function approximation,
we propose to use DBN for noise reduction and
also feature extraction. The overall proposed
method has been shown in Figure 1. We describe
detail and steps of proposed method in the
following subsections.

a) De-noising using DBN

In this part, we propose to use DBN for mapping
noisy MFCCs to clean ones in the frame level.
Thus, we use DBN as an estimator in the feature
level. Figure 2 shows our used structure for DBN.
This network includes two hidden layers with 512
neurons in each layer. We extract 12 MFCC and
energy plus to their first and second derivatives
from each frame. Then, feature vector dimension
for each frame is equal to 39. The network input
includes a central frame and its neighbors. In
Figure 2, Tt indicates the number of neighbor
frames. If this parameter is equal to zero, only
MFCCs of current noisy frame are input of the
network.
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Figure 2: Structure of DBN as noise reducer
T : the radius of neighborhood for central frame

Noisy MFCCs
Clean estimated MFCC
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If T is equal to 1, in addition to MFCCs in the
current frame, MFCCs in one frames after and
before the current frame (total: three frames) have
been considered as inputs of the network. In the
present work, T is a member of {0,1,2,3}. In this
DBN, the first RBM between first and second
layer is a Gaussian RBM and the other RBM
between second and third layer is a Bernoulli
RBM.

b) Feature extraction and mapping using DBN
The role of the DBN as tandem features extractor
IS mapping speech features to posterior
probabilities. In [22, 23], DBN has been used to
extract tandem features from PLP coefficients. In
[21], the combination of two DBNs have been
used to extract tandem features for phone
recognition. In this work, we use DBN by two
hidden layers and 512 neurons in each layer to
extract tandem features from MFCCs which can
be noisy or mapped MFCCs obtained from DBN
in Section 3.1. Figure 3 shows our proposed
structure for DBN as tandem feature extractor.
The network input is similar to mentioned feature
vector in previous sub-section where T is member
of {0,1,2,3}. The network outputs contain 18
posterior probabilities corresponding to number
of existed phones in Aurora2 dataset.
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Figure 3: Structure of DBN as tandem extractor
T : the radius of neighborhood for central frame

512

c) The overall proposed system

According to DBN power in reducing mismatch
between training and test conditions and also its
power in extracting robust tandem features, in the
overall proposed system, mapped MFCCs
obtained from de-nosing DBN (described in
Section 3.1) have been fed as input to tandem
extractor DBN in order to achieve posterior
probabilities. After taking logarithm from
posterior probabilities and performing principal
component analysis (PCA) on them, we
concatenate the obtained result to mapped
MFCCs to construct final robust feature vector.
We utilize stereo data to train DBN for MFCC
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de-noising and to train another DBN for tandem
feature extraction. So, two DBNs are separately
trained. Figure 1 shows this overall process.

5. Experimental setup

We evaluate our proposed method using Aurora2
dataset [24]. Frame length and frame shift are 25
and 10 msec, respectively.The number of Mel
filters is equal to 26. We used HMM with 16
states and 3 Gaussian mixtures per states. We
used clean train set for HMM training. The
number of features in case of MFCCs is equal to
39 (12 MFCC plus to energy and their first and
second derivations) ;in case of posterior
probabilities is equal to 18 and in case of
concatenating both mentioned features is equal to
57.The DBN in both role of noise reducer and
feature extractor has two hidden layers with 512
neurons in each layer. The number of epochs in
pre-training stage is 10 epochs and in fine-tune
(back propagation) is 200 epochs. The multi-layer
perceptron (MLP) has one hidden layer with 512
neurons where has been trained with the same
200 epochs. Both MLP and DBN are trained
using clean and noisy speech (multi condition

set).
Table 1: Abbreviations for used method in the reported
results
Number
Abbreviations Description of
features
mean-variance normalized
NMFCC (MVN) MFCC 39
MLP-DMECC De-noised MFCC using 39
MLP
De-noised MFCC using
DBN-DMFCC DBN 39
De-noised MFCC using
MLP-NDMFCC | MLP and normalized using 39
MVN
De-noised MFCC using
DBN-NDMFCC | DBN and normalized using 39
MVN
MLP-TMECC tandem features Extracted 18

from MFCC using MLP

tandem features Extracted
DBN-TMFCC from MFCC using DBN 18

tandem features extracted
DBN-TDMFCC from DBN-DMFCC 18

tandem features extracted

MLP-
by MLP concatenated to 57
TMFCC+MFCC MECC
DBN- tl;indgrg ’Ileaturestextrt'a(ét(ted -
Y concatenated to
TMFCC+MFCC MECC
DBN- DBN-TDMFCC
TDMFCC+DBN- concatenated to DBN- 57
DMFCC DMFCC
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We used toolbox implemented in [25] for DBN.
The used abbreviations in reporting result are
defined in Table 1.

6. Results

a) DBN for noise reduction

Table 2 reports average of recognition accuracy
on all three Aurora 2 test sets. We used two types
of neural networks for mapping noisy features:
DBN and MLP. It can be shown from Table 2 that
DBN has better results than MLP and so learns a
better mapping and estimation in comparison to
MLP.

Table 2: Average of recognition accuracy
on SNR 0 to 20 dB for all test sets using
MLP and DBN as noise reducer

Methods /Q;\éirf;ci/
MLP-DMFCC 69.09
MLP-NDMFCC 71.67
DBN-DMFCC 76.95
DBN-NDMFCC 78.15

b) DBN for extracting tandem features

Table 3 also shows average of recognition

accuracy on test sets. Both DBN and MLP are

trained to extract tandem features. As can be seen

from table 3, DBN has a better performance in

extracting tandem features comparing with MLP.
Table 3 Average of recognition accuracy

on SNR 0 to 20 dB for all test sets using
MLP and DBN as tandem extractor

Methods Average
Accuracy
MLP-TMFCC 73.07
MLP-TMFCC+MFCC 78.04
DBN-TMFCC 76.05
DBN-TMFCC+MFCC 78.38

c) Selecting number of neighbor frames

Table 4 shows average of recognition accuracy
for different numbers of neighbor frames. As
shown in Table 4, the appropriate number of
frames for DBN in the role of extracting tandem
features is 3 frames (r = 1) and in the role of
reducing noise is equal to 7 frames (t = 3). T is
the radius of neighborhood for the central frame
defined and shown in Figure 2.
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Table 4: Average of recognition accuracy on
SNR 0 to 20 dB for different neighborhood
radius frames for all test sets

Average Accuracy

T DBN-

DBN-TMFCC DMECC
0 76.05 76.95
1 76.54 78.84
2 75.54 79.09
3 75.71 79.69

d) DBN for feature extraction and noise

reduction

In this section, we evaluate the overall proposed
system shown in Figure 1. Table 5 shows the
average of recognition accuracy for each test set
using this system. According to Table 4, for
mapping DBN and tandem extractor DBN, we
consider 7 and 3 subsequent frames in DBN
inputs, respectively.

As can be seen from table 5, mapped noisy
MFCC using DBN (DBN-DMFCC) has better

Table 5: Average of recognition accuracy on SNR 0

t0 20 dB
Test sets
Method z
ethods > o o 5
S
D
MFCC 63.06 6%6 6%1 63.30
NMFCC 76.52 798'8 73'6 75.67
DBN-DMFCC | 80.70 8%3 762'0 79.69
DBN-NDMFCC | 81.38 8%4 72'3 80.39
DBN-TMFCC | 77.45 735 7%7 76.54
DBN- 820 | 764
TMFCC+MFce | 8986 | Ty o | o7
DBN-TDMFCC | 77.47 7;'6 7%4 76.85
DBN-
TDMFCC+DBN- | 82.38 838'3 7%'2 81.35
DMFCC

results than MFCC and NMFCC. This shows the
capability of DBN in clean features estimation.
Also, mean-variance normalization of DBN-
DMFCC (DBN-NDMFCC) increases its
recognition accuracy. As shown in table 5,
tandem features extracted by DBN (DBN-
TMFCC) has higher results in comparison to
MFCC and NMFCC. However, the best results
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belong to the method in the last raw of table 5
which is the same proposed method shown in
Figure 1.
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Figure 4: Avrage of recognition accuracy for various
SNRs

Figure 4 shows the average of recognition
accuracy on different noise levels for various
SNRs. As shown in the figure, when noise level is
high (SNR=-5), tandem features extracted from
de-noised MFCC (DBN-TDMFCC) have the
highest recognition accuracy. On the other hand,
when noise level is low (SNR=15, SNR=20),
DBN-TMFCC+MFCC method has the highest
recognition accuracy..In the other conditions, the
proposed method, shown in Figure 1, works
better than the other methods

BN
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Figure 5: Avrage of recognition accuracy for
different noise types

Figure 5 shows the average of recognition
accuracy for different noise types. According to
Fig. 5, for all noise types, the proposed method
has the highest results among other methods.

7. Conclusions

In this paper, we propose to use DBN for noisy
MFCCs mapping to clean ones and also
extracting tandem features from mapped MFCCs.
Furthermore, we concatenated these two
mentioned groups of features to obtain the
proposed robust feature vector. Results show that
DBN due to its capability in nonlinear mapping
and estimation, has a good performance in
extracting robust and discriminative features.
Thus, our proposed feature vector performs better
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than traditional and other similar features in noisy
conditions.
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