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Abstract

In this paper, a novel fuzzy connectionist
system for incremental online learning and
knowledge discovery called Population-based
Automatic Fuzzy Neural Network (PAFUNN)
is demonstrated in detail. PAFUNNSs evolve out
of incremental learning. New connections and
neurons are created based on a population of
samples while operating the system which has
the advantage of controlling the number of
neurons involved and leads to the low
complexity of the network. Learning
Automata is implemented in order to optimize
the network parameters including sensitivity
and error thresholds to enhance the
performance of the entire system. Afterward,
the proposed method is compared with
Evolving Fuzzy Neural Network (EFUNN) as a
general online learning machine on two case
study datasets consisting of gas furnace and
iris data for prediction and classification tasks
leading to the thorough analysis of the effects
of selecting appropriate automata. Less
complex, more accurate and robust results are
obtained for the proposed method in
comparison with the EFUNN.

Keywords: Evolving connectionist systems;
Population-based Automatic fuzzy neural
networks; On-line learning; Knowledge-based
neural networks.

. Introduction
Sophisticated methods and devices are required
for building intelligent Information Systems (1S)
which are capable of learning various types of
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knowledge through their incremental interaction
with the environment [1]. The major requirements
of the IS are: (1) learning rapidly from a large
database, (2) adapting incrementally in an online
way, (3) having an open structure, (4) having a
long term memory, (5) interacting with the
environment continually, (6) dealing with
knowledge, and (7) representing space and time
adequately. There have been miscellaneous fuzzy
connectionist systems which have endeavored to
address the above-mentioned seven issues.
Nowadays, we can see an increased use of neural
networks for pattern recognition, classification
and optimization tasks [2]. Knowledge Based
Neural Networks (KBNNSs) [3] are pre-structured
neural networks allowing learning from data, rule
insertion, rule extraction, adaptation and
reasoning which is a combination of fuzzy logic
systems [4] and neural networks [5]. Fuzzy
Neural Network (FUNN) [6] is a particular set of
KBNNSs in which structure can be interpreted as a
set of fuzzy rules. EFUNNs [1] have the
advantages of traditional KBNNSs; nonetheless,
they learn in a one-pass online mode, evolve
utilizing local element tuning while their structure
fluctuates as the system operates. Although
EFUNNs are suitable for learning on-line
incoming data rapidly, they are of high
complexity in as much as there is no control over
the number of the nodes added through the
operation of the system. Creating the nodes in
EFUNN which is expected to be optimized is
based on the currently presented data resulting in
a huge number of Rule Nodes. Some aggregating
[7] and [8] as well as pruning [3] approaches are
proposed for the reduction of the increasing
number of nodes (Rule Nodes). Evolutionary
methods [9] are also proposed for the
optimization of EFUNN parameters. These
methods are mostly slow in terms of the running
time. On the other hand, in basic EFuUNNS,
thresholds are considered to be fixed and there is
no efficient strategy for optimizing them, apart
from a self-tuning approach in which thresholds
are tuned locally based on novel samples [10].
The PAFUNN model presented here principally

differs from all the fuzzy neural network models
introduced so far despite the existing structural
similarities. PAFUNNSs have a five- layer structure
similar to that of EFuUNNSs. Furthermore, it is
appropriate for on-line knowledge discovery of
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large databases. In this method, neurons and
connections are created based on a set of refuted
samples unlike the EFUNNS in which each neuron
is produced only on the basis of a single
presented sample, which has the advantage of
controlling the number of neurons so that they
would not get too large. In other words, in
EFUNNSs, there is no control over the number of
neurons added to the network throughout network
learning leading to a complex-structured network.
In a complex neural network, there is a high
probability of over-fitting the network on input
samples which is considered to be a problem that
is more vital for noisy datasets in which the
network learns noisy data absolutely efficiently
which leads to high output error in testing the
dataset. In the proposed method, after some
samples are presented to the network and a
definite number of Rule Nodes are created, if a
sample does not match any of the existing Rule
Nodes in the network, it will be stored and
regularly, some Rule Nodes are produced
according to a set of such samples.

The word "automatic” in the title of the proposed
system is concerned with implementing learning
automata so as to get adapted to the system
parameters. Two fixed structured learning
automata (FSLA) [11] are interconnected to the
network in order to get adjusted to the sensitivity
and error thresholds of the network to enhance
the entire performance of the system and escape
from the local minima. In raw EFuNN, the
parameters are set to fixed values.

A comparative analysis between PAFUNN and
EFUNN on two benchmarks proves the fact that
PAFUNNSs are comparable with EFUNNS in terms
of the accuracy and robustness of the obtained
results; nevertheless, they are faster, more
controllable, and less complex.

The rest of this paper is organized as follows:
In Section 11, the PAFUNN is demonstrated and in
Section Ill, the experimental consequences of
applying the proposed algorithm on two case
studies are analyzed. In the end, Section IV and V
are associated with feedbacks.
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1. Proposed Method

PAFUNNs have a five-layer structure similar to
that of EFUNNSs [1, 3, 7], and are appropriate for
on-line knowledge discovery of mega-databases.
The PAFuNNs have the advantages of the
EFUNNs. Nonetheless, they possess two
important distinctions so as to overcome their
current challenges:

1- Creating neurons based on a set of refuted

samples
2- Utilizing Fixed Structure Learning Automata
in order to get adapted to the network
parameters
They are both described in detail in the

following.

1) Creating neurons based on a population
of rejected examples
In order to control the entire number of the

created nodes, the PAFUNN creates neurons on
the basis of a set of refuted samples. To illustrate
this, after some data samples are presented to the
network and a definite number of Rule nodes are
created, if a coming data does not match any of
the existing Rule Nodes in the network, which
means that the two aforementioned conditions in
the EFUNN [3] are not satisfied for that input, it is
stored and the next sample will be presented to
the system. Otherwise, the network parameters
are adjusted through hybrid
supervised/unsupervised learning similar to the
aforementioned EFUNN approach.

Regularly, at the end of some chunks of data
presented to the network, Rule Nodes are created
based on the set of the refuted stored samples
utilizing the following algorithm instead of
producing Rule Nodes for each single sample.
The last two parameters C(r) and Age(r) are
appropriate for network pruning algorithms [1].
As the Algorithm 1 illustrates, the fuzzified
stored samples are sorted first on basis of their
fuzzy distance calculated via Eq. (1).
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Algorithm 1. Neurons creation based on a population of rejected examples

S=Set of fuzzified stored examples; // S={E | Es= (X1,Y)}
Sort S elements according to their fuzzy distances;

MD= maximum fuzzy distance between S elements;
Number of categories: MD * sensitivity threshold;

For i=1: Number of categories

For its subset S'={E;'| E¢'=(X¢', Y¢')} of S

Create a new rule node r;
//Set its parameters:

Wi(r) = Mean of subset X:;
Wa(r) = Mean of subset Yt ;

C(r)= Size (S') //number of samples pertain to r;

Age(r) = 0;

[ Xr1 — X2 | )
1Xp1 + Xpo|

These sets of samples should then be categorized
into some subsets based on the sensitivity
threshold inasmuch as this threshold is the radius
of the input hyper sphere of a Rule Node and
indicates the samples associated with the Rule
Node. For each category, a Rule Node is created
and its parameters are set as demonstrated in the
algorithm.

FD(Efy,Ef,) =

2) Utilization of fixed structure learning
automata for adaptation of network
parameters

In this part fixed structure learning automata [12,

13, 14, 15] are utilized in order to adjust the
PAFUNNSs parameters to their best values and
improve the network performance. Through
interconnecting learning automata to the
PAFUNN, parameters SThr (sensitivity threshold)
and EThr (error threshold) are adjusted based on
the output of the network for each data sample.
The error threshold parameter EThr sets the error
tolerance of the system and also defines the
radius of the output cluster for each Rule Node.
The sensitivity threshold parameter defines the
minimum activation of the rule node r to a novel
input vector x from a new sample (X, y) in order
for the sample to be considered in its association
with this Rule Node Two fixed structure learning
automata are assigned to the rule layer and fuzzy
output layer of PAFUNN so as to determine the
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sensitivity and error thresholds of those layers.
Note that the PAFUNN is the environment for

learning automata. The actions of the automata
correspond to the values of the SThr and EThr
parameters. The input (which is the response of
the environment) of the first automaton is some
function of the activation value of the selected
Rule Node and that of the second automaton is a
function of the fuzzy output error. The response
of the environment to the first automaton is
favorable if the activation value of the selected
Rule Node (The Rule Node with the highest
activation or in other words with the lowest FD
value) is higher than the sensitivity threshold, and
that of the environment to the second automaton
is favorable if the fuzzy output error is lower than
the error threshold value. Figure 1 shows the
EFUNN and PAFuNN flow charts respectively.
The red boxes are representing the differences
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Fig. 1 The EFuUNN (a) and PAFUNN Flow Chart (b)

I11. Experimental results and analysis
In this section, the proposed method is
analyzed utilizing two standard datasets
called Furnace and Iris for classification
and prediction tasks.

1) Dataset

In order to conduct evaluation, two
standard datasets which are explained as
follows are utilized. Furnace dataset is one
of the most prominent datasets which has
been utilized by a majority of researchers in
neuro-fuzzy engineering field [16, 17, 18,
19, 20]. The dataset consists of 292
consecutive values of methane during a
time zone (t-4), and the carbon dioxide
(CO2) produced in a furnace throughout a
specific period (t-1) as input variables
comprising the produced CO: in a period of
time (t) as an output variable.

Iris dataset is a prominent classification

dataset [21, 22] which consists of 150

instances; 3 classes -setosa, versicolour and
virginica and four attributes - Xi-sepal
length, X>-sepal width, X3-petal length, and
Xs-petal width.

2) Evaluation Technique

The evaluation technique is the method
proposed in [1] in which the network is
trained on the basis of each data pair of
input-output vectors as they become
accessible in an on-line mode. Then, the
network is tested on the spot to anticipate

34



KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE...

the following data items before the latter is
accommodated (learned) in the system. The
network is trained according to the first half
of the data (on-line, one-pass training) in
this way. Then, the evolved network is
tested in an off-line mode throughout the
second half of the data.

3) Evaluation criteria

To assess the feedbacks obtained through
applying the proposed network to the two
aforementioned tasks, various criteria are
demonstrated in the following.

J Root Mean Square Error (RMSE) is
a standard and prominent criterion for
evaluating neural networks [23, 24]. The
root mean square error is calculated at each
data point Di from the input data stream as
shown in Eq. 2.

RMSE (i)

SUM{ETT; };= i
— Sq‘l"t < { it}t—l,Z,...,l) (2)

Where Errt= (dt —ot)? , dt is the desired
output value and ot is the EFUNN output
value produced for the tth input vector Dt.

o CPU Time is a criterion for
measuring neural networks efficiency [25,
26] and consists of time spent on the
training and testing phases of the network.
The equation of CpuTime computing is
presented in Eq. 3.

cpuTime =
cpuTrainingTime + cpuTestingTime; where: (3)

cpuTrainigTime

= time spent on cpu during training phase

cpuTestingTime

= time spent on cpu during testing phase

e The Number of Rule Nodes is one of the
best ways to indicate the complexity of the
Fuzzy Neural Networks [1]. The Eq. 4

shown relation between complexity and
Rule Nodes.

complexity

~ #Rule Nodes

e Robustness is a proposed criterion which
calculates the robustness of the network
when confronting with a changing
architecture. To achieve such a purpose, 20
per cent of the connection weights of the
trained network are modified to prove how
long it takes to get restored and what the
features of the network will be then.
Therefore, the robustness of the network is
represented via parameters including CPU
time, RMSE and the number of rules as
represented in Eq.5.

robustness

1
~ cpuTime + RMSE + #ruleNodes

4) Comparison with other networks

As the proposed method has taken its major
concept from evolving fuzzy neural
networks, the EFUNN and its progresses are
utilized to be compared with the proposed
method PAFUNN to accomplish the
expected evaluation.

e Evolving Fuzzy Neural Network
(EFUNN) proposed through [27] is
appropriate  for  on-line  knowledge

discovery of mega-databases and was
demonstrated in Section I1.

o Self-tuning EFUNN (sEFUNN) proposed
by [1] is one of the first improvements
applied to EFuUNNSs. In this method, the
aggregation and pruning of the Rule Nodes
are applied to control the number of the
Rule Nodes. Furthermore, the sensitivity
threshold is updated utilizing Eq. 6.

St +1) = 5;() + FD (W (¢ + 1), Wy (1)) (6)
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e Recurrent EFUNN  (rEFUNN) is
proposed in [28, 29] and has a recurrent
structure. The recurrent structure in a
rEFUNN emerges from regionally feeding
the firing strength of a fuzzy rule back to
itself. Due to the fact that this method is
appropriate for extracting fuzzy rules in an
on-line mode, it can be a proper method
which can be compared with our proposed
network.

5) Results

The PAFUNN comprises two significant
distinctions with basic EFUNN as stated in
the previous section. In this section, these
two alterations are analyzed separately for
better digestion and finally both changes
are applied to generate the proposed
PAFUNN. To illustrate this, the first
improvement (Adding Connectionist based
on a set of refuted samples) applied to
EFUNN is called pEFUNN and the second
(Utilizing the Fixed Structure Learning
Automata to adapted the network
parameters) is called aEFUNN. The results
are analyzed through two experiments

which are basically called time series
prediction and classification.

a) The First Experiment: Time Series
Prediction

In this section, the capability of PAFUNN
in time series anticipation task is analyzed
on the basis of furnace dataset. Table 1
demonstrates RMSE for training and
testing phases, the number of the Rule
Nodes, CPU Time for training/testing
phase, and network robustness for EFUNN,
SEFUNN, rEFUNN, pEFuNN, aEFuNN and
PAFUNN. For better digestion, the same
results are illustrated in Figure 2. Table 2
indicates the effect of various learning
automata on different evaluating criteria.
The same results are presented in Figure 3.
Note that the resulted values are average
over 10 distinct runs. Figure 4 demonstrates
the process of the networks evolving out of
the Gas furnace dataset. The real versus
anticipated by the network values is
presented when it is trained according to
the first half of the gas-furnace data (on-
line, one-pass training). The evolved
network is then tested in an off-line mode
throughout the second half of the data.

Table 1. Comparing EFUNN, sEFUNN, rEFUNN, pEFUNN, aEFUNN and PAFUNN on Gas furnace data set

CPU Time
Algorithm F;M‘?'E RMSE #Rule Nodes (Train-Test) Robustness
rain Test
EFUNN 0.09 0.106 27 1.5-0.3 1/(3.2+0.079+27)=0.033
SEFuUNN 0.054 0.101 19 1.9-04 1/(3.1+0.064+7)=0.098
rEFuNN 0.038 0.085 26 2-0.2 1/(4.1+0.05+26)=0.033
pEFUNN 0.102 0.100 13 0.9-0.3 1/(2.8+0.06+12)=0.067
aEFuNN
(Krylov for SThr 0.09 0.07 13 1.3-0.2 1/(2+0.077+16)=0.055
Krinsky for EThr)
PAFuUNN 0.099 0.066 10 1.5-0.2 1/(5+0.058+5)=0.099
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Fig. 2 Comparing EFUNN, sEFUNN
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According to the results, rEFUNN consists of
small RMSE during test time phase; nevertheless,
the number of the Rule Nodes for this network
which indicates the network complexity is
remarkable. Consequently, the CPU Time level is
high for it. rEFUNN robustness has the lowest
level among other approaches which signifies the
fact that a modification in  the network
architecture would not result in an early
appropriate repair. Although sEFUNN has a high
level of robustness reaching approximately
maximum, it comprises the highest CPU duration.
On the other hand, the distinction between RMSE
regarding the training period and testing time is
too much which represents network over-fitting
on the training data. The highest level of the Rule
Nodes belongs to EFUNN which demonstrates

network complexity. The reason is the lack of
proper strategic method to control the number of
the generated Rule Nodes for this method.
Moreover, the highest level of the testing phase
and the lowest level of the robustness are
produced through this network. As it is obvious
in the obtained results, the proposed PAFUNN is
an appropriate way to extract rules from the input
data inasmuch as it leads to a balance via all the
distinct criteria. In general, the overall results
illustrate the fact that PAFUNNSs are more rapid,
more controllable, and less complex; nonetheless,
they are comparable with other networks in terms
of the accuracy and robustness of the obtained
results.

Table 2. The effects of choosing different learning automata in PAFUNN on Gas furnace dataset

RMSE RMSE #Rule
Learning Automata Train Test Nodes
Tsetline for SThr Tsetline for 011 AR 13
EThr
Krylov for SThr Tsetline for 0.067 0.105 1o
EThr

Krylov for SThr

Krylov for EThr 0.095 0.11 14
Tsetline for SThr

Krylov for EThr 0.105 0.134 11
Krinsky for SThr

Krylov for EThr 0.092 0.11 12
Krinsky for SThr

Krinsky for EThr 0.097 0.127 14
Krinsky for SThr

Tsetline for EThr 0.10 0.12 13
Tsetline for SThr

Krinsky for EThr 0.11 011 20
Krylov for SThr

Krinsky for EThr 0.103 0.130 13

CPU Time Robustness
(Train-Test) (CPU Time-RMSE-#Rule Nodes)
1.0-0.2 1/(1.8+0.119+8)=0.100
1.4-0.2 1/(2.4+0.133+8)=0.094
1.2-0.2 1/(2.6+0.087+12)=0.068
1.0-0.2 1/(2.3+0.102+12)=0.069
12:02 1/(2.6+0.080+13)=0.063
1.2-0.2 1/(2.5+0.096+17)=0.051
1.2-0.2 1/(2.0+0.127+8)=0.098
1.1-0.2 1/(2.1+0.107+13)=0.065
1.2-0.3 1/(2.3+0.119+14)=0.060
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Fig. 3 The effects of choosing different learning automata in PAFUNN on furnace dataset

An appropriate selection of learning automata for
both SThr and EThr parameters are effective in
resulting in acceptable accuracy and complexity
as Table 2 indicates. As the results show, utilizing
Krylov learning automata for sensitivity threshold
and Tsetline for Error threshold leads to the
minimum level of RMSE throughout the training
phase; however, the number of the Rule Nodes
generated through this network and the CPU
Time are too high. On the other hand, the
distinction between RMSE in the testing and
training phases is too high which shows the
occurrence of over-fitting on the training data.
Although selecting Tsetline learning automata for
sensitivity threshold and Krylov for Error
threshold leads to the minimum level of the
number of the Rule Nodes, it possesses the
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highest level in RMSE for the testing phase.
Utilizing Tsetline learning automata for
sensitivity threshold and Tsetline for Error
threshold leads to the most robust network;
however, the RMSE of this network is high and
approaches maximum level for both the training
and testing phases. Although the testing RMSE is
low in utilizing Tsetline learning automata for
sensitivity threshold and Krinsky for Error
threshold, the number of the Rule Nodes is the
highest for it which means that both sensitivity
and error thresholds are set at a small value for
this network and a novel Rule Node will be
generated for most of the individuals utilizing this
network. Selecting Krinsky learning automata for
sensitivity threshold and Krylov for Error
threshold can be considered as the best choice
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Fig. 4 The process of EFUNN, sEFUNN, rEFUNN, pEFUNN, aEFUNN and PAFUNN evolving on the Gas furnace data set

Based on Figure 4, PAFUNN consists of more
acceptable results in contrast to other networks
especially in the testing phase. The reason why it
is less accurate in the training phase compared
with other networks is restoring refuted samples
and generating Rule Nodes for them at the end of
the training phase.

b) The Second Experiment: Classification
In this experiment, the capability of PAFUNN in
classification task is assessed utilizing Iris
dataset. Table 3 indicates the RMSE for the
training and testing phases, the number of the
Rule Nodes, the CPU Time throughout the
training/testing phase, and the network robustness

on basis of EFUNN, sEFUNN, rEFUNN, pEFuUNN
and aEFuUNN. The same results are illustrated in
Figure 5 for better digestion. Table 4 presents the
effects of selecting various learning automata to
adjust PAFuNN’s thresholds. Figure 6 shows the
same results. Note that the resulted values are
average over 10 distinct runs. Figure 7
demonstrates the process of the networks
evolving out of the Iris dataset. The real versus
which is anticipated through the network values is
presented when it is trained according to the first
half of the Iris data (on-line, one-pass training).
The evolved network is then tested in an off-line
mode in the second half of the data.

Table 3. Comparing EFUNN, sEFUNN, rEFUNN, pEFuNN, aEFuUNN and PAFuUNN on Iris dataset

Algorithm RMSE RMSE #Rule CPU Time Robustness
g Train Test Nodes (Train-Test)

EFuNN 0.099 0.488 8 1.3-0.2 1/(2.5+0.113+8)=0.094
SEFuUNN 0.124 0.6 5 0.9-0.2 1/(2.0+0.196+19)=0.047
rEFUNN NAN NAN 11 6.0-0.4 1/(5.5+NAN+11)=0
pEFUNN 0.106 0.100 4 1.1-0.2 1/(2.3+0.114+6)=0.118
aEFuNN

(Krylov for SThr 0.145 0.075 6 0.7-0.2 1/(1.6+0.081+4)=0.176
Krinsky for EThr)
PAFUNN 0.12 0.042 6 0.7:0.2 1/(1.8+0.085+5)=0.145
Robustness CPU Time #Rule Nodes RMSE Test RMSE Train
0.2 7 1.6 + 12 0.8 0.2
1.4 10 07
0.15 1.2 0.6 0.15
1 8 05
0.1 0.8 6 0.4 0.1
0.6 4 0.3
0.05 0.4 ) 0.2 0.05
. 0.1
0 I ..... o(z] ...... (O e e e e ] 0 L .I.'.'. (VI s e o

Fig. 5 Comparing EFUNN, sEFUNN, rEFUNN, pEFuUNN, aEFuNN and PAFUNN on Iris data set
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The results show that none of the EFuNN,
SEFUNN and rEFuUNN is appropriate for
classification task based on Iris dataset. Over-
fitting on the training data occurred to the first
two networks. For rEFUNN, the RMSE is at a
remarkably high level. Although pEFUNN has the
lowest number of Rule Nodes, the RMSE is
higher than aEFUNN and PAFuUNN in the testing

phase of this network. Furthermore, it is the least
robust network in contrast with the two afore-
mentioned ones. The most robust network is
aEFUNN. Nevertheless, the testing RMSE in this
network is higher than that of PAFUNN. The
proposed PAFUNN has acceptable values for all
its evaluating parameters in spite of having less
complexity.

Table 4. The effects of choosing different learning automata in PAFUNN on Iris dataset

RMSE RMSE
Learning Automata Train Test
Tsetline for SThr Tsetline
for EThr 0.129 0.0.072
Krylov for SThr Tsetline
for EThr 0.099 0.066
Krylov for SThr
Krylov for EThr S 0itlss
Tsetline for SThr
Krylov for EThr 0.128 0.483
Krinsky for SThr
Krylov for EThr DAz L5
Krinsky for SThr 0.100 0.483
Krinsky for EThr
Krinsky for SThr
Tsetline for EThr 1S g2
Tsetline for SThr 0.129
Krinsky for EThr 0.260
Krylov for SThr
Krinsky for EThr Bk i

#Rule
Nodes

5

10

5

10

5
10

CPU Time
(Train+Test) Robustness

1.4+0.4 1/(3.5+0.058+5)=0.11
1.5+0.2 1/(5+0.058+5)=0.099
1.4+03 1/(2.0+0.060+5)=0.141
1.4+0.3 1/(2.6+0.106+5)=0.129
1.2+0.2 1/(2.5+0.144+5)=0.130
0.9+0.3 1/(2.4+0.141+5)=0.132
0.7+0.3 1/(1.8+0.075+4)=0.170
1.2+0.3 1/(2.4+0.077+5)=0.133
0.7+0.3

1/(2.3+0.111+10)=0.080

RMSE Train
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RMSE Test
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Fig. 6 The effects of choosing different learning automata in PAFUNN on Iris dataset

According to Table 4, a proper selection of
learning automata for both SThr and EThr
parameters is required so that they will result in
acceptable accuracy and complexity. As the
results show, utilizing Krylov learning automata
for sensitivity threshold and Tsetline for Error
threshold comprises the lowest amount of RMSE
throughout the training time; however, it is the
highest level regarding the number of the Rule

10
RMSE=0.098
o RuleNodes=22 —#
81  CPU Time=0.8 AT

' W
06
0.4
0.2
0.0 4l—‘j _ ———— —

0 200 400 600 800 1000

(a) The desired versus the predicted one step ahead value by
EFuNN when it trained on the first half of the data set
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Nodes. Although selecting Krylov learning
automata for sensitivity threshold and Krinsky for
Error threshold consists of the lowest number of
Rule Nodes and CPU Time, it is the least robust
network among others. Utilizing Krinsky learning
automata for sensitivity threshold and Tsetline for
Error threshold can be considered as the best
option

1.0

RMSE=0.034

CPU Time=0.2
0.6
0.4
0.2
004 = @ = —_——— ey Lo —

0 200 400 600 800

(b) The trained from EFuNN is tested on the second half of data set
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Fig. 7 The process of EFUNN, sEFUNN, rEFUNN, pEFUNN, aEFuNN and PAFuNN evolving on the Iris

As Figure 7 illustrates, PAFUNN generates more
acceptable results in contrast to other networks
especially in the testing phase. The reason why it
has less accuracy in the training phase compared
with other networks is restoring the refuted
samples and producing Rule Nodes for them at
the end of the training phase.

IV. Discussion
As illustrated through the paper, PAFUNNSs are
appropriate for on-line knowledge discovery of
mega-databases. = However, EFUNNs are
appropriate for on-line learning; nevertheless,
they have two important challenges which make
them inapplicable for real world problems and
large datasets which are as follows:
eThere is no control over the number of the
neurons added to the network throughout
learning that results in a complex-structured
network (a network with a large number of
neurons and connections). In a complex neural
network, there is a high probability of over -
fitting the network on the input samples [30]
which is a problem that is absolutely vital for
noisy datasets.
o There are two thresholds in the EFUNNs
which have direct impact on the network's
accuracy and performance. An effective selection
of these two parameters can improve the network
performance considerably. In raw EFUNN, the
parameters are set to fix values. In an enhancing
self-tuning version, only the sensitivity threshold
is updated according to network weights.
Although this is more effective than the fix-
valued threshold, this does not necessarily lead to
the best value for the sensitivity threshold. On the
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other hand, no method is utilized to adjust the
error threshold.
The PAFuNNs have the advantages of the
EFUNNs. Nonetheless, they possess two
important distinctions so as to overcome creating
neurons based on a set of refuted samples and
utilizing fixed structure learning automata in
order to get adapted to the network challenges.
On the other hand, in the context of Neural
Networks, a neural network is called as efficient
if it can classify testing dataset with the minimum
output error in an acceptable time. Considering
“RMSE”, and “CPU Time”, we tried to analyze
this property of the proposed network and
illustrate that PAFuUNNs can reach to the
minimum RMSE in a short time. Furthermore,
one of the most important challenges in Artificial
Neural Networks is over-fitting networks on the
training samples. One of the possible ways to
avoid the problem is to prevent networks
structures to be complicated during the training
phase. By utilization of “Number of Rule Nodes”
as a criterion for evaluating the complexity of
network, we tried to demonstrate that our
proposed network has lowered the probability of
over-fitting. Moreover, the other important
criterion for evaluating a neural network is its
robustness for which we proposed a criterion that
calculates how robust the network is facing with
unpredictable changes (e.g. facing with noisy data
that change network weights in a wrong
direction).
Based on the results, PAFUNN consists of the
lowest RMSE in the testing phase among other
networks despite having a simple structure
consisting of a lower number of neurons. This
indicates that the implementation of the
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population-based method decreases network
complexity although it can increase its accuracy
through reducing output errors. This occurs as a
result of globally considering the input samples
as close to a local view in order to add new
neurons to the network which leads to the
exclusion of ineffective nodes that are the causes
of over-fitting on the training samples. This is
obviously observed in comparing RMSE test and
RMSE train for PAFUNN. Since utilizing the
learning automata besides the population-based
method steers the network toward its minimum
output error value, it decreases the output error
even more.

The results also demonstrate that our proposed
method could successfully keep a balance in the
discussed criteria. In other words, while it has
declined error on testing samples in a short
duration, it does not let the network to be
complicated by controlling the number of neurons
and as a result does not allow the occurrence of
over-fitting.

V. Conclusion

In this paper, a novel connectionist model called
PAFUNN is presented. PAFUNNs have a five-
layer structure similar to that of EFUNNS, and are
appropriate for on-line knowledge discovery of
mega-databases. In this approach, after some
samples are presented to the network and a
definite number of Rule Nodes is created, if a
sample does not match any of the existing Rule
Nodes in the network, it will be stored, and
regularly, some Rule Nodes are created based on
a set of such samples unlike the EFUNN in which
each neuron is created only according to a single-
presented sample. Two fixed structure learning
automata (FSLA) are interconnected to the
network so as to adjust the sensitivity and error
threshold parameters in order to enhance the
entire performance of the system and minimize
the network output error. A comparative study of
PAFUNN and EFuNN on the basis of two
benchmark datasets indicates that PAFUNNSs are
more rapid, more controllable, and less complex
although they are comparable with EFUNNS in
terms of the accuracy and robustness of the
obtained results.

The proposed method is also applicable for
new class of ECoS called evolving spiking neural
networks (eSNN) [31,32,33] which evolve their
structure and functionality in an on-line manner,
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from incoming information. The model uses
trains of spikes as internal information
representation rather than continuous variables. In
other words, while the classical ECoS uses a
simple sigmoid model of a neuron, the further
developed evolving spiking neural network
architecture uses a spiking neuron model for
which similar ECoS principles and applications
are applicable. eSNN architectures used both
rank-order and time-based learning methods to
account for spatio-temporal data [34]. In these
networks, for every new input pattern, a new
neuron that represents center of a cluster in the
space of the synaptic weights is dynamically
allocated and connected; accordingly, the
population-based model presented in this paper
can be used after each chunks of information to
reduce the number of generated neurons and
result to a less complex network. On the other
hand, different parameters (i.e. the modulation
factor, sensitivity profiles, and threshold 0) are
utilized in eSNN which can be optimized using
learning automata.

Our future works include using pruning and
aggregation methods beside the proposed method
to delete pointless Rule Nodes and improve the
memory usage; furthermore the utilization of
clustering methods such as K-means on the stored
samples after each chunks of data, and using the
cluster centers parameters for adding Rule Nodes
to the network might cause a higher accuracy in
the proposed method.
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