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Abstract 
This paper considers control of a laboratory 
Quadruple Tank System (QTS) in its non-
minimum phase mode. This system is a well -
known laboratory process suitable to illustrate the 
concepts of multivariable control methods. The 
objective of this paper was to design a controller 
based on combination of the sliding-mode and the 
state-feedback control methods using fuzzy logic. 
The proposed method takes advantage of the fast 
transient response of the sliding-mode controller 
and the zero steady-state error of the state-
feedback controller. In other words, the fuzzy 
system uses the SMC when the QTS is in the 
transient mode and utilizes the SFC when it is near 
the steady-state mode. Hence, the advantages of 
both controllers have been used simultaneously. 
The switching between these two controllers is 
continuous and smooth based on a few simple 
fuzzy rules. Stability analysis of the proposed 
method is presented based on the Lyapunov 
stability direct method. Experimental results 
confirmed effectiveness of the proposed method as 
compared with the stand-alone controllers, 
especially when there are uncertainties in the 
system parameters. 
 
Keywords: non-minimum phase system, 
quadruple tank system, sliding-mode control, 
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1. Introduction 
The Quadruple Tank System (QTS) is a well-
known multivariable laboratory process system 
that has been widely used by many researchers as 
a benchmark problem for multivariable control 
methods, especially when the system operates in 
its non-minimum phase mode, where the 
linearized dynamics of the process exhibits a 
multivariable zero on the right-hand side of the s-
plane. This situation is achieved by adjusting the 
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valves position of the QTS [1, 2]. This feature has 
attracted researchers to control this process in its 
minimum as well as non-minimum phase modes. 
Better understanding of the QTS mechanism and 
designing different controllers by developing 
mathematical model of this nonlinear system has 
been proposed in literature. Ucak and Oke have 
presented ε -Support Vector Regression (SVR) 
method to model a quadruple tank system [3]. 
They have suggested the use of SVR in intelligent 
modeling of nonlinear systems and tuning the 
controller parameters based on the system model.  
Yuntao et al. have proposed two multivariable 
model-based control schemes for QTS. A MIMO 
model predictive and network-based H∞  
multivariable tracking controllers have been 
implemented on the experimental QTS in [4].  

Traditional modeling techniques are rather 
complex and time consuming and incorporate the 
entire dynamics of the process. However, soft 
computing techniques can approximates the 
process using input-output data sets. Malar has 
employed soft computing techniques (i.e., Neural 
Networks (NNs), fuzzy logic, and their 
combinations) for the QTS modeling [5]. Fuzzy 
logic has also been used for controlling of the 
QTS. Malar and Thyagarajan have proposed 
decentralized fuzzy pre-compensated PI controller 
for the QTS in both the minimum and non-
minimum phase modes [6]. They have employed 
relative-gain array analysis [7] for decentralized 
control of this process and have shown that in the 
non-minimum phase mode, the input-output 
pairing should be reversed in order to create 
smoother outputs without oscillations, which 
would increase the actuators life time. 
Pourmohammad et al. have established an 
adaptive fuzzy multivariable controller design 
based on the Lyapunov scheme, where the closed-
loop system is monitored and the parameters of 
the controller are adapted in order to minimize the 
tracking error [8]. 

The Model Predictive Control (MPC) method 
is an advanced control strategy that uses a model 
to predict the future behavior of the system. 
Deepa et al. have developed a discrete-time MPC 
for the QTS with and without a dead time in the 
process [9]. The control vector is optimized and 
the results are compared with the decentralized PI 
controller. Alvardo et al. have proposed a robust 
tube-based MPC for tracking piecewise constant 
references based on the quadruple tank process 
[10]. They have shown that the controller ensures 
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the feasibility for an admissible set point and 
convergences to a desired steady state.  Pan and 
Wang have used two NNs in the MPC and tested 
their method on the QTS [11]. In this line of 
work, Sivakumaran proposed a nonlinear MPC 
using recurrent NN as a predictor and 
implemented that on the QTS [12]. Mercangoz et 
al. have proposed a distributed MPC and applied 
it on an experimental QTS in the non-minimum 
phase mode [13]. They have partitioned the 
system into self-sufficient estimation and control 
nodes. The results of their experiments have 
shown that their method performs better than a 
completely decentralized set of controllers. In 
[14], authors have proposed distributed multi-
parametric MPC for the QTS that exhibits some 
robustness against uncertainties in the system 
parameters. 

Shneiderman and Palmor have extended the 
QTS to include multivariable dead times that may 
introduce infinite, finite or no non-minimum 
phase zeros [15]. They have shown that existence 
of non-minimum phase zeros depends on a 
particular combination of multivariable dead 
times. 

Biswas et al. have developed a sliding-mode 
controller (SMC) for the QTS in its non-
minimum phase mode based on the feedback 
linearization method [16]. Although the proposed 
method is robust, the presence of discontinuous 
functions in the controller creates chattering, 
which is undesirable for system actuators. To 
reduce this effect, they have considered the well-
known boundary layer around the sliding surface 
that creates steady-state errors. Gareli et al. have 
proposed a collective SMC for the QTS in its 
minimum phase mode [17]. 

In [18], the quadruple tank process has been 
exploited to study different types of nonlinear 
observers and three approaches namely Extended 
Kalman Filter (EKF), High-Gain Observer 
(HGO), and High-Gain EKF (HG-EKF) have 
been analyzed. 

Gaaloul et al. have presented an output 
feedback controller for the QTS to estimate the 
water levels into two bottom tanks using the 
information available from the measured levels 
[19, 20]. The same control technique has been 
employed in [21] and [22], where the level 
control for the QTS with variable nonlinear zero 
dynamics has been considered and the 

interactions and effects of the uncertainties have 
been discussed.  

An inherent property of the multivariable 
systems is the interaction between their deferent 
inputs and outputs. Gareli et al. have presented a 
partial decoupling method for the MIMO systems 
and have implemented it to the non-minimum 
phase of the QTS. They have shown that the 
switching is carried out at very high frequencies 
[23]. 

In 2002, Åström et al. have proposed a PI 
controller with interacting loops for an 
experimental QTS [24]. In this line of work, in 
2004, Numsomran et al. have proposed PI 
controller for the QTS by using decentralized 
methods for the non-minimum phase and 
minimum phase modes [25].   

In this paper, the objective is to combine the 
SMC and the State-Feedback Controller (SFC) 
using fuzzy logic for the non-minimum phase 
mode of the QTS. Moreover, uncertainties in the 
system are also considered. The SMC is 
employed because of its fast transient response 
and robustness against uncertainties in the system, 
while the SFC is used because of its zero steady-
state error. Hence, the fuzzy system uses the SMC 
when the QTS is in the transient mode and 
utilizes the SFC when it is near the steady-state 
mode. In this way, the advantages of both 
controllers are used simultaneously. 

This paper is organized as follows. Section 2 
describes the nonlinear QTS. In Section 3, 
modeling and parameter estimation of the QTS 
will be given. Sections 4 describes the design of 
the SMC, the SFC, and the hybrid controller 
based on the fuzzy logic. Stability analysis of the 
proposed controller is presented in Section 5. 
Section 6 shows the experimental result. Section 
7 concludes the paper.  
 
2. Rrocessdescription 
The QTS has two pumps that are used to 
discharge water from reservoir into four overhead 
tanks [1]. The schematic diagram of this system is 
shown in Figure 1. One of the interesting 
characteristics of this system is placing one of its 
multivariable zeros on either half of the s-plane 
by changing the position of two valves. The 
manipulated variables of the QTS are the voltages 
applied to the pumps. The controlled variables are 
the water levels in two lower tanks (i.e., tanks 1 
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and 2). The output of each pump is divided into 
two tanks; one in the lower part and the other in 
the upper part, diagonally opposite. In other 
words, the outflow of pump 1 splits between 
tanks 1 and 4 and the outflow of pump 2 splits 
between tanks 2 and 3 (Figure 1). The split ratio 
is determined by the valves positions. The 
quadruple tank process has two transmission 
zeros. The position of one of these zeros depends 
on the split fraction 1γ  and 2γ  in valves 1 and 2, 
respectively. The minimum and non-minimum 
phase modes can be achieved as 
 

1 2

1 2

minimum phase mode: 1 ( ) 2
non-minimum phase mode: 0 ( ) 1

γ γ
γ γ

< + <
< + <

  (1) 

 
The non-minimum phase mode of this system 
(i.e., when there exist right-half-plane zeros) 
imposes serious limitations on the performance of 
the controller and makes the control problem 
more challenging. In this paper, only the non-
minimum phase mode of the QTS is considered. 
 
3. Modeling and Parameter stimation  
The governing dynamical equations of the QTS 
can be represented as follows [1, 2]: 
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4 4
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h
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h

γ

γ
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− −
= +
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= +

  
=   

   

   (2) 

 
where ih , ia  and ( 1, , 4)iA i = K  are the water 
level, the cross section of the outlet hole and the 
cross section of the corresponding tank, 
respectively, 1γ  and 2γ  are the split coefficients 
of valves 1 and 2, respectively, 1v  and 2v  are the 
voltages applied to the pumps, respectively, 

1k and 2k  are constants relating the control 
voltages with water flow from the pumps and g is 
the gravitational constant. 

For designing the State-Feedback Controller 
(SFC), all parameter values of the system are 
needed because this method depends on the 
model of the system. For this reason, parameters 

1 2 1 2, , andk k γ γ  in (2) need to be estimated. The 
parameter values are estimated using the idnlgrey 
function in MATLAB software. This function 
finds a Grey-Box model that describes the system 
behavior as a set of nonlinear differential 
equations with unknown parameters. The 
structure of this function is 

 
idnlgrey(' ', , ,

, )
m filename order parameters

initial states Ts
=

 

Appendix I gives more details of this parameter 
estimation. For parameter estimation, input-
output data are collected from the laboratory 
system by applying step inputs to the pumps (e.g., 

1 3 Vu =  and 2 2.8 Vu = ). Model validation is 
shown in Figure 2. As this figure shows, the 
idnlgrey function has estimated the unknown 
parameters with approximately 84% accuracy. 
The estimated parameters are presented in Table 
1, where 1 20 0.76 1γ γ< + ≈ < , which shows that 
the system operates in its non-minimum phase 
mode. 
 
4. Controller Design 

4.1. Design of SMC 
The standard normal form for a 2 2×  MIMO 
system can be represented as [16] 
 

1 1
1 2

1 1 1 1 1
2 1 1 1 1 2 2
2 2
1 2
2 2 2 2 2
2 1 1 1 1 2 2

( ) ( ) ( )

( ) ( ) ( )

x x

x x f x g x u g x u
x x
x x f x g x u g x u

=

= = + +

=

= = + +

&

& &&
&
& &&

      (3) 

 
where 1 1 2 2 T

1 2 1 2[ ]x x x x=x  is the state vector and 
1 2 T
1 1[ ]x x=y  is the output vector. 

Equation (2) is not in the form of (3) and hence, 
should be transformed to the standard normal 
MIMO form. In non-minimum phase mode, the 
manipulated variables 1u  and 2u  have negligible 
effects on the water levels of the two bottom 
tanks since their dynamics are mainly controlled 
by the water flow from their respective upper 
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tanks. Hence, the flow ratio from their direct 
pump can be ignored. Thus, for determining the 
relative degree of the system for designing the 
SMC, inputs 1u  and 2u  must appear in the 
controlled variables 1h  and 2h  [26]. Therefore, by 

taking derivatives of 1h&  and 2h&  in (2), it gives 
1 1

1 1 2

22
1 3 31 31

2 1 2 2
1 1 31 1

3 2 21 1 1
1 22
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(4) 

 
According to (4), the relative degree of QTS in 
non-minimum phase mode is equal to two. Based 
on the sliding surface equation 
 

1( )nds e
dt

λ −= +                         (5) 
 

the sliding surfaces for the MIMO QTS can be 
written as 

 1 1 1

2 2 2

s e e
s e e

λ
λ

= +
= +

&
&

                            (6) 

 

where λ  is a positive constant and de x x= −  is 
the tracking error. Sufficient condition for 
reaching the error trajectories on the sliding 
surfaces and staying on them is that the 
manipulated variables 1u  and 2u  are designed 
such that the following sliding condition is 
satisfied: 
 

( )2 2
1 2 1 1 2 2

1 0
2

d s s s s t
dt

η η+ ≤ − − ∀ >      (7) 

 
where 1η  and 2η  are small positive constants. 

By considering uncertainties for 1
1f  and 2

1f  in 

(3) as 1
1̂f  and 2

1̂f , respectively, the upper bound 
of uncertainties can be defined as  
 

1 1
ˆ| | ,     1,2i i

if f F i− ≤ =                  (8) 
 
The uncertainties on the input vector can be 
considered as 
 

ˆ ˆ( ) ( ) ( )− = ∆G x G x G x                  (9) 
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1 1
1 2
2 2
1 2

( ) ( )
( )

( ) ( )
g x g x

x
g x g x

 
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 
G . 

It can be shown that the sliding control law can be 
derived as [27] 
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&

 (10) 
where T

1 2[ ]s s sk k=k  satisfies the reaching 
condition (7) with the sign function defined as 
 

   1        if  0
sgn( )    0       if   0

 1      if   0            

s
s s

s

>
= =
 − <     

 (11) 

 
4.2.  Design of SFC 
Using the Taylor series expansion, (2) can be 
linearized around its equilibrium point and the 
state-space realization of the QTS can be written 
as [1] 
 

,= +x Ax Bu&                       (12) 
 

where 
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in which 0
ih  ( 1, , 4i = K ) are the equilibrium 

points of QTS. The objective of implementing the 
state-feedback controller is to minimize the 
following performance index [27]: 
 

T T

0

( )J dt
∞

= +∫ x Qx u Ru  

 
where Q and R are constant and positive-definite 
matrices. The optimal control law is 
 

1 T
SFC

−= −u R B Px                    (13) 
 
where P is a symmetric positive-definite matrix 
that satisfies the following algebraic Riccati 
equation: 

T 1 T 0−− − + − =PA A P PBR B P Q . 
 
Hence, the SFC for the QTS is 
 

T
SFC = −u K x                         (14) 

 
where the gain matrix K is equal to 
 

1 T−= −K R B P                       (15) 
 
 4.3. Design of hybrid controller 
In this section, a combination of the SMC and the 
SFC with the aid of a fuzzy system will be 
presented. It is well known that the SMC has a 
fast transient response and is robust against 
uncertainties in the system. However, when the 
system trajectories are near the sliding surfaces 
the chattering phenomenon occurs. By 
introducing a boundary layer around the operating 
point, as it is common among researchers, the 
chattering can be avoided. However, there will be 
steady-state errors. In order to eliminate the 
chattering and at the same time obtaining zero 
steady-state response, the SFC will be used when 
the QTS operates near the sliding surfaces. The 
switching between these two controllers is 
performed using a fuzzy system. 
The fuzzy IF-THEN rules for the hybrid 
controller are defined as 
 

SMC

SFC

Rule 1: IF  is  H, THEN  

Rule 2: IF  is  L, THEN  

e

e

=

=

u u

u u
     (16) 

 
where | |e  is the absolute value of the tracking 
error and H and L are fuzzy variables designating 
high and low values, respectively. The 
membership functions of these fuzzy variables are 
shown in Figure 3. Since there are two 
manipulated variables in the QTS, two fuzzy 
systems are needed. In these fuzzy systems, | |e  is 
defined as the corresponding fuzzy input variable. 
As discussed in Section 4, when the system is in 
the non-minimum phase mode, the water level of 
the lower tanks is mainly controlled by the 
outflow of their respective upper tanks. Thus, in 
the fuzzy system, 1| |e  is the input to the fuzzy 
controller for generating 2u  while 2| |e  is the 
input to the fuzzy system for generating 1u . When 
the states of the system are far from the operating 
point, the first rule in (16) is triggered and hence, 
the SMC is applied to the system. On the other 
hand, when the states of the system are near the 
sliding surface (i.e., near the operating point) the 
second rule is activated and the SFC is applied to 
the system. Finally, when the states of the system 
are neither far from the operating point and nor 
near it, a combination of the SMC and the SFC is 
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applied to the system. Since a fuzzy system is 
used for the hybrid controller, the transition 
between the SMC and the SFC is continuous and 
smooth. By using the weighted-sum 
defuzzification method, the inputs to the pumps 

1 2[ ]u u  can be obtained as 
 

( ) ( ) ( ) ( )

( ) ( ) ( )( )    1,2 .H i L iSMC i SFC i
i

H i L i

e u e u
u t i

e e
µ µ

µ µ

+
= =

+
                            

(17) 
 
The block diagram of the proposed controller is 
shown in Figure 4.  
 
5.  STability analysis 
The stability analysis is based on breaking down 
the control problem into two fuzzy subsystems. 
Since the stability of every fuzzy subsystem is 
checked individually, the complexity of analysis 
is simplified. However, the condition that every 
fuzzy subsystem yields a stable closed-loop 
system does not directly imply that the entire 
fuzzy system, composed of several subsystems, 
yields a stable closed-loop system as well. 
Sufficient conditions that make this implication 
valid are stated in the following theorem: 
 

Theorem 
Consider a hybrid fuzzy control system as given 
in (16) and (17). If 

(1)  there exists a positive-definite, continuously 
differentiable, and radially unbounded scalar 
function TV = x P x , where n nR ×∈P  is a 
constant and positive-definite matrix, 

(2)  every fuzzy subsystems gives a negative-
definite V&  in the active region of the 
corresponding fuzzy rule, and 

(3)  the weighted-sum defuzzification method is 
employed, which for any input, the output cu  
of the fuzzy logic controller is between pu  
and qu  such that p c qu u u≤ ≤ , where pu  and 

qu  are the lower and upper bound of cu , 
respectively, 

then, according to the direct Lyapunov theory, the 
equilibrium point at the origin is globally 
asymptotically stable. 
 
Proof:  See [28] and [29]. 

 
Therefore, to guarantee the system stability, we 
need to find a suitable common Lyapunov 
function V  and ensure that every fuzzy 
subsystem yields a negative-definite V&  in the 
active region of the corresponding fuzzy rule. The 
active region of the corresponding fuzzy rule is 
defined as the region rX X⊂  such that the 
membership function 0( )i xµ  is not zero for all 

0 rx X∈ . 
 
5.1.  SMC subsystem 
 
Consider the Lyapunov function 

2 2
1 2

1 ( )
2

V s s= +                       (18) 

 
Using (3) and (6), the time-derivative of (18) 
becomes 
 

         [ ] 1
1 2
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s

V s s
s

 
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 

&&
&

 

 
Defining 1 1 1 1: dE e e yλ= + −& &&  and 

2 2 2 2: dE e e yλ= + −& && , it gives 
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1 2 1 2

2 2 4 2

x E f E
V s s s s

x E f E
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= = + +      +      
Gu

&&&
&&

   

(19)  
Consider the following sliding control law: 
 

2 1 1 11
SMC

4 2 2 2

ˆ sgn( )ˆ
ˆ sgn( )

s

s

f E k s

f E k s
−

 − − −
=  

− − −  
u G .    (20) 

Applying (20) to (19) yields 
 

[ ] 2
1 2

4

2 1 1 1 11

24 2 2 2

ˆ sgn( )ˆ
ˆ sgn( )

s

s

f
V s s

f

f E k s E
Ef E k s

−

  
=   

 
 − − −   + +    − − −     

GG

&

 (21) 

Using (9) and substituting 1ˆ − = +GG I Δ  in (21) 
gives 
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f f f E f

 + ∆ ∆   
= +    ∆ + ∆   

 − − −   +    − − −     

− − ∆ − − ∆ −
− + ∆ − ∆

=
− − ∆ − − ∆ −

&

2

1 21 1 2 22 2

)
sgn( ) (1 )sgn( )s s

E
k s k s

 
 
 
 
 
 − ∆ − + ∆ 

      

(22) 
Applying the defined boundary in (8) to (22) 
yields 
 

 

(
)

(
)

2 11 2 1 12 4 2

11 1 2 12 1

4 21 2 1 22 4 3

11 1 22 2 2

ˆ ˆ

(1 )

ˆ ˆ    

(1 )

s s

s s

V F f E f E

k k s

F f E f E

k k s

γ γ

γ γ

γ γ

γ γ

≤ + − + −

− − +

+ + − + −

+ − −

&

   (23) 

 
If the following conditions are satisfied 
 

 

11 1 2 11 1 12 22 4

12 2 1

22 2 4 21 1 22 22 4

11 1 2

(1 )

(1 )

s

s

s

s

k F f E f E

k

k F f E f E

k

γ γ γ

γ η

γ γ γ

γ η

∧ ∧

∧ ∧

− ≥ + − + −

+ +

− ≥ + − + −

+ +

(24)                                                                                                             

 
then, the sliding mode reaching condition (7) is 
verified 
 

1 1 2 2V s sη η≤ − −&                    (25)  
 
Hence, the stability of the SMC subsystem is 
guaranteed.  
 
5.2. SFC subsystem 
For the SFC subsystem, the same Lyapunov 
function as in (18) is used 
 

1 01
0 12

TV  
=  

 
s s                     (26)  

 

where T
1 2[ ]s s=s . In order to guarantee the 

stability of the SFC subsystem, let us define new 
state variable as 1e&  and 2e& . This is because the 
derivative of these two states exist in V& . The 
augmented open-loop plant can be represented as 

1 1

1 2 1 21 1

3 33 3

4 44 4

2 2

6 5 5 62 2

0 1 0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0

e e
m m b be e

m be e ud
m be edt

e e
m m b be e

   
                           = +   
                              

   pp BA

& &

& &14444244443 123

1

2u
 
 
 

                             

(27) 
The parameters in (27) are given in Appendix II. 
Assuming the linear system as p p= +x A x B u& , 
and by selecting d= −e x x , the error dynamics 
can be written as 
 

p p p d= + +e A e B u A x&               (28) 
 
It can be shown that if 0d =Ax  and if the state 
variables of the new system in (28) converge to 
zero, then the state variable of the system will 
converge to dx . It is straightforward to shown 
that the following state-feedback control law can 
derive the state variables in (28) to zero: 

T
SFC

1

p

R

 
 

= − 
  
 k

u B P e
123

                 (29) 

 
Since ( , )P PA B  is controllable, it is possible to 
move the eigenvalues of P P p−A B K  to the 
desired locations. Hence, the stable closed-loop 
dynamics can be presented as 
 

( )P P p= −

clA

e A B K e&
1442443

                   (30) 

Now, the sliding surfaces (6) is defined as 
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[ ] [ ]

1 1

1 1

3 3
1 1 4 2 1 4

4 4

2 2

2 2

1 0 , 0 1  

e e
e e
e e

s s
e e
e e
e e

λ λ× ×

   
   
   
   

= =   
   
   
   
      

& &

& &  

(31) 

By defining 
 

1 4

1 4

1 0
:

0 1
λ

λ
×

×

 
=  

 
Λ                   (32) 

 
and substituting (31) into (26), it yields 
 

 T T1
2

V = e Λ Λe                      (33) 

 
where T:=P Λ Λ  is a symmetric positive definite 
matrix. The time derivative of (33) is 
 

T T T T T
cl cl

T T
cl cl

1 1 1 1
2 2 2 2
1 ( )
2

= + = +

= +

V e Pe e Pe e A Pe e PA e

e A P PA e

& & &
  (34) 

 
The stability of clA  ensures the existence of the 
symmetric positive definite solution P of the 
following algebraic Riccati equation:  
 

T
cl cl+ = −PA A P Q                     (35) 

where Q is a symmetric positive definite matrix. 
Hence,  

T1 0
2

V = − ≤e Qe&                     (36) 

 
Therefore, the state feedback subsystem is also 
stable.  
Then, according to Theorem 1, the whole closed-
loop system, consisting of the SMC and SFC sub-
controllers, is asymptotically stable. 
 
6. Experimintal Results 
The Experimental QTS (Figure 5) has 4 
translucent tanks each with a pressure sensor to 
measure the water level. Two pumps are 
submersible in water reservoir and allow variable 
flow control. The height of each tank is 30 cm. 

The parameter values of the QTS in the non-
minimum phase mode are given in Table 2. 
The SMC is applied to the system with the 
switching parameters selected as 1 2 1s sk k= =  and 

10λ = . In addition, the gain matrix K in the SFC 
part is determined as  
 

0.2422 0.1954 0.0522 0.1541
0.1932 0.1409 0.1675 0.0144

 
=  − 

K  

 
It should be mentioned that the same parameters 
are used in experiments for the stand-alone SMC 
and SFC controllers as well as for the hybrid 
fuzzy SMC-SFC controller.  
As depicted in Figures 6 and 7, the hybrid 
controller has better performance as compared to 
the SMC and SFC alone. The SMC has 
undesirable overshoots and chattering in the 
control signals, which can damage the pumps in a 
short time. Moreover, the SFC responses are not 
as fast as the SMC and have larger rise times. On 
the other hand, the hybrid SMC-SFC controller 
has better response as compared to both 
controllers. Table 3 summarizes the performance 
of different controllers. Figure 8 shows the 
contribution of the SMC and the SFC in the 
hybrid fuzzy controller during the operation of the 
system. 
Next, performance of the controllers is 
investigated against changes in the system 
parameters. For this reason, the cross section of 
the outlet hose of pump 1 is changed by about 
30%. As Figure 9 shows, the effect of this 
uncertainty in the steady state is much larger on 
the SFC than on the hybrid fuzzy controller. This 
is mainly because the SFC depends on the model 
of the system and considerable changes in the 
system parameters can deteriorate performance of 
the controller. Figures 10 and 11 show that the 
hybrid controller continuously switches between 
the SFC and the SMC in order to overcome this 
large uncertainty. 
 
6. Conclusions 
In this paper, a combination of the SFC and the 
SMC using fuzzy logic was presented for better 
performance of the nonlinear and non-minimum 
phase quadruple tank system. The proposed 
controller has the advantages of both SMC and 
SFC. In other words, the fast transient response 
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and robustness of the SMC and zero steady-state 
error of the SFC can be obtained. It was shown by 
laboratory experiments that the proposed method 
offers fast transient response as well as 
insignificant steady-state errors without any 
chattering in the control signals. Moreover, the 
combined controller could cope with system 
uncertainties better than the SFC. The stability of 
the closed-loop system was shown using the 
Lyapunov direct method. 
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Table 1. Estimated parameters of QTS 
 

1γ
 

2γ
 

1k
 

2k
 

0.42 0.34 27.43 19.55 
 
 

 
 

Figure1. Schematic diagram of QTS. 
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Figure 2. Model validation. 
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Figure 3.  Input membership functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Block diagram of the fuzzy SMC-SFC controller. 
 
 

 
Table 2. Parameter values of QTS 

Parameter Value 
Cross section of tanks 

   ( 1,..., 4)iA i =  
138.9 2(cm )  

Cross section of outlet 
hose 

   ( 1,..., 4)ia i =  
0.50265 2(cm )  

g 981 2(cm/s )  

 
Figure 5. Experimental QTS. 
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Figure 6. Performance of three controllers. The desired value for both tanks is 12 cm, (a) Water level in tank 1 and (b) Water 
level in tank 2. 
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Figure 7. Inputs 1u  and 2u  of different controllers 
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Figure 8. 
 
 

20 40 60 80 100 120 140
0

5

10

15

t (sec)

ta
nk

 2
 w

at
er

 le
ve

l (
cm

)

 

 
sfc
hybrid
desired

 
Figure 9. Comparison of SFC and combined controller in presence of system uncertainty. 

 
 
 
 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.13,NO.4, WINTER 2014 

16 
 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

t (sec)

µ

 

 

smc-coefficient
sfc-coefficient

 
 

Figure 10. Contribution of SFC and SMC to the hybrid control law for the case of Figure 9. 
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Figure 11. Control inputs for the case of Figure. 9. 
 
 

Table 3. Quantitative comparison of controllers for tank 1 
 
 
 
 
 

 

Controller Overshoot 
Rise time 

(s) 
Settling 
time (s) 

Least mean square 
error 

SMC 44.16% 66 - 0.4275 
SFC 10% 80 120 0.0339 
Hybrid Controller 13.33% 65 90 0.0331 


