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Abstract

This paper considers control of a laboratory
Quadruple Tank System (QTS) in its non-
minimum phase mode. This system is a well-
known laboratory process suitable to illustrate the
concepts of multivariable control methods. The
objective of this paper was to design a controller
based on combination of the diding-mode and the
state-feedback control methods using fuzzy logic.
The proposed method takes advantage of the fast
transient response of the diding-mode controller
and the zero steady-state error of the state
feedback controller. In other words, the fuzzy
system uses the SMC when the QTS is in the
transient mode and utilizesthe SFC when it is near
the steady-state mode. Hence, the advantages of
both controllers have been used simultaneously.
The switching between these two controllers is
continuous and smooth based on a few simple
fuzzy rules. Stability analysis of the proposed
method is presented based on the Lyapunov
stability direct method. Experimental results
confirmed effectiveness of the proposed method as
compared with the stand-alone controllers,
especially when there are uncertainties in the
system parameters.

Keywords: non-minimum phase  system,
quadruple tank system, dliding-mode control,
state-feedback, control, hybrid fuzzy systems

1.Introduction

The Quadruple Tank System (QTS) is a well-
known multivariable laboratory process system
that has been widely used by many researchers as
a benchmark problem for multivariable control
methods, especialy when the system operates in
its non-minimum phase mode, where the
linearized dynamics of the process exhibits a
multivariable zero on the right-hand side of the s-
plane. This situation is achieved by adjusting the
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valves position of the QTS [1, 2]. Thisfeature has
attracted researchers to control this process in its
minimum as well as non-minimum phase modes.
Better understanding of the QTS mechanism and
designing different controllers by developing
mathematical model of this nonlinear system has
been proposed in literature. Ucak and Oke have
presented e-Support Vector Regression (SVR)
method to model a quadruple tank system [3].
They have suggested the use of SVR in intelligent
modeling of nonlinear systems and tuning the
controller parameters based on the system model.
Yuntao et al. have proposed two multivariable
model-based control schemes for QTS. A MIMO
model predictive and network-based H,

multivariable tracking controllers have been
implemented on the experimental QTSin [4].

Traditiona modeling techniques are rather
complex and time consuming and incorporate the
entire dynamics of the process. However, soft
computing techniques can approximates the
process using input-output data sets. Malar has
employed soft computing techniques (i.e., Neura
Networks (NNs), fuzzy logic, and ther
combinations) for the QTS modeling [5]. Fuzzy
logic has also been used for controlling of the
QTS. Mdar and Thyagargjan have proposed
decentralized fuzzy pre-compensated Pl controller
for the QTS in both the minimum and non-
minimum phase modes [6]. They have employed
relative-gain array analysis [7] for decentralized
control of this process and have shown that in the
non-minimum phase mode, the input-output
pairing should be reversed in order to create
smoother outputs without oscillations, which
would increasse the actuators life time.
Pourmohammad et al. have established an
adaptive fuzzy multivariable controller design
based on the Lyapunov scheme, where the closed-
loop system is monitored and the parameters of
the controller are adapted in order to minimize the
tracking error [8].

The Model Predictive Control (MPC) method
is an advanced control strategy that uses a model
to predict the future behavior of the system.
Deepa et al. have developed a discrete-time MPC
for the QTS with and without a dead time in the
process [9]. The control vector is optimized and
the results are compared with the decentralized Pl
controller. Alvardo et al. have proposed a robust
tube-based MPC for tracking piecewise constant
references based on the quadruple tank process
[10]. They have shown that the controller ensures
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the feasibility for an admissible set point and
convergences to a desired steady state. Pan and
Wang have used two NNs in the MPC and tested
their method on the QTS [11]. In this line of
work, Sivakumaran proposed a nonlinear MPC
using recurrent NN as a predictor and
implemented that on the QTS [12]. Mercangoz et
al. have proposed a distributed MPC and applied
it on an experimental QTS in the non-minimum
phase mode [13]. They have partitioned the
system into self-sufficient estimation and control
nodes. The results of their experiments have
shown that their method performs better than a
completely decentralized set of controllers. In
[14], authors have proposed distributed multi-
parametric MPC for the QTS that exhibits some
robustness against uncertainties in the system
parameters.

Shneiderman and Palmor have extended the
QTS to include multivariable dead times that may
introduce infinite, finite or no non-minimum
phase zeros [15]. They have shown that existence
of non-minimum phase zeros depends on a
particular combination of multivariable dead
times.

Biswas et al. have developed a dliding-mode
controller (SMC) for the QTS in its non-
minimum phase mode based on the feedback
linearization method [16]. Although the proposed
method is robust, the presence of discontinuous
functions in the controller creates chattering,
which is undesirable for system actuators. To
reduce this effect, they have considered the well-
known boundary layer around the sliding surface
that creates steady-state errors. Gareli et al. have
proposed a collective SMC for the QTS in its
minimum phase mode [17].

In [18], the quadruple tank process has been
exploited to study different types of nonlinear
observers and three approaches namely Extended
Kaman Filter (EKF), High-Gain Observer
(HGO), and High-Gain EKF (HG-EKF) have
been analyzed.

Gadloul et al. have presented an output
feedback controller for the QTS to estimate the
water levels into two bottom tanks using the
information available from the measured levels
[19, 20]. The same control technique has been
employed in [21] and [22], where the level
control for the QTS with variable nonlinear zero
dynamics has been considered and the

interactions and effects of the uncertainties have
been discussed.

An inherent property of the multivariable
systems is the interaction between their deferent
inputs and outputs. Gareli et al. have presented a
partia decoupling method for the MIMO systems
and have implemented it to the non-minimum
phase of the QTS. They have shown that the
switching is carried out at very high frequencies
[23].

In 2002, Astrom et al. have proposed a Pl
controller with interacting loops for an
experimental QTS [24]. In this line of work, in
2004, Numsomran et al. have proposed Pl
controller for the QTS by using decentralized
methods for the non-minimum phase and
minimum phase modes [25].

In this paper, the objective is to combine the
SMC and the State-Feedback Controller (SFC)
using fuzzy logic for the non-minimum phase
mode of the QTS. Moreover, uncertainties in the
system are aso considered. The SMC is
employed because of its fast transient response
and robustness against uncertainties in the system,
while the SFC is used because of its zero steady-
state error. Hence, the fuzzy system uses the SMC
when the QTS is in the transient mode and
utilizes the SFC when it is near the steady-state
mode. In this way, the advantages of both
controllers are used simultaneously.

This paper is organized as follows. Section 2
describes the nonlinear QTS. In Section 3,
modeling and parameter estimation of the QTS
will be given. Sections 4 describes the design of
the SMC, the SFC, and the hybrid controller
based on the fuzzy logic. Stability analysis of the
proposed controller is presented in Section 5.
Section 6 shows the experimental result. Section
7 concludes the paper.

2.Rrocessdescription

The QTS has two pumps that are used to
discharge water from reservoir into four overhead
tanks [1]. The schematic diagram of this systemis
shown in Figure 1. One of the interesting
characteristics of this system is placing one of its
multivariable zeros on either half of the s-plane
by changing the position of two valves. The
manipulated variables of the QTS are the voltages
applied to the pumps. The controlled variables are
the water levels in two lower tanks (i.e., tanks 1
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and 2). The output of each pump is divided into
two tanks; one in the lower part and the other in
the upper part, diagonally opposite. In other
words, the outflow of pump 1 splits between
tanks 1 and 4 and the outflow of pump 2 splits
between tanks 2 and 3 (Figure 1). The split ratio
is determined by the valves positions. The
quadruple tank process has two transmission
zeros. The position of one of these zeros depends
on the split fraction g, and g, in valves 1 and 2,
respectively. The minimum and non-minimum
phase modes can be achieved as

minimum phase mode: 1<(9,*+9,) <2
non-minimumphase mode: 0<(g, +9,) <1

(D)

The non-minimum phase mode of this system
(i.e, when there exist right-half-plane zeros)
imposes serious limitations on the performance of
the controller and makes the control problem
more chalenging. In this paper, only the non-
minimum phase mode of the QTS is considered.

3.Modeling and Parameter stimation
The governing dynamical equations of the QTS
can be represented asfollows[1, 2]:

d_!'- =% 3 %

p A \J2gh +—=./2gh, + v,
d— :_— & ngZ
dtb 2./2gh, +—/2¢gh, + v,

dh, _-a (- g,)k,
m AE)\/ZQ + A v, 2

%:ﬁ (1' gl)kl
m A41/29h4+ A v,

_& 0 0 Ouehy
"o 1 0 o

where h, a and A (i=1 K, 4) are the water
level, the cross section of the outlet hole and the
cross section of the corresponding tank,
respectively, g, and g, are the split coefficients
of valves 1 and 2, respectively, v, and v, are the
voltages applied to the pumps, respectively,
k,and k, are constants relating the control

voltages with water flow from the pumpsand g is
the gravitational constant.

For designing the State-Feedback Controller
(SFC), al parameter values of the system are
needed because this method depends on the
model of the system. For this reason, parameters
k., k,, 9, and g, in (2) need to be estimated. The
parameter values are estimated using the idnigrey
function in MATLAB software. This function
finds a Grey-Box model that describes the system
behavior as a set of nonlinear differential
equations with unknown parameters. The
structure of thisfunctionis

m=idnlgrey(' filename', order, parameters,

initial states, Ts)
Appendix | gives more details of this parameter
estimation. For parameter estimation, input-
output data are collected from the laboratory
system by applying step inputs to the pumps (e.g.,
u =3V and u,=28V). Model vaidation is
shown in Figure 2. As this figure shows, the
idnlgrey function has estimated the unknown
parameters with approximately 84% accuracy.
The estimated parameters are presented in Table
1, where 0<g, +g, » 0.76 <1, which shows that

the system operates in its non-minimum phase
mode.
4.Controller Design

4.1. Design of SMC
The standard norma form for a 2° 2 MIMO

system can be represented as [16]
k=%
£=@ =0+ g0 u+ gy, (g
=%

1= =200+ g7 (%) u +g5(x) u,

where x =[x x; x> X2]" is the state vector and
y =[x x?]" isthe output vector.

Equation (2) is not in the form of (3) and hence,
should be transformed to the standard normal
MIMO form. In non-minimum phase mode, the
manipulated variables u, and u, have negligible
effects on the water levels of the two bottom

tanks since their dynamics are mainly controlled
by the water flow from their respective upper
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tanks. Hence, the flow ratio from their direct
pump can be ignored. Thus, for determining the
relative degree of the system for designing the
SMC, inputs u, and u, must appear in the

controlled variables h, and h, [26]. Therefore, by
taking derivatives of Igll and Igl2 in(2), it gives
b= =x
_&?g aagfh, a0
e A AAL

® aggk, ¢ ° L Bg(1- g )k, ¢ 0
€ m2oh s & AA2GN 5
: ﬁlz = X2

_®g aagfh  ajgd,
éAz R AAS

&,9(1- 91)k1° ® a,00.k, ‘?

EAAZIN, 5 & A\2dh 5

According to (4), the relative degree of QTS in
non-minimum phase mode is equal to two. Based
on the dliding surface equation

— i n-1
=t e ®)

the dliding surfaces for the MIMO QTS can be
written as

s=le+é
s=le+é

where | is a positive constant and e=Xx- X, is

the tracking error. Sufficient condition for
reaching the error trajectories on the diding
surfaces and staying on them is that the
manipulated variables u, and u, are designed

such that the following dliding condition is
satisfied:

(6)

1d

Ea(sf +s§)£-hl|sl|- h,|s,] "t>0 (7)

where h, and h, are small positive constants.

By considering uncertainties for f! and f;? in
(3) as 1?11 and ff, respectively, the upper bound
of uncertainties can be defined as

|fi- fEF, =12 ®)

The uncertainties on the input vector can be
considered as

G(x)- G(x) =DG(x) )
91(><) 92(><)u

egl( X) gz(X)u
It can be shown that the sliding control law can be
derived as [27]

where G(x) =

¢ aggk  ag@- gk U’
L e Aaon AA20n,
T %agl-g)k | a9k U
eAAN20h,  A2gh,
- oo aaovh algl, 4
g g AJh AAG EI‘j
é 'k5139n(51)l:|
e . NU
é R Lgvh, ang U
%, g0 anolh ol .
A TN VN
8 'kszsgn(sz)tl
(10)

where k_ =[k, k,]" satisfies the reaching
condition (7) with the sign function defined as

if >0
if s=0 (12)

sgn(s)z% 0
-1 if s<0

I
|

4.2. Designof SFC

Using the Taylor series expansion, (2) can be
linearized around its equilibrium point and the
state-space realization of the QTS can be written
as[1]

% = Ax +Bu, (12

where
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el o 1 ,Lu
ng T, 3
o i oo L
Azé 2 4l;|
S0 o0 -X oy
S T, -
é 3 a
é 1u
g0 0 0 -=y
é T, 0
é gk u
e Y
¢ A G
e 0o %oy
B=¢ Ao
é - a
¢ Ao
é(1- a
A( gl)k1 O l:l
e A Q
c_€ 00 o
‘30 1 0 of
A 0
= (i=1 K,4)
in which h° (|—LK,4) are the equilibrium

points of QTS. The objective of implementing the
state-feedback controller is to minimize the
following performance index [27]:

¥
= (x'Qx +u'Ru)dt

0
where Q and R are constant and positive-definite
matrices. The optimal control law is

Uge =- R'BTPX (13)
where Pis a symmetric positive-definite matrix
that satisfies the following agebraic Riccati
equation:

-PA- ATP+PBR 'B'P- Q =0.

Hence, the SFC for the QTS is

Uge =- KX (14)

where the gain matrix K is equal to

K=-R'B™P (15)

4.3. Design of hybrid controller

In this section, a combination of the SMC and the
SFC with the aid of a fuzzy system will be
presented. It is well known that the SMC has a
fast transient response and is robust against
uncertainties in the system. However, when the
system trgjectories are near the dliding surfaces
the chattering phenomenon occurs. By
introducing a boundary layer around the operating
point, as it is common among researchers, the
chattering can be avoided. However, there will be
steady-state errors. In order to eliminate the
chattering and at the same time obtaining zero
steady-state response, the SFC will be used when
the QTS operates near the dliding surfaces. The
switching between these two controllers is
performed using a fuzzy system.

The fuzzy IF-THEN rules for the hybrid
controller are defined as

Rulel: IF |¢ is H, THEN u=ug,.
Rule2: IF |d is L, THEN u=

- uSFC

(16)

where |e| is the absolute value of the tracking

error and H and L are fuzzy variables designating
high and low values, respectively. The
membership functions of these fuzzy variables are
shown in Figure 3. Since there are two
manipulated variables in the QTS, two fuzzy
systems are needed. In these fuzzy systems, |e| is

defined as the corresponding fuzzy input variable.
As discussed in Section 4, when the system isin
the non-minimum phase mode, the water level of
the lower tanks is mainly controlled by the
outflow of their respective upper tanks. Thus, in
the fuzzy system, |e | is the input to the fuzzy

controller for generating u, while |e | is the
input to the fuzzy system for generating u, . When

the states of the system are far from the operating
point, the first rule in (16) is triggered and hence,
the SMC is applied to the system. On the other
hand, when the states of the system are near the
dliding surface (i.e., near the operating point) the
second rule is activated and the SFC is applied to
the system. Finally, when the states of the system
are neither far from the operating point and nor
near it, a combination of the SMC and the SFC is
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applied to the system. Since a fuzzy system is
used for the hybrid controller, the transition
between the SMC and the SFC is continuous and
smooth. By using the weighted-sum
defuzzification method, the inputs to the pumps
[u, u,] can be obtained as

m, (|Q|)USMC(i) +m (|q|)uSFC(i) (i

= (el) ~m (e

=1.2).
(17)

The block diagram of the proposed controller is
shown in Figure 4.

5. ST ability analysis

The stability analysis is based on breaking down
the control problem into two fuzzy subsystems.
Since the stability of every fuzzy subsystem is
checked individually, the complexity of anaysis
is simplified. However, the condition that every
fuzzy subsystem vyields a stable closed-loop
system does not directly imply that the entire
fuzzy system, composed of severa subsystems,
yields a stable closed-loop system as well.
Sufficient conditions that make this implication
valid are stated in the following theorem:

Theorem
Consider ahybrid fuzzy control system as given
in (16) and (17). If

(2) there exists a positive-definite, continuously
differentiable, and radialy unbounded scalar
function V =x"Px, where PI R"" is a
constant and positive-definite matrix,

(2) every fuzzy subsystems gives a negative-
definite ' in the active region of the
corresponding fuzzy rule, and

(3) the weighted-sum defuzzification method is
employed, which for any input, the output u,
of the fuzzy logic controller is between u,
and u, such that u, £u, £u,, where u, and
u, are the lower and upper bound of u,
respectively,

then, according to the direct Lyapunov theory, the
equilibrium point a the origin is globally
asymptotically stable.

Proof: See[28] and [29].

Therefore, to guarantee the system stability, we
need to find a suitable common Lyapunov
function V and ensure that every fuzzy
subsystem yields a negative-definite \t in the
active region of the corresponding fuzzy rule. The
active region of the corresponding fuzzy rule is
defined as the region X 1 X such that the

membership function m(x,) is not zero for al
X1 X, .

5.1. SMC subsystem

Consider the Lyapunov function
V=l ) (18)

Using (3) and (6), the time-derivative of (18)
becomes

= [S_L Sz]eﬁlu

Defining E=é+le-§, and
E,=&+le- &,,itgives

é& +E u_ éE, u0
Vi=[s s]e &+ 4 =[ss ]ef u*GU"“gE i

(19)
Consider the following sliding control law:

E - kasgn(s) Y

f, -
f\- E,- Koson(s)g
yields

Ugye =G (20)

é-
€

23
Applying (20) to (19)

[ ]aef ,U

+Gé1§'A E - kslsgn(sl)u éE, 00 (21)

& f,-E- kszsgn(sz)a eEZHz

Using (9) and substituting GG™> =1 +A in (21)
gives
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De, l]

[ ]&Ef U él+D,
1+ D22u

4u eD

- - B kason(s) U, 66,00
f,- E,- k,s9n(s,)f eEzHg

?fz' fz)' Dll(fz' E)- D12(f4' E) 9
_[§ ]Q ksl(1+ Dll)fgn(sl)' kszDzngn(Sz)j
g(f f4)' Dzl(fz' Ei)' D22(f4' Ez) —
8 klelegn(q)— k32(1+ Dzz)Sgn(Sz)E
(22)

Applying the defined boundary in (8) to (22)
yields

(q>> ™

\ﬁ£(F rgu|f f, -

.- E|+0p
- (- Gu)ky +k52912)|%|
.- B|+0n|f- B
0Ky - (- G)Ko,)|s|

(23
( F + ng

If the following conditions are satisfied

V] V]
(1' gll)ksls F2+911 fz' E1 05, f4' Ez

+ngk32 +h1
V]
f,- E

(24)

V]
(1' gzz)kszs I:4"'921 fz' E1

+02

+gllk +h

then, the sliding mode reaching condition (7) is
verified

VE£-h,[s|-h,[s) (25)

Hence, the stability of the SMC subsystemis
guaranteed.

5.2. S-C subsystem

For the SFC subsystem, the same Lyapunov
function asin (18) is used

1
V=da s 26
2 & 1 )

where s=[s s,]". In order to guarantee the

stability of the SFC subsystem, let us define new

state variable as & and &,. This is because the

derivative of these two states exist in . The

augmented open-loop plant can be represented as
é u é u

o € 1 0 0 0 okey €0 oU
gu € Ua g § Y
&p e Om 0 O Og&y, & b

a%iD om0 0 dsi o bl

dgg €0 0 0 m 0 Oy, &, 038.123
?ezu 0 00 00 19(2%3@0 0
en €940 g&u AR
e Ap u e B U

(27)

The parametersin (27) are given in Appendix Il.
Assuming the linear system as x=A x+Bu,
and by selecting e=x- x,, the error dynamics
can be written as

é=A e+B u+A x, (28)

It can be shown that if Ax, =0 and if the state

variables of the new system in (28) converge to
zero, then the state variable of the system will
converge to X,. It is straightforward to shown

that the following state-feedback control law can
derive the state variablesin (28) to zero:

2 0
1

Uge =0 ~BTPie (29)

Ro3+
§ 65

Since (A;,B;) is controllable, it is possible to
move the eigenvalues of A,-B.K  to the

desired locations. Hence, the stable closed-loop
dynamics can be presented as

i O

Now, the dliding surfaces (6) is defined as
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e u e
é, é, u
¢t ¢
ég,l ée,l
s=|I 1 0,le’a,s=|0, | LYe’ g (31
| 14]éeztu . ]ée4l]
9%“ Q%“
&0 &0
By defining
él 1 0,u
= | ;_AQ (32)
14 u
and substituting (31) into (26), it yields
1,
V—Ee ATAe (33)

where P:= ATA isasymmetric positive definite
matrix. The time derivative of (33) is

V= éTPe+ ope=21g Al Pe+ Lepa e
2 2 2 (34)
=§eT(A;P+ PA,)e

The stability of A, ensures the existence of the

symmetric positive definite solution P of the
following algebraic Riccati equation:

PA,+AP=-Q (35)

where Q is asymmetric positive definite matrix.
Hence,

V= %eTQeE 0 (36)

Therefore, the state feedback subsystem is also
stable.

Then, according to Theorem 1, the whole closed-
loop system, consisting of the SMC and SFC sub-
controllers, is asymptotically stable.

6. Experimintal Results

The Experimenta QTS (Figure 5) has 4
translucent tanks each with a pressure sensor to
measure the water level. Two pumps are
submersible in water reservoir and alow variable
flow control. The height of each tank is 30 cm.

The parameter values of the QTS in the non-
minimum phase mode are given in Table 2.

The SMC is applied to the system with the
switching parameters selected as k; =k, =1 and

| =10. In addition, the gain matrix K in the SFC
part is determined as

_@0.2422 01954 0.0522 0.15410
~ 81032 01409 0.1675 - 001444

It should be mentioned that the same parameters
are used in experiments for the stand-alone SMC
and SFC controllers as well as for the hybrid
fuzzy SMC-SFC controller.

As depicted in Figures 6 and 7, the hybrid
controller has better performance as compared to
the SMC and SFC done. The SMC has
undesirable overshoots and chattering in the
control signals, which can damage the pumpsin a
short time. Moreover, the SFC responses are not
as fast as the SMC and have larger rise times. On
the other hand, the hybrid SMC-SFC controller
has better response as compared to both
controllers. Table 3 summarizes the performance
of different controllers. Figure 8 shows the
contribution of the SMC and the SFC in the
hybrid fuzzy controller during the operation of the
system.

Next, peformance of the controllers is
investigated against changes in the system
parameters. For this reason, the cross section of
the outlet hose of pump 1 is changed by about
30%. As Figure 9 shows, the effect of this
uncertainty in the steady state is much larger on
the SFC than on the hybrid fuzzy controller. This
is mainly because the SFC depends on the model
of the system and considerable changes in the
system parameters can deteriorate performance of
the controller. Figures 10 and 11 show that the
hybrid controller continuously switches between
the SFC and the SMC in order to overcome this
large uncertainty.

6. Conclusions
In this paper, a combination of the SFC and the

SMC using fuzzy logic was presented for better
performance of the nonlinear and non-minimum
phase quadruple tank system. The proposed
controller has the advantages of both SMC and
SFC. In other words, the fast transient response
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and robustness of the SMC and zero steady-state
error of the SFC can be obtained. It was shown by
laboratory experiments that the proposed method
offers fast transient response as well as
insignificant steady-state errors without any
chattering in the control signals. Moreover, the
combined controller could cope with system
uncertainties better than the SFC. The stability of
the closed-loop system was shown using the
Lyapunov direct method.
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Table 1. Estimated parameters of QTS
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Table 2. Parameter values of QTS

Parameter Vaue
Cross section of tanks )
A (i=1..4) 138.9 (cm°?)
Cross section of outlet
hose 0.50265 (cm?)
a (=1..4
g 981 (cmvs?)

Figure5. Experimental QTS.
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MIRAKHORLI AND FARROKHI: FUZZY SM SF CONTROL OF NONMINIMUM PHASE QUADRUPLE TANK SYSTEM
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Figure 6. Performance of three controllers. The desired value for both tanks is 12 cm, (a) Water level intank 1 and (b) Water
level in tank 2.
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Figure 9. Comparison of SFC and combined controller in presence of system uncertainty.
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Table 3. Quantitative comparison of controllersfor tank 1
Risetime  Settlin L east mean square
Controller Overshoot . 9 .
() time () error
SMC 44.16% 66 - 0.4275
SFC 10% 80 120 0.0339
Hybrid Controller 13.33% 65 90 0.0331
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