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Abstract 
 This paper proposes a new hierarchical 
identification method for fractional-order systems. 
In this method, a SISO (single input, single output) 
state space model has been considered in which 
parameters and also state variables should be 
estimated.  By using a linear transformation and a 
shift operator, the system will be transformed into a 
form appropriate for identification of a fractional-
order system. Then, the unknown parameters will 
be identified through a recursive least squares 
method and the states will be estimated using a 
fractional order Kalman filter. This identification 
method is based on the hierarchical identification 
principle that reduces the computational burden 
and is easy to implement on computer. The 
promising performance of the proposed method is 
verified using two stable fractional-order systems. 
 
Keywords: Fractional order systems; fractional 
order Kalman filter; recursive identification; 
hierarchical identification principle 
 
1. Introduction 
In 1695, the concept of fractional calculus was 
expressed for the first time by Leibniz and 
L'Hospital. In the late nineteenth century, Riemann 
and Liouville give the first definition of fractional 
derivatives. In recent years, because of their many 
applications, fractional-order systems (systems that 
contain fractional derivatives and fractional 
integrals) have received the attention of many 
researchers [1]. However, this idea began to be a 
topic of interest for engineers since 1960, 
especially insofar as they observed that certain 
actual systems in which fractional derivatives are 
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used exhibit greater accuracy [2]. Modelling the 
behaviour of materials such as polymers and 
rubbers can be considered as an example [3]. 
Electrochemical processes and robots with flexible 
arms are also modelled by fractional-order systems 
[4]. Fractional calculus is also a useful tool for 
modelling traffic in information networks [5]. 
Another research topic in the area of fractional 
order systems, which is developing rapidly, is 
fractional order PID controllers [6]. More 
applications and examples for the fractional order 
systems and also the fractional calculus can be 
found in [7-11].  

Fractional-order system identification methods 
can be broadly classified as techniques in the 
frequency domain and in the time domain. Due to 
their long-term memory behaviour, the 
identification of fractional-order models is more 
difficult than for integer-order models; therefore, 
different algorithms have been proposed in the 
frequency domain to solve this problem [4]. In [12-
14], methods for the time domain identification of 
fractional-order discrete-time systems are presented 
based on non-recursive least squares. However, 
these methods can raise problems in computing, 
such as the creation of singular matrices, which 
hampers identification. Furthermore, online 
identification will be required for time-varying 
systems. Therefore, recursive identification is 
important to avoid the above mentioned problems. 
State space system identification is important for 
controller design and pole placement. Some 
methods have been reported for linear and 
nonlinear systems [15-18]. Also, several papers 
have been presented in relation to identification of 
fractional order systems [19-25], but there is not 
any method of recursive identification of fractional 
order state space systems in the literature so far. 
The identification method provided in this paper is 
based on a recursive identification algorithm that 
has the capability of identifying the parameters of 
fractional order state space system recursively. 

Therefore, in this paper a new hierarchical 
identification method will be introduced for SISO 
fractional order systems. Actually, hierarchical 
identification is based on a decomposition method 
and is widely used in state and parameter 
estimation [26, 27]. The basic idea is to use the 
hierarchical identification principle to decompose 
the system model into several sub-models with 
smaller dimensions and fewer variables, and then 
to identify the parameter vector of each sub-model. 
This paper examines the problem of identification 
of a state space model for a SISO fractional-order 
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system. A hierarchical approach will be proposed 
in which the unknown system parameters as well 
as the states of the system are estimated 
simultaneously. The parameters are calculated 
based on a recursive least squares method and the 
states are estimated using a fractional Kalman 
filter. 

In addition, by decomposing the fractional state 
space system and using a hierarchical identification 
method, which is introduced in the present paper, a 
linear regression equation is derived including 
parameters and states of the system. This 
regression equation has the appropriate form for 
identification. Thus, by providing a recursive least 
squares algorithm, it is possible to identify the 
parameters of the fractional order state space 
system recursively. 

The proposed hierarchical identification method 
has many applications in various fields such as 
system modeling, signal filtering and adaptive 
control. Another application is in state feedback in 
which the states are used for stabilization of 
unstable dynamical systems. An advantage of using 
the state space model is that it can be easily 
expanded to multi-input multi-output (MIMO) 
systems, while the identification methods that are 
based on a transfer function cannot be easily 
expanded to MIMO systems. In addition, the 
hierarchical identification method provided in this 
paper reduces the computational burden and 
significantly improves the execution time. 
A canonical state space model has been used in this 
paper. This property can be exploited in system 
identification because the canonical models have a 
special form that makes them identifiable. 
The rest of the paper is organized as follows. In 
Section 2, the problem formulation is presented and 
the identification model is given in Section 3. 
Section 4 provides the state estimation algorithm 
and the proposed hierarchical parameter and state 
estimation algorithm is given in Section 5. In 
Section 6, two examples are provided. Finally, 
Section 7 concludes the paper. 
 
2. Problem formulation 
Consider the following fractional-order discrete 
time linear stochastic state-space system [28]. 

X( 1) ( ) ( ) ( )k AX k Bu k w kϒ∆ + = + +  (1) 
1

1
X( 1) X( 1) ( 1) X( 1 )

k
j

j
k k k j

j

+
ϒ

=

ϒ 
+ = ∆ + − − + − 

 
∑

 

(2) 

( ) ( ) ( )y k HX k v k= +  (3) 
where ϒ  is the order of the fractional difference 
( )R+ϒ ∈  and X( )k  is the state vector ( )X( ) nk R∈ . 

[ ]1 2( ) ( ) ( ) ... ( )nW k w k w k w k=  and ( )kν  are the 
process and measurement white Gaussian noises 
with zero mean, also ( )u k  and ( )y k  are the input 
and the output of the system, respectively. 
Furthermore, T  denotes the matrix/vector 
transpose and the symbol ( )nI I  shows an identity 
matrix with appropriate size ( )n n× . The system 
matrices ,A B  are the unknown parameters to be 
estimated from input–output data ( )u k  and ( )y k . 

Furthermore, 
j
ϒ 

 
 

 is defined as: 

( )
( ) ( )

1
1 1j j j
Γ ϒ +ϒ 

=  Γ + Γ ϒ − + 
 (4) 

Assuming that 0v > , Euler’s function Γ  is defined 
as:  

1

0
( ) v xx e v dv

∞ − −Γ = ∫  
(5) 

1
1( 1)

X( 1)
( 1)n

n

x k
k

x k

γ

γ

ϒ

 ∆ +
 ∆ + =  
 ∆ + 

M

 

 
(6) 

 

where 1,..., nγ γ  are the order of the system equation 
and n  is the number of system equations. 
Assumption 1: ( )v k  and ( )W k  are two 
independent white noises with zero mean and 
covariance matrixes ( )R k  and ( )Q k , respectively. 
In other words, we have: 

[ ] [ ]( ) 0, ( ) 0E w k E v k= =  (7) 
( ) ( ) ( ) ( )TE W k W j Q k k jδ  = −   

(8) 

( ) ( ) ( ) ( )TE v k v j R k k jδ  = −   
(9) 

( ) ( ) 0, ,TE w k v j k j  = ∀   
(10) 

Assumption 2: (0)X  is uncorrelated with ( )v k  and 
( )W k , and 
[ ] ˆX(0) (0)E X=  (11) 

0
ˆ ˆ(X(0) (0))(X(0) (0))TE X X P − − =   

(12) 

By combining the equations (1) and (2), the 
following equation is obtained: 

1

1

X( 1) ( ) ( ) ( ) X( 1 )
k

j
j

k AX k Bu k w k C k j
+

=

+ = + + + + −∑
 

(13) 

11( 1) ... nj
jC diag

j j
γ γ+     

= −     
      

(14) 

where the matrices A, B and the state vector X( )k  
are defined as follows: 
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[ ]
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[ ]
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,
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j
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nn j n n

c
c

C H

c

×

×

 
 
 = =
 
 
  

O
 

In addition, we also assume that: 
( ) 0 0
( ) 0 0

X( ) 0 0

u k k
y k k

k k

= ≤
= ≤
= ≤  

 
(15) 

In the state space model of the system, A and B 
matrices have unknown parameters which should 
be estimated using input-output data points. Block 
diagram of the fractional-order state-space system 
model is shown in Figure 1. 
 

B + 1z − 1z − 1z −

A

1
ϒ 

 
 

2
ϒ 

− 
 

( ) 11
1

k

k
+ ϒ 

− −  + 

H+

X( 1)k + X( )k X( 1)k −( )u k

( )y k

. . .
X(0)

( )v k

 
Fig. 1.: Block diagram of the fractional-order state-space 
system model. 
 
3. The model used for identification 
The main topic that is discussed in this paper is the 
identification problem. In this section, a linear 
regression equation will be derived in which the 
unknown parameters can be estimated using a 
recursive least squares method. Therefore, a 
hierarchical method is applied to have a proper 
form of the regression equation. 
Expanding equation (13) gives: 
 

1 2 3

1

X( 1) ( ) ( ) X( ) X( 1) X( 2)
... X(0) ( )k

k AX k Bu k C k C k C k
C w k+

+ = + + + − + −
+ + +

 (16) 

In addition, by opening equation (16), we obtain: 

1 2 1 11,1 1 11,2 1

11,k 1 1 1

2 3 2 22,1 2 22,2 2

22,k 1 2 2

1 1 (n 1)(n 1),1 1

(n 1)(n 1),2 1

( 1) ( ) ( ) ( ) ( 1)
... (0) ( )

( 1) ( ) ( ) ( ) ( 1)
... (0) ( )

( 1) ( ) ( ) ( )

(
n n n n

n

x k x k b u k c x k c x k
c x w k

x k x k b u k c x k c x k
c x w k

x k x k b u k c x k
c x k

+

+

− − − − −

− − −

+ = + + + −

+ + +

+ = + + + −

+ + +

+ = + +

+

M

(n 1)(n 1),k 1 1 1

1 1 2 2 nn,1

nn,2 nn,k 1

1) ...

(0) ( )

( 1) ( ) ( ) ... ( ) ( )
( 1) ... (0) ( )

n n

n n n

n n n

c x w k

x k a x k a x k b u k c x k
c x k c x w k

− − + − −

+

− +

+ +

+ = + + + +

+ − + + +

 

 
(17) 
 

The shift operator is defined as 1 X( ) ( 1)z k X k− = − . 
Applying the shift operator to equation (17) results 
in:  

1 1
1 2 1 11,1 1

11,2 1 11, 1 1 1

2 2
2 3 2 22,1 2

22,2 2 22, 1 2 2

1 1
1 1

( ) ( 1) ( ) ( ( ) ( ) ( )
( 1) ... (0) ( ))

( ) ( 1) ( ) ( ( ) ( ) ( )
( 1) ... (0) ( ))

( ) ( 1) ( ) ( ( )

k

k

n n
n n n

z x k z x k b u k c x k
c x k c x w k

z x k z x k b u k c x k
c x k c x w k

z x k z x k b

− −

+

− −

+

− + − +
− −

× + = × + +

+ − + + +

× + = × + +

+ − + + +

× + = × +

M

(n 1)(n 1),1 1 (n 1)(n 1),2 1

(n 1)(n 1), 1 1 1

1 1 2 2
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nn, 1

( )
( ) ( 1)

... (0) ( ))

( ) ( 1) ( ) ( ( ) ( )
... ( ) ( ) ( 1) ...

(0) ( ))

n n

k n n

n n
n

n n n

k n n

u k
c x k c x k

c x w k

z x k z a x k a x k
b u k c x k c x k

c x w k

− − − − − −

− − + − −

− −

+

+ + −

+ + +

× + = × +

+ + + + − +

+ +

 

or 
1 2 1 11,1 1

11,2 1 11, 1 1 1

2 3 2 22,1 2

22,2 2 22, 1 2 2

1 1

(n 1)(n 1),1

( ) ( 1) ( 1) ( 1)
( 2) ... ( 1) ( 1)

( 1) ( 2) ( 2) ( 2)
( 3) ... ( 2) ( 2)

( 2) ( 1) ( 1)

k

k

n n n

x k x k b u k c x k
c x k c x w k

x k x k b u k c x k
c x k c x w k

x k n x k n b u k n
c x

+

+

− −

− −

= − + − + −

+ − + + − + −

− = − + − + −

+ − + + − + −

− + = − + + − +
+

M

1 (n 1)(n 1),2 1

(n 1)(n 1), 1 1 1

1 1 2 2

nn,1

nn,2 nn, 1

( 1) ( )
... ( 1) ( 1)

( 1) ( ) ( )
... ( ) ( )

( 1 ) ... ( ) ( )

n n

k n n

n

n n

n k n n

k n c x k n
c x n w k n

x k n a x k n a x k n
b u k n c x k n

c x k n c x n w k n

− − − −

− − + − −

+

− + + −

+ + − + + − +

− + = − + −
+ + − + −

+ − − + + − + −

 

 
 
 
 
 
 

 (18) 

Therefore, by combining equations (18), a linear 
regression equation is obtained as: 

1( ) ( ) ( ) ( ) ( ) ( )Ty k x k v k k N k v kϕ θ= + = + +  (19) 
Where 

[ ]1 2 1 2... ... T
n na a a b b bθ =  

(20) 
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1 2( ) [ ( ) ( ) ... ( )

( 1) ( 2) ... ( )]
n

T

k x k n x k n x k n

u k u k u k n

ϕ = − − −

− − −
 (21) 

11,1 1 11, 1 1 22,1 2

22,2 2 22, 1 2

nn,1 nn,2

nn, 1 1

( ) ( 1) ... ( 1) ( 2)
( 3) ... ( 2)

... ( ) ( 1 ) ...
( ) ( 1) ... ( )

k

k

n n

k n n

N k c x k c x c x k
c x k c x

c x k n c x k n
c x n w k w k n

+

+

+

= − + + − + −

+ − + + −

+ + − + − − +

+ − + − + + −

 

 
(22) 

In ( )N k  , the coefficients 11,1 , 1,..., nn kc c +  are known 
(because orders are known) and the states will be 
estimated using the fractional-order Kalman filter 
(as described in Section 4). For this reason, ( )N k  
can be considered as an additive term in the 
regression equation. k̂θ  denotes the estimate of θ  
at time k . 
To estimate the vector θ̂ , the following objective 
function should be minimized [2]: 

^
2

1
1

1 ˆarg min [ ( ) ( , )]
k

k
i

y i y i
k

θ θ+

=

= −∑
 

(23) 

The vector θ̂  which minimizes (23) is given as: 
1

^

1 1

( 1) ( 1) ( 1) ( )
k k

T
k

i i
i i i y iθ ϕ ϕ ϕ

−

= =

 
= − − − 

 
∑ ∑  

(24) 

Note that, to ensure that the system has the 
identifiability property, the 

1

1

( 1) ( 1)
k

T

i
i iϕ ϕ

−

=

 − − 
 
∑ matrix must exist. 

The recursive least squares identification 
algorithm is as follows [29]: 

1
ˆ ˆ (k) (k 1)k k kFθ θ ϕ ε+ = + +  (25) 

1
( ) ( )

F
1 ( ) ( )

T
k k

k k T
k

F k k F
F

k F k
ϕ ϕ
ϕ ϕ+ = −

+  

(26) 

ˆ( 1) ( ) ( )
( 1)

1 ( ) ( )

T
k

T
k

y k k N k
k

k F k
θ ϕ

ε
ϕ ϕ

+ − −
+ =

+  

(27) 

 
Here, kF  is the adaptation gain matrix, and its 
initial value is equal to: 

0
1 ,0 1F I δ
δ

= < <  (28) 

4. The state estimation algorithm 
The purpose of this section is to estimate the states 
of a fractional-order system. Since ϕ  is composed 
of the unknown states of the system, a fractional-
order Kalman filter will be used to estimate it. 
Then the estimated  ϕ  value will be used in the 
final hierarchical identification method.  
The Kalman filter is an optimal state vector 
estimator based on the knowledge of the system 
model and also the use of inputs and outputs to 
perform the estimate [30].  
An optimal estimation is given by minimizing the 
following objective function, [31]: 

1

1

ˆ ( ) arg min[(X(k) ) (X(k) )

( ( ) ) ( ( ) ) ]

T
k

X
T

k

X k X P X

y k HX R y k HX

−

−

= − −

+ − −

% % %
 

(29) 

where *
1( ) X(k) | kX k E z − =  

%   is a state vector 
prediction at time k, defined as expectation of the 
random variable ( )X k  conditioned on the 
measurements *

1kz −   and *ˆ ( ) X(k) | kX k E z =     is the 
state vector estimate at time k, defined as 
expectation of the random variable ( )X k  
conditioned on the measurements *

kz  [32].  
The measurement *

kz  includes measuring all the 
outputs (0), (1),..., ( )y y y k  and all the input 
signals (0), (1),..., ( )u u u k . 
In addition, (X(k) ( ))(X(k) ( ))T

kP E X k X k = − − 
% % %  is the 

prediction error covariance matrix 
and ˆ ˆ(X(k) ( ))(X(k) ( ))T

kP E X k X k = − −   is the 
estimation error covariance matrix. 
For the fractional-order random discrete-time 
state-space system, the fractional-order Kalman 
filter is as follows [28]: 

1. The system and measurement equations are 
given by Eqs (1)-(3). 

X( 1) ( ) ( ) ( )k AX k Bu k w kϒ∆ + = + +                                                                                                       
1

1

X( 1) X( 1) ( 1) X( 1 )
k

j

j
k k k j

j

+
ϒ

=

ϒ 
+ = ∆ + − − + − 

 
∑

                                                                               
( ) ( ) ( )y k HX k v k= +  

2. Initialization 
[ ]ˆ (0) (0)X E X=  

 
0

ˆ ˆ( (0) (0))( (0) (0))TP E X X X X = − − 
 

3. For each time instance k=1,2,3,..., execute 
the following equations to update the state 
estimate: 

ˆX( 1) ( ) X( ) ( ) ( )k A k k B k u kϒ∆ + = +%  (30) 
1

1

ˆX( 1) X( 1) X( 1 )
k

j
j

k k C k j
+

ϒ

=

+ = ∆ + + + −∑% %
 

(31) 

( )X̂( ) ( ) ( ) ( ) ( )k X k K k y k HX k= + −% %
 

(32) 

( ( ) ) Pk kP I K k H= − %  (33) 
1( ) ( ( ))T T

k kK k P H HP H R k −= +% %  (34) 
1

1 1 1 1
2

( ( ) ) P ( ( ) ) ( )
k

T T
k k j k j j

j
P A k C A k C C P C Q k

+

+ + −
=

= + + + +∑%
 

(35) 

The Kalman filter proposed in this section is 
appropriate for state estimation in a fractional 
order system. It can also be used to estimate the 
elements of the unknown vector ( )kϕ  which is 
used in the regression equation (19). 
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5. The Parameter and State Estimation 
Algorithm 

In this section, we combine the recursive least 
squares identification algorithm (Section 3) and 
the fractional-order Kalman filter (Section 4) to 
provide a unit algorithm.  
The new hierarchical identification method that 
will be proposed in this section is a new method 
for concurrent identification and estimation of 
parameters and states in fractional systems. 
According to the regression equation (19), the 
vectors ϕ and N  consist unknown state variables 

( )( ) 1,2,...,x k i i n− = and vector θ  consists unknown 
parameters. So, in this algorithm, vector kθ  (in 
equation (19)) will be identified with the provided 
RLS algorithm in Section 3. Furthermore, vector 

( 1)X k + will be estimated with the provided 
fractional order Kalman filter in Section 4. 
Therefore, first, we assume that the states are 
specified, and the parameters are estimated using 
the least squares method. Next, using the 
fractional-order Kalman filter algorithm, new 
states are estimated and used in the next step. This 
is repeated for the later stages. 
In the resulting method, the system parameters (θ̂ ) 
and states ( ˆ ( 1)X k + ) are estimated correctly at the 
same time. The parameters identification steps 
have been provided in equations (37)-(39) and the 
parameters estimation step has been expressed in 
equations (44). 

2

1

( ) : ( ) ( ) ( )
t

T

j
J y j j N kθ ϕ θ

=

 = − − ∑
 

(36) 

1
ˆ ˆ ˆ(k) (k 1)k k kFθ θ ϕ ε+ = + +  (37) 

1

ˆ ˆ( ) ( )
F

ˆ ˆ1 ( ) ( )

T
k k

k k T
k

F k k F
F

k F k
ϕ ϕ
ϕ ϕ+ = −

+  

(38) 

ˆ ˆˆ( 1) ( ) ( )
( 1)

ˆ ˆ1 ( ) ( )

T
k

T
k

y k k N k
k

k F k
θ ϕ

ε
ϕ ϕ

+ − −
+ =

+  

(39) 

1 2ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( )

( 1) ( 2) ... ( )]
n

T

k x k n x k n x k n

u k u k u k n

ϕ = − − −

− − −

L
 (40) 

11,1 1 11, 1 1 22,1 2

22,2 2 22, 1 2

nn,1 nn,2

nn, 1 1

ˆ ˆ ˆ ˆ( ) ( 1) ... ( 1) ( 2)
ˆ ˆ( 3) ... ( 2)

ˆ ˆ... ( ) ( 1 ) ...
ˆ ( ) ( 1) ... ( )

k

k

n n

k n n

N k c x k c x c x k
c x k c x

c x k n c x k n
c x n w k w k n

+

+

+

= − + + − + −

+ − + + −

+ + − + − − +

+ − + − + + −

 

 
(41) 

The identified parameters are used to form ˆ ˆ,A B  
and θ̂  as follows: 

1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ... ...

T

n na a a b b bθ  =    (42) 

1

2

3

1 2 3
1

ˆ0 1 0 ... 0
ˆ0 0 1 ... 0

ˆ ˆ ˆ,
0 0 0 ... 1
ˆ ˆ ˆ ˆ... ˆn n n n n

b

b
A B b

a a a a b×
×

           = =              

M M O O O

M

 

 
 

(43) 

In consequence, Â  and B̂  matrices are used in the 
fractional-order Kalman filter as follows[2]:  

( )

1

1

1

1

1 1 1
2

ˆ ˆ ˆX( 1) ( ) X( ) ( ) ( )

ˆX( 1) X( 1) X( 1 )

X̂( ) ( ) ( ) ( ) ( )

( ( ) ) P

( ) ( ( ))

ˆ ˆ( ( ) ) P ( ( ) ) ( 1)

k

j
j

k k

T T
k k

k
T T

k k j k j j
j

k A k k B k u k

k k C k j

k X k K k y k HX k

P I K k H

K k P H HP H R k

P A k C A k C C P C Q k

ϒ

+
ϒ

=

−

+

− −
=

∆ + = +

+ = ∆ + + + −

= + −

= −

= +

= + + + + −

∑

∑

%

% %

% %

%

% %

%

 

 
 
(44) 

The above algorithm is implementable according 
to the instructions below: 
1. Initialization at time instance k = 1 
2. Forming the ˆ( )kϕ  and collecting the inputs and 
outputs. 
3. Calculation of 1kF +  and ( 1)kε +   
4. Updating the parameter identification vector k̂θ  

5. Reading ˆˆ ,i ija b parameters from k̂θ  vector using 
the original definition of parameter identification 
vector k̂θ  

6. Forming ˆ ˆ,A B matrices 
7. Calculating covariance matrix kP  and gain 
vector ( )K k  
8. Estimating the state vector ˆ ( 1)X k +  
9. Increasing k and going to step 2. 
A flowchart of the proposed method is given in 
Figure 2: 
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Start

     Initialize  

Collect Data                           

 Compute  

Update The Estimate

 Read 

      Form

    Compute 

    Compute

 Compute

 
Fig. 2. Flowchart of the proposed identification method. 

 
6. Simulation Results 
To show the accuracy of the algorithm expressed 
in Section 5, two fractional-order systems with one 
input and one output have been used. The first 
system has two state and the second one contains 
four state variables. 

 
System 1: 

Consider a SISO fractional-order state-space 
system with the following matrices: 

21 22

1 2

1 2

0.5, 0.9
0.3, 0.7

0.9, 0.3

a a
b b
γ γ

= − = −
= − = −

= =

[ ] [ ]1
1 2

21 22 2

0 1
, , 1 0 ,

b
A B H

a a b
γ γ

   
= = = ϒ =   

   
 

The number of elements in equation (2) should be 
limited – here, the value is equal to L, which 
would simplify and reduce the number of 
calculations. Although it will cause a bit of error, 
by considering a reasonable value for L, the error 

value would be very small and negligible. 
Accordingly, equation (2) can be written as 
follows: 

1
X( 1) X( 1) ( 1) X( 1 )

L
j

j
k k k j

j
ϒ

=

ϒ 
+ = ∆ + − − + − 

 
∑

 

 
(45) 

The state equations are then given as: 
0 1 0.3

X( 1) X( ) ( ) ( )
0.5 0.9 0.7

k k u k w kϒ −   
∆ + = + +   − − −     

1

0.9
0

X( 1) X( 1) ( 1) X( 1 )
0.3

0

L
j

j

j
k k k j

j

ϒ

=

  
  
  + = ∆ + − − − +       

∑

 
[ ]( ) 1 0 X( ) ( )y k k v k= +  

and 
0.1 0

( ) ( ) 0.1, ( ) ( )
0 0.1

T TE k k E w k w kν ν
    = =     
 

 
Here, ( )u k  and ( )y k  are the input and the output of 
the system, respectively. The information vector 
and the parameters vector are formed as follows: 

[ ]1 2( ) ( 2) ( 2) ( 1) ( 2) Tk x k x k u k u kϕ = − − − −  
[ ]21 22 1 2

Ta a b bθ =  
In this simulation, the input { }( )u k  is an 
uncorrelated signal with variance 1. 
The initial values at time k=1 are considered as 
follows: 

[ ]

6 6
0 0

ˆ ˆ10 , 10 ,X(1) 0
0.1 0

0.1 ,
0 0.1

P

R Q

θ −= = =

 
= =  

 

 

First, we assume that the states are specified, and 
the parameters are estimated using the least 
squares method. Next, using the fractional-order 
Kalman filter algorithm, new states are estimated 
and used in the next step. This is repeated for the 
later stages. In this example, it is assumed that 

10,25L =  and 50 . 
The estimated parameters are shown in Tables 1, 2 
and 3 for L=50, 20 and 10, respectively. As it can 
be seen in these tables, the estimation error is 
negligible. However, decreasing the value of L 
results in an increased error value in Tables 2 and 
3. Furthermore, Figures 3 and 4 show the 
identified parameters' evolution through time. As it 
is seen, the identified parameters have converged 
to the true values rapidly. The original and the 
estimated state variables 1x  and 2x  are also shown 
in Figures 5 and 6, respectively. As it is seen, the 
proposed method can estimate the state variables 
accurately. It is assumed that 50L =  in these 
figures. 
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Tab. 1. The estimated parameters for 50L = . 

  
2000  

  
1000  

    
500 

   300         100  No. of 
iterations 

-
0.498  

-
0.497   

-
0.496   

 -
0.493   

    -
0.471   

21 0.5a = −   

-
0.894  

-
0.893   

-
0.891   

 -
0.885   

    -
0.834 

22 0.9a = −  

-
0.309  

-
0.297  

-
0.296   

 -
0.293   

    -
0.287 

1 0.3b = −  

-
0.695  

-
0.694   

-
0.690   

 -
0.682   

    -
0.656  

2 0.7b = −  

 
 

Tab. 2. The estimated parameters for 25L = . 

  
2000  

  
1000  

    
500 

   300         100  No. of 
iterations       

-
0.477  

-
0.463   

-
0.447   

 -
0.409  

    -
0.372   

21 0.5a = −   

-
0.854  

-
0.836   

-
0.792   

 -
0.755   

    -
0.700 

22 0.9a = −  

-
0.290  

-
0.279   

-
0.255   

 -
0.238   

    -
0.199 

1 0.3b = −   

-
0.681  

-
0.664   

-
0.632   

 -
0.601   

    -
0.571  

2 0.7b = −  

 
 

Tab. 3. The estimated parameters for 10L = . 
  

2000  
  
1000  

   500    300         100  No. of 
iterations 

-
0.450  

-
0.415   

-
0.389   

 -
0.359  

    -
0.333   

21 0.5a = −
  

-
0.783  

-
0.763   

-
0.737   

 -
0.695   

    -
0.654 

22 0.9a = −
 

-
0.268  

-
0.241   

-
0.226   

 -
0.211   

    -
0.169 

1 0.3b = −   

-
0.666  

-
0.633   

-
0.609   

 -
0.582   

    -
0.533  

2 0.7b = −  

 
 

 
Fig. 3. The identified parameters 21 22,a a  for 50L = . 

 
Fig. 4. The identified parameters 1 2,b b  for 50L = . 

 
Fig. 5. Original and estimated state variable 1x  for 50L = . 

 
Fig. 6. Original and estimated state variable 2x  for 50L = . 

 
Another technique for state estimation in a 
fractional order state space system with unknown 
parameters is using of a fractional-order discrete-
time transfer function. In this method, the 
parameters of the transfer function are identified 
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first and then, the transfer function will be 
converted to a state-space form in which the states 
are estimated. This method has more 
computational burden in comparison with the 
method presented in the paper and therefore, the 
execution time increases. Furthermore, this 
method is not easily executable for MIMO 
systems. In the following, performance of the 
proposed method will be compared with a transfer 
function based method. 
To identify the parameters of a discrete-time 
fractional state space mode, the corresponding 
transfer function can be obtained as follows[33]: 

( )
1

2

1

2

1

1

21 22

1

21 22

( )( ) ( ( ))
( )

0 1( ) 0
0 ( )

( ) 1
( )

Y zG z H I z z A B
U z

z z
H B

a az z

z z
H B

a z z a

γ

γ

γ

γ

−ϒ

−

−

= = ∆ −

  ∆  
= −     ∆    

  ∆ −
=    − ∆ −  

 

therefore, 

[ ]
2

1

1 2 1

2

1 2 1

2

1 2 1

122

221
2

22 21

1 22 1 2
2

22 21
1 2

1 22 1 2
1 2

22 21

( ) 1
1 0

( )
( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) z
( ) ( )

bz z a
ba z z

G z
z z a z z a

b z z a b b
z z a z z a
b z z a b b

z a z z a z

γ

γ

γ γ γ

γ

γ γ γ

γ

γ γ γ

+

+

− −

+ − −

  ∆ −  
     ∆    =
∆ − ∆ −

∆ + − +
=

∆ − ∆ −

∆ + − +
=

∆ − ∆ −

 

where 
1 2 1 2

22 1 21 2 1 1 22 1 2 2( )k k k k ky a y a y b u a b b uγ γ γ γ+
− − − −∆ − ∆ − = ∆ + − +  

Defining 

[ ]

1 2
1 2 1 2

22 21 1 22 1 2( )
k k k k k

T

y y u u

a a b a b b

γ γϕ

θ

− − − − = ∆ ∆ 
= − +

 

1 2
k kY yγ γ+ = ∆   

Results in a regression equation as 
k kY ϕ θ=  

where 

0

0

( 1)

( 1)

k
j

k k j
j

k
j

k k j
j

y y
j

u u
j

γ

γ

γ

γ

−
=

−
=

 
∆ = −  

 
 

∆ = −  
 

∑

∑

 

As it can be seen in the above equations, to form 
the vectors kϕ  and kY , it is necessary to gather 
much information. Furthermore, after 
identification of the system’s parameters, the 
transfer function must be converted to the state-
space form so that the states can be estimated. 
Therefore, it can be concluded that estimating the 
parameters and states of a fractional state space 
system using the hierarchical identification method 

presented in this paper, results in a considerable 
reduction in the execution time. 
In Table 4, the estimated parameters through the 
transfer function method are compared with the 
proposed method of the paper. As can be seen in 
both cases, the parameter estimation accuracy is 
good. However, simulation results show that the 
run-time of the method presented in this paper is 
2.26 seconds, while the run-time of the method 
described above (the transfer function based 
method) is 5.3 seconds. The CPU used in the 
simulation was a 2.20 GHz one with 6 GB of 
RAM. 
 
Tab. 4. The estimated parameters by two methods 
for 50L = . 
No. of 
iterations 

 500 1000  2000  

 
21 0.5a = − 

The 
proposed 
method 

-
0.496  

-
0.497  

-
0.498  

Transfer 
function 
method 

-
0.495 

-
0.498 

-
0.499 

 
22 0.9a = − 

The 
proposed 
method 

-
0.891  

-
0.893  

-
0.894  

Transfer 
function 
method  

-
0.888  

-
0.892  

-
0.893  

 
1 0.3b = − 

The 
proposed 
method  

-
0.296  

-
0.297  

-
0.309  

Transfer 
function 
method 

-
0.292 

-
0.296 

-
0.298 

 
2 0.7b = − 

The 
proposed 
method 

-
0.690 

-
0.694 

-
0.695 

Transfer 
function 
method 

-
0.693 

-
0.695 

-
0.697 

 
 

System 2: 
In this example, a SISO fractional-order state-
space system with four state variables and the 
following matrices is considered. 

[ ] [ ]

1

2

3

41 42 43 44 4

1 2 3 4

0 1 0 0
0 0 1 0

, ,
0 0 0 1

1 0 0 0 ,

b
b

A B
b

a a a a b

H γ γ γ γ

   
   
   = =
   
   

  
= ϒ =
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41 42 43 44

1 2 3 4

1 2 3 4

0.2, 0.4, 0.3, 0.45
0.3, 0.2, 0.15, 0.25

0.4, 0.15, 0.3, 0.1

a a a a
b b b b
γ γ γ γ

= − = − = − = −

= − = − = − = −

= = = =

 

The state equations are as follows: 
0 1 0 0
0 0 1 0

X( 1) X( )
0 0 0 1
0.2 0.4 0.3 0.45

0.3
0.2

( ) ( )
0.15
0.25

k k

u k w k

ϒ

 
 
 ∆ + =
 
 
− − − − 
− 

 − + +
 −
 
− 

 

1

X ( 1) X ( 1)

0.4
0 0 0

0.15
0 0 0

( 1) X ( 1 )
0.3

0 0 0

0.1
0 0 0

L
j

j

k k

j

j
k j

j

j

ϒ

=

+ = ∆ +

  
  

  
      − − − + 

  
    

  
  

  

∑

 

[ ]( ) 1 0 0 0 X( ) ( )y k k v k= +  
( ) ( ) 0.05,

0.05 0 0 0
0 0.05 0 0

( ) ( )
0 0 0.05 0
0 0 0 0.05

T

T

E k k

E w k w k

ν ν  = 
 
 
   =   
 
 

 

The initial values at time k=1 are considered as 
follows: 

[ ]

6 6
0 0

ˆ ˆ10 , 10 , X(1) 0
0.05 0 0 0

0 0.05 0 0
0.05 ,

0 0 0.05 0
0 0 0 0.05

P

R Q

θ −= = =

 
 
 = =
 
 
 

 

In this example, the information vector and the 
parameters vector are formed as follows: 

1 2 3 4( ) [ ( 4) ( 4) ( 4) ( 4)

( 1) ( 2) ( 3) ( 4)]T

k x k x k x k x k
u k u k u k u k

ϕ = − − − −

− − − −

[ ]41 42 43 44 1 2 3 4
Ta a a a b b b bθ =   

The estimated parameters are shown in Tables 5, 6 
and 7 for L=50, 20 and 10, respectively. As it can 
be seen in these tables, the estimation error is 
negligible. Furthermore, Figures 9 and 10 show 
that the identified parameters' evolution through 
time converge to the true values rapidly. The 
original and the estimated state variables 

1 2 3 4, , ,x x x x  are also shown in Figures 9, 10, 11 and 
12, respectively. As it is seen in these figures, the 
proposed method can estimate the state variables 
accurately. 

Tab. 5. The estimated parameters for 50L = . 

  
2000  

  
1000  

    
500 

   300          
100  

No. of 
iterations 

-
0.213  

-
0.216   

-
0.222   

 -
0.227 

    -
0.245 

41 0.2a = −   

-
0.416 

-
0.412 

-
0.402 

 -
0.391 

    -
0.370 

42 0.4a = −   

-
0.280 

-
0.291 

-
0.307 

 -
0.311 

    -
0.335 

43 0.3a = −  

-
0.456 

-
0.467 

-
0.483 

 -
0.499 

    -
0.551 

44 0.45a = −  

-
0.306 

-
0.297 

-
0.289 

 -
0.277 

    -
0.239 

1 0.3b = −  

-
0.203 

-
0.198 

-
0.194 

 -
0.185 

    -
0.166 

2 0.2b = −  

-
0.152 

-
0.154 

-
0.148 

 -
0.142 

    -
0.132 

3 0.15b = −  

-
0.248  

-
0.247   

-
0.241   

 -
0.240   

    -
0.233 

4 0.25b = −  

 
Tab. 6. The estimated parameters for 25L = . 

  
2000  

  
1000  

    
500 

   300          100  No. of 
iterations 

-
0.222  

-
0.232   

-
0.248   

 -
0.263 

    -
0.293  

41 0.2a = −   

-
0.420 

-
0.416 

-
0.408 

 -
0.398 

    -
0.353 

42 0.4a = −   

-
0.276 

-
0.285 

-
0.303 

 -
0.315 

    -
0.344 

43 0.3a = −  

-
0.463 

-
0.475 

-
0.486 

 -
0.505 

    -
0.571 

44 0.45a = −  

-
0.321 

-
0.302 

-
0.281 

 -
0.252 

    -
0.209 

1 0.3b = −  

-
0.180 

-
0.169 

-
0.153 

 -
0.144 

    -
0.120 

2 0.2b = −  

-
0.137 

-
0.131 

-
0.122 

 -
0.111 

    -
0.085 

3 0.15b = −  

-
0.236  

-
0.229   

-
0.215   

 -
0.206   

    -
0.179 

4 0.25b = −  

 

Tab. 7. The estimated parameters for 10L = . 
  

2000  
  

1000  
    

500 
   300          100  No. of 

iterations 
-
0.236  

-
0.247   

-
0.261   

 -
0.278 

    -
0.299  

41 0.2a = −   

-
0.431 

-
0.422 

-
0.411 

 -
0.386 

    -
0.343 

42 0.4a = −   

-
0.262 

-
0.278 

-
0.291 

 -
0.311 

    -
0.348 

43 0.3a = −  

-
0.471 

-
0.479 

-
0.493 

 -
0.516 

    -
0.560 

44 0.45a = −  

-
0.310 

-
0.302 

-
0.290 

 -
0.268 

    -
0.233 

1 0.3b = −  

-
0.191 

-
0.185 

-
0.173 

 -
0.164 

    -
0.143 

2 0.2b = −  

-
0.142 

-
0.139 

-
0.137 

 -
0.135 

    -
0.126 

3 0.15b = −  

-
0.241  

-
0.239   

-
0.233   

 -
0.229   

    -
0.218 

4 0.25b = −  
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Fig. 7. The identified parameters 41 42 43 44, , ,a a a a  for 50L = . 

 
 

 
Fig. 8. The identified parameters 1 2 3 4, , ,b b b b  for 50L = . 

 
Fig. 9. Original and estimated state variable 1x  for 50L = . 

 
Fig. 10. Original and estimated state variable 2x  for 50L = . 

 
Fig. 11. Original and estimated state variable 3x  for 50L = . 

 
Fig. 12. Original and estimated state variable 4x  for 50L = . 
 
7. Conclusion 
This paper proposed a novel identification 
approach for canonical fractional-order state-space 
systems. An advantage of the proposed method is 
that not only the unknown parameters of the 
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system but also its states are estimated. Promising 
performance of the proposed method was verified 
using two examples. Concluding the simulation 
results, it is clear that the proposed algorithm is 
able to successfully perform the identification and 
estimation hierarchically. 
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