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Abstract

This paper proposes a new hierarchical
identification method for fractional-order systems.
In this method, a SISO (single input, single output)
state space modd has been considered in which
parameters and also state variables should be
estimated. By using a linear transformation and a
shift operator, the system will be transformed into a
form appropriate for identification of a fractional-
order system. Then, the unknown parameters will
be identified through a recursive least squares
method and the states will be estimated using a
fractional order Kalman filter. This identification
method is based on the hierarchical identification
principle that reduces the computational burden
and is easy to implement on computer. The
promising performance of the proposed method is
verified using two stable fractional-order systems.

Keywords: Fractional order systems; fractional
order Kalman filter; recursive identification;
hierarchical identification principle

1. Introduction

In 1695, the concept of fractional calculus was
expressed for the first time by Lebniz and
L'Hospital. In the late nineteenth century, Riemann
and Liouville give the first definition of fractional
derivatives. In recent years, because of their many
applications, fractional-order systems (systems that
contain fractional derivatives and fractional
integrals) have received the attention of many
researchers [1]. However, this idea began to be a
topic of interest for engineers since 1960,
especially insofar as they observed that certain
actual systems in which fractional derivatives are
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used exhibit greater accuracy [2]. Modeling the
behaviour of materials such as polymers and
rubbers can be considered as an example [3].
Electrochemical processes and robots with flexible
arms are also modelled by fractional-order systems
[4]. Fractional calculus is also a useful tool for
modelling traffic in information networks [5].
Another research topic in the area of fractional
order systems, which is developing rapidly, is
fractional order PID controllers [6]. More
applications and examples for the fractiona order
systems and aso the fractiona calculus can be
found in [7-11].

Fractional-order system identification methods
can be broadly classified as techniques in the
frequency domain and in the time domain. Due to
their  long-term  memory  behaviour, the
identification of fractional-order models is more
difficult than for integer-order models; therefore,
different algorithms have been proposed in the
frequency domain to solve this problem [4]. In [12-
14], methods for the time domain identification of
fractional-order discrete-time systems are presented
based on non-recursive least squares. However,
these methods can raise problems in computing,
such as the creation of singular matrices, which
hampers identification. Furthermore, online
identification will be required for time-varying
systems. Therefore, recursive identification is
important to avoid the above mentioned problems.
State space system identification is important for
controller design and pole placement. Some
methods have been reported for linear and
nonlinear systems [15-18]. Also, several papers
have been presented in relation to identification of
fractional order systems [19-25], but there is not
any method of recursive identification of fractional
order state space systems in the literature so far.
The identification method provided in this paper is
based on a recursive identification algorithm that
has the capability of identifying the parameters of
fractional order state space system recursively.

Therefore, in this paper a new hierarchical
identification method will be introduced for SISO
fractional order systems. Actually, hierarchical
identification is based on a decomposition method
and is widely used in state and parameter
estimation [26, 27]. The basic idea is to use the
hierarchical identification principle to decompose
the system model into several sub-models with
smaller dimensions and fewer variables, and then
to identify the parameter vector of each sub-model.
This paper examines the problem of identification
of a state space model for a SISO fractional-order
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system. A hierarchical approach will be proposed
in which the unknown system parameters as well
as the states of the system are estimated
simultaneoudly. The parameters are calculated
based on a recursive least squares method and the
states are estimated using a fractiona Kaman
filter.

In addition, by decomposing the fractional state
space system and using a hierarchical identification
method, which isintroduced in the present paper, a
linear regression equation is derived including
parameters and states of the system. This
regression eguation has the appropriate form for
identification. Thus, by providing a recursive least
squares algorithm, it is possible to identify the
parameters of the fractiona order state space
system recursively.

The proposed hierarchical identification method
has many applications in various fields such as
system modeling, signal filtering and adaptive
control. Another application is in state feedback in
which the states are used for stabilization of
unstable dynamical systems. An advantage of using
the state space model is that it can be easly
expanded to multi-input multi-output (MIMO)
systems, while the identification methods that are
based on a transfer function cannot be easly
expanded to MIMO systems. In addition, the
hierarchical identification method provided in this
paper reduces the computational burden and
significantly improves the execution time.

A canonical state space model has been used in this
paper. This property can be exploited in system
identification because the canonical models have a
special form that makes them identifiable.

The rest of the paper is organized as follows. In
Section 2, the problem formulation is presented and
the identification model is given in Section 3.
Section 4 provides the state estimation agorithm
and the proposed hierarchical parameter and state
estimation algorithm is given in Section 5. In
Section 6, two examples are provided. Finaly,
Section 7 concludes the paper.

2. Problem formulation
Consider the following fractional-order discrete
time linear stochastic state-space system [28].

D' X(k+1) = AX (k) + Bu(k) + w(k) Q)
X(k+1) =D X(k+1)- 51( 1)’g _X(k+l i) (2)
y(k) = HX (k) +v(k) (©)

where ; is the order of the fractional difference
(iTR) and Xx(k) is the state vector (X(k)i R").
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W(K) =[w (k) w,(k) .. w,(k)] and n(k) are the
process and measurement white Gaussian noises
with zero mean, also u(k) and y(k) are the input
and the output of the system, respectively.
Furthermore, T denotes the matrix/vector
transpose and the symbol 1(1,) shows an identity
matrix with appropriate size(n” n). The system
matrices A B are the unknown parameters to be
estimated from input—output data u(k) and y(k) .

Furthermore, gi 9 is defined as:
elag
ao__ G(i +1) (4)
€ig G(i+1)G(i - j+1)
Assuming that v>0, Euler's function G is defined
as.
G(¥) = &'V idv ®)
eD’x (k+1)u
D X(k+)=§ I 4 (6)

&% x, (k +1)d

g, are the order of the system equation
and n isthe number of system equations.
Assumption 1. vk) and Ww(k) are two
independent white noises with zero mean and
covariance matrixes R(k) and Q(k), respectively.
In other words, we have:

E[w(k)] =0, E[v(k)] =0 (7
EQV(WT ())f=Q(k)d (k- j) 8
Egv()V' ()= R(K)d (k- ) 9)
Egw(V' ())§=0,"k, ] (10)

Assumption 2: X(0) is uncorrelated with v(k) and
w(k), and

E[X(0)] = X(0) (11)
EGX(0)- X(O)X(0)- X(O) §=P, (12)
By combining the equations (1) and (2), the
following equation is obtained:

X(k+1):AX(k)+Bu(k)+w(k)+k§10j xk+1- )y 13
14
C =(- 1)/ 1d|agi£10 ?J"m (14)

where the matrices A, B and the state vector X(k)
are defined as follows:
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€ 1 0 .. O0u  énu
e u u
g0 0 1 .. 0y 8020
A=él I O O U B=&u
e u e u
@O 0 0 O 1@ émq
8 a a .. af, N
X=[x % L x|
€y 0d
e C,y u
y ] _
Cj_g o 3 H=[1 0 .. 0,
e u
g0 Coni Gy
In addition, we also assume that:
uk)=0 k£0
y(k)=0 k£0O (15)
X(K)=0 Kk£0

In the state space model of the system, A and B
matrices have unknown parameters which should
be estimated using input-output data points. Block
diagram of the fractional-order state-space system
model is shown in Figure 1.

u(k) . X(k+1) X(K X(k-l)) H X(0)

i 0

g

Fig. 1.: Block diagram of the fractional-order state-space
system model.

3. Themodel used for identification

The main topic that is discussed in this paper is the
identification problem. In this section, a linear
regression equation will be derived in which the
unknown parameters can be estimated using a
recursive least squares method. Therefore, a
hierarchical method is applied to have a proper
form of the regression equation.

Expanding equation (13) gives:

X(k+1) = AX (k) + Bu(k) + C, X (k) + C, X (k - 1) +C, X (k- 2)
+.0.4 Cyy X(0) + W(K)
In addition, by opening equation (16), we obtain:

(16)

x,(k +1) = %, () + BU(K) + ¢, % (K) + 6 % (k- )
ot Gy (0 + Wy (K)
% (K+1) = %, (k) +B,u(k) + €y, %, (K) + €,y %, (K- 1)
ot G (0) + W, (K)
M
X1 (K+2) = x,(K) +1, u(k) +C, 1y 11%,.1(K)
+C(n-1)(n-1),2xn-1(k - 1) +..
*Con-nn- kX 10) +w, (k)
X (k+1) = a,x, (K) +a,%,(K) +...+ B u(k) + ¢, (K)
*Cin 2% (k - 1) ot G X (0) W, (k)
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The shift operator is defined asz*X(k) = X (k- 1).
Applying the shift operator to equation (17) results
n:
(Z) % (k+2)=(z")" (k) +bu(k) +c., % (K)
+C % (K- D+t cy % (0) +wy (K))
(Z%)" %,(k+1) =(22)" (%(K) +Bu(K) + sy, %, (K)
4y %, (K= 1)+t Cpp %, (0) + Wy (K))
N
(Z™) X1 (k+D) =(Z"™)" (%, (k) +Db,,u(k)
+Cn - 12%0-1(K) + 12X 1 (K- 1)
+.t C(n- 1)(n- 1),k+an-1(0) + Wn-l(k))
(Z") %, (k+D)=(z")" (ax (k) +a,x,(k)
+..+bu(k) + ¢, X, (K) +¢, % (K- D+...
4Gy, (0) + W, (K)
or
% (K) = X,(k - ) +bu(k - 1)+, % (k- 1)
Gy X (K= D4 Gy (- D+ Wy (k- 1)
% (k- 1) = (k- 2 +bu(k- 2)+C, %, (k- 2)
+(‘72.2X2(|(- 3)+---+sz,k+1xz(' 2)+W2(k' 2)
N
X, (k- n+2)=x (k- n+) +b,_,u(k- n+1)
+C -2 X 1 (K= N+ +C 0% (K- 1)
ot Gy e X1 (DD + W, (K- n+1)
X, (k- n+1) =ax (k- n)+a,x(k- n)
+..+bu(k- n)+c, X (k- n)
+Cnn.2xn(k' 1- n)+---+cnn,k+1xn(' n)+Wn(k' n)

(18)

Therefore, by combining equations (18), a linear
regression equation is obtained as:

y(Kk) = %, (K) +v(k) =j T (k) + N(k) +v(Kk) (19)
Where
a=[a a .. a b b . b (20)
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J () =[xk-n) x(k-n) .. x(k-n) (21)

uk-1 uk-2) .. uk-n)]"

N(k) = Cll,lxl(k - 1) Tt Cll,k+lxl(_ 1) +C22,1X2 (k - 2)
+C22,2X2(k' 3)+...+C22'k+1X2(- 2 (22)
o+ X (K- n)+c, X (K- 1- n)+...

X (- M) W (K- D+ 4w (k- )

In N(k) , the coefficients c,,,....c,.,.. are known

(because orders are known) and the states will be
estimated using the fractional-order Kalman filter
(as described in Section 4). For this reason, N(k)
can be considered as an additive term in the
regression equation. g, denotes the estimate of q
at time k.

To estimate the vector q, the following objective
function should be minimized [2]:
. R 23
qk+1=argmlnia_1[y(l)- y(i.a)l 23)
The vector g which minimizes (23) is given as:

- SN i S _ (24)
qk =ga_u (i-0j (- 1)8 al -1y

Note that, to ensure that the system has the
identifiability property, the
ggj (-2 "G- 1)3 matrix must exist.

€i=1 u

The recursive least sguares identification
algorithm is asfollows [29]:

Qs =0 + R (Ke(k+D) (25)
_r . R K TRF, (26)

T TR ()

ok +1) = YD i (0- NG 27

1+ (KR (K)

Here, F, is the adaptation gain matrix, and its
initial value is equal to:
Fozdil,0<d <1 (28)
4. The state estimation algorithm

The purpose of this section is to estimate the states
of afractional-order system. Since j is composed
of the unknown states of the system, a fractional-
order Kalman filter will be used to estimate it.
Then the estimated | value will be used in the
final hierarchical identification method.

The Kaman filter is an optima state vector
estimator based on the knowledge of the system
model and also the use of inputs and outputs to
perform the estimate [30].

An optimal estimation is given by minimizing the
following objective function, [31]:

20

X (k) = argmin[(X(K) - X)BL(X(K)- X)T (29)

+(y(K) - HX)R(y(k) - HX)']

where X(k)=EgX()|z,f is a state vector
prediction at time k, defined as expectation of the
random variable X(k) conditioned on the
measurements z, andX(k)=EgX(K)|Zp is the
state vector estimate at time k, defined as
expectation of the random variable X(k)
conditioned on the measurements z, [32].

The measurement z includes measuring all the
outputs  y(0),y(),..,y(k) and al the input
signalsu(0),u(),...,u(k) .

In addition, B = EgX(k)- X(K)X(K)- X(k)"j is the
prediction error covariance matrix
and R, = EGX(K) - X(K))(X(K)- X (k)" 4 is  the
estimation error covariance matrix.
For the fractional-order random discrete-time
state-space system, the fractional-order Kalman
filter isasfollows [28]:

1. The system and measurement equations are

given by Egs (1)-(3).

D' X(k+1) = AX (K) + Bu(k) + w(k)
X(k+1) =D X(k+1)- & (- 1) g’j EX(k+1- i
y(k) = HX (k) +v(k)

2. Initialization
X(0) =E[X(0)]

R, = E&X(0)- X(0)(X(0)- X(O)"Y

3. For each time instance k=1,2,3,..., execute
the following equations to update the state

estimate:
D' X(k+1) = AK) X(K) + B(k)u(k) (30)
X(k+1) =D %(k+1)+§lcj X(k+1- }) (31)
X (K) = X(K) + K (K)(y(k) - HX (k) (32)
R =(1-K(KH)R, (33)
K(k)=BHT(HBHT +R(k))™* (34)

B = (A +CIR(AK) +C) +8 C R,y € +Q) ()
j=2

The Kalman filter proposed in this section is

appropriate for state estimation in a fractional

order system. It can aso be used to estimate the

elements of the unknown vector j (k) which is

used in the regression equation (19).



SAFARINEJADIAN et al A HIERARCHICAL | DENTIFICATION METHOD FOR Sl SO FRACTIONAL-ORDER STATE-SPACE SYSTEMS

5. The Parameter and State Estimation
Algorithm

In this section, we combine the recursive least
squares identification algorithm (Section 3) and
the fractional-order Kalman filter (Section 4) to
provide a unit algorithm.

The new hierarchical identification method that
will be proposed in this section is a new method
for concurrent identification and estimation of
parameters and states in fractional systems.
According to the regression equation (19), the
vectors | and N consist unknown state variables

x(k-i)(i =1,2,...,n)and vector q consists unknown

parameters. So, in this algorithm, vector g, (in

equation (19)) will be identified with the provided
RLS algorithm in Section 3. Furthermore, vector
X(k+1)will be estimated with the provided

fractional order Kaman filter in Section 4.
Therefore, first, we assume that the states are
specified, and the parameters are estimated using
the least sguares method. Next, using the
fractional-order Kalman filter algorithm, new
states are estimated and used in the next step. This
is repeated for the later stages.

In the resulting method, the system parameters ((i )
and states (X (k+1)) are estimated correctly at the
same time. The parameters identification steps
have been provided in equations (37)-(39) and the
parameters estimation step has been expressed in
equations (44).

& 2 (36)
J(q):=a} gy(i)-J (a- NKg
O =0, + R (Ke(k+1) (37)
F —F . R (K™ (K)F, (38)
L 14T (KRG (K)
e(k+1) = y(k+1).:TqJJA(I§2- N (k) (39)
1+ (k) RJ" (k)
(k) =[x (k-n) X(k-n) L X(k-n) (40)
uk-1 uk-2) ... uk-n)]
N(K) = Gy R (K- Dot Gy X (- D+ € Ko (K- 2)
+C22,2)A(2(k' 3)+"'+C22,k+1§(2(_ 2) (41)
+..+C, X (k- n)+c, X (k-1- n)+...

+Cnn,k+1§(n(' n)+VVl(k- l)+---+Wn(k- n)
The identified parameters are used to form AB
and q asfollows:

Qg a4

b b, (42)

~ T
. bd

21

, N ép U
cioon 8
~ - u
e i . 2 (43)
80 0 0 .. 1y ¢
& & a - &, &y
L : oN

In consequence, A and B matrices are used in the
fractional-order Kalman filter as followg2]:

D' X(k+1) = Ak) X(K) + B(k)u(k)
X(k+D) =D Y((k+1)+k§llcj X(k+1- )
X (k) = X (k) + K (k) (y(k) - HX(K))

R =(I- K(kH)B,
K(k)=RBHT(HRHT +R(K)*

k+1

B = (A +C)R,(AK)+C)" +a CR. C] +Q(k- 1)

The above algorithm is implementable according
to the instructions below:

1. Initialization at timeinstancek = 1

2. Forming the j~(k) and collecting the inputs and

outputs.
3. Calculation of F,, and e(k+1)
4. Updating the parameter identification vector ofk

5. Reading é,.,kij parameters from qu vector using
the original definition of parameter identification
vector qu

6. Forming A, B matrices

7. Calculating covariance matrix B, and gain
vector K (k)

8. Estimating the state vector X (k+1)

9. Increasing k and going to step 2.
A flowchart of the proposed method is given in
Figure 2:

(44)
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B

Initialize & =1

Collect Datag s j, v(k))

l

[ Compute K (k.7

Ceompute. - 1.

t
Fig. 2. Flowchart of the proposed identification method.

6. Simulation Results

To show the accuracy of the algorithm expressed
in Section 5, two fractional-order systems with one
input and one output have been used. The first
system has two state and the second one contains
four state variables.

System 1.
Consider a SISO fractional-order state-space
system with the following matrices:
a,=-05 a,=-09
b=-03 b,=-07
g, =09, g,=03

é0 1u u
Asg o U B‘zu H=[1 0], i =[g, ]
The number of elements in equation (2) should be
limited — here, the value is equa to L, which
would simplify and reduce the number of
calculations. Although it will cause a bit of error,
by considering a reasonable value for L, the error

22

vaue would be very smal and negligible.
Accordingly, equation (2) can be written as
follows:

X(k+1) =D X(k+1)- a( 1)’g _X(k+l i) (45)

The state equatl ons are then glven as.

. 60 1 & 0.3y

D' X(k+1) = 305 _ogux(k)+ . Hu(k)+w(k)
aeé@go 0 9

X(k+1) =D X(k+1)- 8 (- 1)19 I's 50 _X(k 1+)

i=1 0

§ & o

y(k)=[1 0]X(k)+V(K)
and
€1 0u
Ed(kn"(k)g=0.1 Egwk)w (k)g= eo 01”
Here, u(k) and y(k) arethe input and the output of

the system, respectively. The information vector
and the parameters vector are formed as follows:

i (0=[xk-2) %k-2) uk-1 uk-2]

a=[a, a, b b
In this simulation, the input {u(k)}
uncorrelated signal with variance 1.
The initia values at time k=1 are considered as
follows:
q,=10°,P, =10°,X(1) =0

€.1 0
R=[0.1],Q= &0 o0al
First, we assume that the states are specified, and
the parameters are estimated using the least
squares method. Next, using the fractional-order
Kaman filter algorithm, new states are estimated
and used in the next step. This is repeated for the
later stages. In this example, it is assumed that
L =10,25 and 50.
The estimated parameters are shown in Tables 1, 2
and 3 for L=50, 20 and 10, respectively. Asit can
be seen in these tables, the estimation error is
negligible. However, decreasing the value of L
results in an increased error value in Tables 2 and
3. Furthermore, Figures 3 and 4 show the
identified parameters' evolution through time. Asit
is seen, the identified parameters have converged
to the true values rapidly. The original and the
estimated state variables x, and x, are also shown
in Figures 5 and 6, respectively. Asiit is seen, the
proposed method can estimate the state variables
accurately. It is assumed that L =50 in these
figures.

is an
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[ ' ' ' '
—t
Tab. 1. The estimated parametersfor L =50. - -—-L:
No. of 100 300 ' W
iterations 500 1000 | 2000 0z:p T
a, =-05 - - - - - 0z L“'"—
0.471 0493 0496 0497 0.498 oy
a, =-0.9 - - - - - .
0.834 0.885 0.891 0.893 0.894 A=
bl =-0.3 = = - - - 4.z
0287 0293 0296 0297 0.309 P e
b,=-07 - - - - - g
0.656 0.682 0690 0.694 0.695 0.z .
J'I":III 0 400 Qoo IIIIII IIIIII I.I.‘;II: 1422 1222 'II:II zom
Tinr
Tab. 2. The estimated parametersfor L = 25. Fig. 4. Theidentified parameters b,,b, for L =50.
No. of 100 300 . : :
iterations 500 1000 | 2000 N ] Crgncl
= . —- .—- —- -—_ . .'::'. || f | = ©ooLzlheale sl
a21 =-05 i.' I i fl' \ .,':: | h
0.372 0409 0.447 0.463 0.477 5 ' | ‘r t ! | I’
|
a, =-0.9 - - - - - . ! | : | H |
0700 0755 0792 0.836 0.854 II P [l
- - - B - B L | | ] 1
b =-03 : | | r
0199 0238 0.255 0.279 0.290 it | I | I ]
b, =-0.7 _ N - - B oef! \ | :| \ | |
0.571 0.601 0.632 0.664 0.681 I ' | | | l | I
1 . | . b
0t b | |
ER Vg Ll
Tab. 3. The estimated parametersfor L =10. o L 5 | £ ! 1’-.;Ar | E
No. of 100 300 500 N T
iterations _ _ 1000 | 2000 i I R Y _:.“JP al T AL o
a, =-05 - - = = -
0.333 0359 0.389 0.415 0.450 | Fig. 5. Original and estimated state variable x, for L =50.
a,=-09 - - - - - )
0.654 0.695 0.737 0.763 0.7 . T T T
b =-03 = = = - - 1
0169 0211 0226 0.241 0.2 A
b,=-07 - - - - - _ | |
0.533 0.582 0.609 0.633 0.6 £ | ’ ﬁ 1 ' 7
. L | |
o ek || I_:ll |i'l "ir. |\..¥ I tl ]
. & I 'r‘j{;‘ ll" i =5 *"‘.Fl S 'J’l E‘\ e .I"‘; .
2l e ﬁl R S o, = 5 =
i T A A
uEL | l || || || |||I J
L] J | l
B L -i -..II 1 a1l _"III -III -': IIII 13 nm
“'i[_ Fig. 6. Original and estimated state variable x, for L =50.
Ca L'\'L_ Ny . . . .
—-— el Another technique for state estimation in a
T sn On s ew cau s 1w . wae  Trectional order state space system with unknown

T parameters is using of a fractional-order discrete-
time transfer function. In this method, the
parameters of the transfer function are identified

23

Fig. 3. Theidentified parameters a,,,a,, forL =50.
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first and then, the transfer function will be
converted to a state-space form in which the states
are estimated. This method has more
computational burden in comparison with the
method presented in the paper and therefore, the
execution time increases. Furthermore, this
method is not easily executable for MIMO
systems. In the following, performance of the
proposed method will be compared with a transfer
function based method.

To identify the parameters of a discrete-time
fractional state space mode, the corresponding
transfer function can be obtained as followg 33]:

G(2) :% =H(I(zD' (2)- A) "B

a&zD* (2)
é

108"
gé 0

0 u eO
zDgZ(z)H S

&, Aylly
-1

a&zD* (2) 0
2D (2) - @, i

gg - a21
therefore,

08"

&zD% (2) - a, 1 u6éb
S a4 D@L
ZZDgl+gZ(Z) - azzzDg (Z) ay
bzD*(2) + (- a,b +b,)
ZZDgl+gz (Z) - a222Dgl(Z) - a21
_ b7 'D%(2) +(-ayh +b)z?
Dgl+gz(z) - 3222- 1Dgl(z) - a212-2
where
D%y, - a,D"Y, ;- 8y Y,
Defining
K 2339%.1 Ye-2 uk-ZH
qT :[a'zz a b (- azzbl"'bz)]
Yk = éDgl*’gz yk H
Resultsin aregression equation as
Y. =i g
where

[L Olge
G(2) =

=bD*u, ,+(-a,b +b)u,,

J;
D*u, ,

p a6
= a -9’ ?gyk—j

a.( 1) g-aukj

As it can be seen in the above equations, to form
the vectors j , and Y,, it is necessary to gather

much information. Furthermore, after
identification of the system’'s parameters, the
transfer function must be converted to the state-
space form so that the states can be estimated.
Therefore, it can be concluded that estimating the
parameters and states of a fractiona state space
system using the hierarchical identification method
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presented in this paper, results in a considerable
reduction in the execution time.

In Table 4, the estimated parameters through the
transfer function method are compared with the
proposed method of the paper. As can be seen in
both cases, the parameter estimation accuracy is
good. However, simulation results show that the
run-time of the method presented in this paper is
2.26 seconds, while the run-time of the method
described above (the transfer function based
method) is 5.3 seconds. The CPU used in the
simulation was a 2.20 GHz one with 6 GB of
RAM.

Tab. 4. The estimated parameters by two methods
forL=50.

No. of 1000 | 2000

iterations

500

The
proposed
method
Transfer
function
method

a,=-05 0.496 | 0.497 | 0.498

0.495 | 0.498 | 0.499

The
proposed
method
Transfer
function
method

0.891 | 0.893 | 0.894

a,, =-09

0.888 | 0.892 | 0.893

The
proposed
method
Transfer
function
method

b =-03 0.296 | 0.297 | 0.309

0.292 | 0.296 | 0.298

The
proposed
method
Transfer
function
method

b, =-07 0.690 | 0.694 | 0.695

0.693 | 0.695 | 0.697

System 2:

In this example, a SISO fractional-order state-
space system with four state variables and the
following matricesis consi dered.

éo 1 0 Ou

é u
_g0 0 1 SDZ G

€0 0 O 1U

é G

éa41 a42 a43 a44u 4u

=[1 0 0 0,i =[g, 9, 95 g.]
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a,=-02 a,=-04, a,=-03 a,=-045 Tab. 5. The estimated parametersfor L =50.
b=-03 b,=-02 b=-015 b, =-025 "No.of |
9,=04, g¢9,=015 g,=03 g,=01 iterations
The state equations are as follows: a,=-02 X X - - -
c0 1 0 0 0 0245 0227 0222 0216 0213
€0 o 1 ol A =-04 , 1301 C ; ;
D' X(k+1)= 8 (x (k) 0370 0391 0402 0412 0416
€0 0 0 14 a,=-03 - - - - -
g_ 02 -04 -03 - 0.453 0.335 0311 0307 0.291 0.280
5-0.3 0 Ay, =- 0.45 - - = - =
e o 0551 0499 0483 0467 0.456
.02 - i - - - )
é a b =-03
*& 0,156 () +W(k) 0239 0277 0289 0297 0.306
é a — - - - - -
€ .o5Y b, =-0.2
& 0.250 0166 0185 0194 0198 0.203
X(k+1)=D' X(k+1) b, =-015 - - - -
@40 0 o © 0132 0142 0148 0154 0.152
&io : b, =-0.25 S
¢ .156 * 0233 0240 0241 0247 0.248
W L VAL
1 (D¢ =X (k- 1+7) Tab. 6. The estimated parameters for L = 25.
= ¢ o 0o P30 4 =
g € i No. of
¢ 5 0 0 a0.16+ iterations
9 % . =T
e | 2@
YI9=[L 0 0 O]X(K)+v(K) - 0293 0263 0248 0232 0222
3, =-0. - - - - -
Eé (kn" (k)g=0.05, 0.353 0398 0408 0.416 0.420
4 N a, =-03 - S = = -
€05 0 0 0u 0.344 0315 0303 0.285 0.276
. 0 005 0 oY —
Egw(kw (K)g=¢ u a,=-045 - - - - -
€0 0 005 04 0571 0505 0486 0475 0.463
80 0 0 005 h=03 0200 0252 0281 0302 0321
The initia values at time k=1 are considered as — ' : : : :

, b, =-0.2 - - - - -
follows. ) 0120 0144 0153 0.169 0.180
go =10°,R, =10°,X(1) =0 b,=-015 - - - - -

005 0 0 0.4 —— 0085 0111 0122 0.131 0.137
é u =-0. - - - - -
- _e0 005 0 0y ) 0179 0206 0215 0229 0236
R=[0.05],Q=¢ .
€0 0 005 004 , f
g 0 0 0 0.053 Tab. 7. The estimated parametersfor L =10.
In this example, the information vector and the No. of -
parameters vector are formed as follows: ”era“o 2000
. a,., =-0. - - - - -
FR)=Dx(k-4) x(k-4) x(k-4) x,(k-4) “ 0299 0278 0261 0247 0236
uk-1 utk-2) utk-3) u(k- A" a,=-04 - - - - -
T 0343 0386 0411 0422 0431
q = [a41 a42 a43 a44 bl b2 Q b4] a.=- 0 3 - - - - -
The estimated parameters are shown in Tables 5, 6 0.348 0311 0.291 0278 0.262
and 7 for L=50, 20 and 10, respectively. Asit can a, =-045 s s g - -
be seen in these tables, the estimation error is 0560 0516 0493 0479 0471

negligible. Furthermore, Figures 9 and 10 show h=-03
that the identified parameters evolution through
time converge to the true values rapidly. The
original  and the estimated state variables b, =-0.15 - - - - -

X, %, %, X, are aso shown in Figures 9, 10, 11 and 0126 0135 0.137 0139 0.142
12, respectively. As it is seen in these figures, the b, =-0.25
proposed method can estimate the state variables
accurately.

0.233 0.268 0.290 0.302 0.310

b, =-02 - S
0143 0164 0173 0185 0.191

0.218 0229 0.233 0.239 0.241
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Fig. 7. Theidentified parameters a,,,a,,,8,,,a,, for L=50. Fig. 10. Original and estimated state variable x, for L =50.
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Fig. 8. Theidentified parameters by,b,,b,,b, for L = 50. Fig. 11. Original and estimated state variable x, for L =50.
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Fig. 9. Original and estimated state variable X, forl =30. rjg 15 Original and estimated state variable x, for L = 50.

7. Conclusion

This paper proposed a novel identification
approach for canonical fractional-order state-space
systems. An advantage of the proposed method is
that not only the unknown parameters of the
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system but also its states are estimated. Promising
performance of the proposed method was verified
using two examples. Concluding the simulation
results, it is clear that the proposed algorithm is
able to successfully perform the identification and
estimation hierarchically.
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