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Abstract 
This paper has proposed a gain-scheduled 
controller with stability proof and guaranteed cost 
for a turboshaft driving a variable pitch propeller. 
In order to overcome the complexity of the 
nonlinear model, a linear parameter varying 
(LPV) model is proposed for the first time which is 
in affine form. Proposed model is established based 
on a family of local linear models and is suitable 
for LPV gain scheduling methods. Thus a gain 
scheduled design procedure is proposed which 
considers parameter dependent Lyapunov 
matrices to ensure stability and a quadratic cost 
function for guaranteed performance of the closed 
loop system. Proposed procedure also has the 
advantage of considering an upper bound for 
change rate of the scheduling signal which 
decreases conservativeness. Controller design 
problem and calculating its gain matrices is 
formulated in a set of Linear Matrix Inequalities 
which easily can be solved using LMILAB toolbox. 
Simulation results showed the effectiveness and 
practicality of the proposed procedure. 
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1. Introduction 
This paper considered LPV gain scheduling 
control of a class of gas turbine engine.  Gas 
turbine engine is a family of jet engines with 
different name related to their task , such as 
turbojet, turbofan, turboprop and turboshaft. In 
                                                             
1.M.S. student, Department of Electrical Engineering, Babol 

Noshirvani University of technology, (f.l.boluki@stu.nit.ac.ir) 
2.Assistant Professor, Department of Electrical Engineering, 

Babol Noshirvani University of Technology, ({akhosravi, 
j.sadati}@nit.ac.ir}), *Corresponding Author 

3 .Assistant Professor, Department of Electrical Engineering, 
Babol Noshirvani University of Technology, ({akhosravi, 
j.sadati}@nit.ac.ir}), *Corresponding Author 

turboshaft the generated thrust of jet engine is 
converted to mechanical energy in propeller. This 
system is employed to generate torque in 
helicopters, boats, hovercraft and tanks. 
Fundamentals of design and analysis of control 
systems for gas turbine is covered in [1]. In order 
to achieve maximum efficiency, system should be 
kept close to its limits [2]. A wide variety of 
control method have been used for control of this 
system such as multivariable robust control [3], 
sliding mode [4], adaptive method [5] and neural 
network [6]. The main obstacle to design a 
control system is complex dynamic of the 
nonlinear model. A nonlinear model of turboshaft 
driving Variable Pitch Propeller based on 
physical equations is presented in [7]. In order to 
achieve a simpler model, a family of linear 
models is presented using global linearization  
method in some operating points. In [8] classical 
gain scheduling method is investigated for this 
family of linear models. For stability proof a 
single Lyapunov matrix is computed via linear 
matrix inequalities for closed loop system in all 
operating points. They just analyzed the stability 
and did not give a solution for optimal controller. 

Gain scheduling is one of the most popular 
method for designing controller for nonlinear 
systems and it is widely known that they have a 
better performance than the robust ones [9]. A 
comprehensive review on this method can be 
found in [10] and [11]. One popular method in 
LPV controller analysis and design is using 
parameter dependent Lyapunov function for 
stability proof (see for example [12, 13] and 
reference there in).This can improve the 
performance of the controller in comparison to 
single Lyapunov matrix. However, it should be 
considered that the dependency should not yield 
in a controller which uses derivative of 
scheduling parameters [13]. On the other hand 
considering the maximum change rate of 
scheduling signal can decrease conservativeness. 
A LPV gain scheduled controller design method 
which considers upper bound of derivative of 
scheduling parameters is presented in [14]. This 
method guarantees the stability and performance; 
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however, it converts the design problem into 
nonconvex matrix inequalities.  

 In this paper a gain-scheduled controller is 
designed which ensures stability and guaranteed 
performance. Therefore a affine LPV model 
based on family of linear models is proposed for 
turboshaft plant. Scheduling signal is exogenous 
and assumed to be available. Proposed model 
interpolates a family of local LTI models .In 
every operating point an equivalent value is 
assigned to scheduling signal. Proposed LPV 
model changes between local LTI models as 
scheduling signal changes between its equivalent 
values. The model has the merit and advantages 
of using vast variety linear and LPV methods for 
stability and performance analysis and design. A 
gain scheduled controller design procedure 
similar to [14] is presented. Controller design 
problem and calculating its variable gain matrices 
is formulated in a set of LMIs.  Proposed 
controller for turboshaft plant in comparison with 
previous works has the advantages as follow: a) 
considering a quadratic cost function for the 
performance of the system, b) using a parameter 
dependent Lyapunov function, c) considering 
maximum rate value of scheduling signal 
changes. 

This paper is organized as follows: in section 
(2) turboshaft model is overviewed and the LPV 
model is presented. In section 3 the design 
procedure is presented. Simulation results and 
conclusion are presented in sections (4) and (5) 
respectively.  

 
2. Plant model 
Turboshaft system driving variable pitch 
propeller consists of jet engine and propeller 
subsystems (figure 1) . Input air is pressurized in 
compressor then combined with fuel and ignited 
in combustion chamber. Generated hot gases 
make thrust in low turbine. This thrust is carried 
to the propeller through gearbox. A high turbine 
also is used to provide needed torque for 
compressor. In order to make a quick change in 
output torque, the angle of propeller is varying. 
Propeller angle and fuel flow are considered as 

the input control variables. Low spool and high 
spool speed are the state variables. The nonlinear 
model of the plant is:  

))(),(),(()(
))(),(),(()(

tvtutxgty
tvtutxftx

=
=&  (1) 

in this model, Ttxtxtx )](),([)( 21= is state vector, 
)(1 tx is high spool and )(2 tx is low spool speed. 

Vector Ttututu )](),([)( 21= is the input where )(1 tu and 
)(2 tu  are fuel flow and propeller angle 

respectively. Disturbance signal )(tv  neglected in 
this paper. (.)f  and (.)g  are nonlinear functions. 
The nonlinear model uses an initial guess for 
mass flow and turbin pressure ratio, also includes 
a Newton iteration to compute engin dynamics 
)For more details see [7]).  This complexity in 
plant model restricts range of control methods 
that can be used to guaranee stability and 
performance of the system. To overcome the 
complexity of nonlinear model, in next section 
the parameter varying model is presented. 

 

 
Figure 1. Schematic of turboshaft driving variable pitch 
propeller 
 
2.1. Linear Parameter Varying Model 
Linearizing the nonlinear model (1) in five 
operating point is given in [8]. The LPV model of 
the plant based on the family of local linear 
models is considered as follows: 

)()(
)())(()())(()(
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=
+= αα&  (2) 

Parameter α  is time varying and denotes 
scheduling signal. In this paper state space 
matrices are in the affine form, i.e. 
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iA and iB are the state space matrices of linear 
models, T

p (.)](.),...,(.),[(.) 21 θθθθ =  is vector of 

scheduling parameters satisfying 
( )

( )

ii i

i

θ θ α θ

θ α ρ

≤ ≤

≤&
 (4) 

Where , iiθ θ and iρ  are known constants. For 
simplicity in writing the parameter t is dropped. 

Most important step in constituting a LPV 
model is choosing appropriate scheduling 
parameters. LPV model is considered to be a 
linear interpolation of the family of local linear 
models. When scheduling signal changes from 
operation point i  to operation point j ,  

iθ goes to 
zero and 

jθ  goes to one (figure 2). Thus the 

scheduling parameters are defined as: 
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iα is the value of scheduling signal in operating 
point i. 

1iα − α1iα +iα

iθ
1

0

 
Figure 2. Scheduling parameters for turboshaft LPV model 
 

3. Gain scheduling controller design 
In this section gain scheduled controller design 
procedure is presented. The objective is that the 
plant output variables track the reference signal r . 
Thus a PI scheduled controller is considered : 

( ) ( )  p Iu F e F e dtα α= + ∫  (6) 
where e y r−@ is output tracking error. Controller 
gain matrices have the following form: 
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By including dynamic of the integral part into 
plant model, PI controller design problem 

becomes static controller design and the resulted 
augmented model is: 

0 0
, ,

0 0 0aug aug aug

A B C
A B C

C I
     

= = =     
     

 (8) 

then scheduled controller is: 
( )u F eα=  (9) 

where: 

0
1
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p
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i

F F Fα θ α
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 and [ ]i Pi IiF F F@ , 0,...,i p= . For stability proof a 
parameter dependent Lyapunov matrix is 
considered: 

1

0
1
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In order to obtain a guranteed performance, a 
quadratic cost function is considered: 

∫
∞

+=
0

)( dtRuuQxxJ TT  (12) 
where Q  and R  are constant matrices with 
appropriate dimensions. Substituting equation (9) 
in (2) leads to closed loop system: 

( ( ) ( ) ( ))x A B CF xα α α= −&  (13) 
Definition 1. If there exist an input control signal 

*u and scalar *J such that the closed loop system is 
stable and *JJ <  then *J is the guaranteed cost. 

To design the controller, a theorem similar to 
[14] is used. Define 

1

p
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Theoreme 1. Closed loop LPV system (13) is 
stable with guaranteed cost if there exist 
symmetric and positive definite matrices 

0 1, ,..., pP P P such that the system of matrix 

inequality (15) is satisfied. 
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For a proof see [14]. Theorem 1 formulates the 
design problem in a set of bilinear matrix 
inequalities. To convert (15) into a set of LMIs, a 
linearization method similar to [15] is used. 
lin( )

                          

T T T T T T
i j i j i j

T T
i j

C F RF C C Z RF C C F RZ C

C Z RZ C

≅ +

−
 (16) 

where in each iteration
i iZ F= . This linearization 

needs an initial guess for gain matrices, thus in 
the following a theorem is proposed to get an 
initial controller. 
Lemma 1.[12] consider a quadratic function of 
vector θ : 

2
1 0

1 1
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p p p

p i i ij i j i i
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f a a b cθ θ θ θ θ θ
= < =

= + + +∑ ∑ ∑  (17) 

assume that (.)f  be multiconvex that is 
2 2( ) / 2 0, 1,...,i if c i pθ θ∂ ∂ = ≥ = , then (.)f  is negative 

for all values of iθ if it is negative for its corners 
i.e. { , }iiiθ θ θ∈ . 

Based on lemma 1 and Riccati inequality [16], 
following theorem is presented for frozen time 
values of scheduling parameters. 
Theorem 2. Closed loop LPV system (13) is 
stable with optimum cost for frozen values of iθ , 
if there exist symmetric and positive definite 
matrices

0 1, ,..., pP P P such that the matrix inequality 

(18) and (19) for 1,...,i p=  are satisfied. Then the 
optimum controller is as (20). 
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Proof. Write Riccati inequality for parameter 
dependent values of matrices: 
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By using lemma 1 this inequality holds if (18) 
hold and it is satisfied for corner values 
of { , }, 1,...,ii i pθ θ θ∈ = . From (5) one have: 

0,  1iiθ θ= =  (22) 
Substituting (22) in (21) leads to inequality (19). 
Then optimum controller is: 

1( ) ( ) ( )F R B Pθ θ θ−=  (23) 
Substituting (11) and using (22) leads to (20) and 
proof ends. 

Note that this theorem is correct for time 
frozen values of scheduling parameters and for 
time varying case there is no guarantee for 
stability. However, using this controller as an 
initial guess for theorem 1, guarantee can be 
obtained. 

 
4. Simulation results 
The problem of finding a controller resulted in a 
set of Linear matrix inequalities. This inequalities 
are solved using LMILAB toolbox. Constants are 
assigned as 10ρ = ,  

0 0.3361α = , 
1 0.6473α = , 

2 0.8818α = , 
4 1.3810α = ,  4

210Q I−=  and 6
210R I−= , 

where nI is n n× unity matrix. Plant matrices are: 
4

0 0 3
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,  

0.1 2.4 100.26 0.34
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2 2
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Computed controller gain matrices are: 
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3 3
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,  

2.507 52.80 5.25 105.5P IF F   
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4 4
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,  

142.74 748.1 285.90 1.49P IF F
   
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In order to evaluate proposed controller, in 
first case, scheduling signal is considered to move 
linearly between five operating values (figure 3). 
Simulation results are shown in figure 4 and 5. 
High turbine and low turbine spool speeds 
properly tracked reference signal (figure 4). Fuel 
flow and propeller angle signals are shown in 
figure 5. One advantage of the proposed design 
procedure is ensurig stability and guranteed cost 
in the case of high rate change in scheduling 
signal. Therefore, In order to evaluate the 
stability and performance of the closed loop 
system, in second case, a 0.05 Hz sinusoidal 
signal changing between three operation point is 
considered (figure 6). The simulation results are 
shown in figures 7 and 8. It can be clearly seen 
that stability is still maintained in the case of 
increasing the change rate. 
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Figure 3. Scheduling signal and parameters (case 1) 
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Figure 4. High and Low spool speed of turboshaft (case 1) 
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Figure 5. Input fuel flow and propeller angle (case 1) 
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Figure 6. Scheduling signal and parameters (case 2) 
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Figure 7. High and Low spool speed of turboshaft (case 2) 
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Figure 8. Input fuel flow and propeller angle (case 2) 

 
 
 

5. Conclusion 
Main goal of this paper is to design controller for 
turboshaft engine driving variable pitch propeller 
which could ensure stability and performance. 
Thus a LPV model in affine form is proposed for 
the MIMO plant. Since proposed model 
established based on a collection of linear models 
in different operating points, it can be close to the 
nonlinear model and at the same time enjoys a 
vast variety linear and LPV analysis and design 
methods. Then, a LPV gain scheduled controller 
design procedure is proposed which guarantees 
stability and performance of the closed loop 
system for output tracking problem. Benefits of 
the proposed procedure are mentioned and 
simulation is conducted to prove practicality of 
the procedure. It has been shown that output 
properly tracked reference signals and also in the 
case of quickly change between operating points, 
closed loop system remained stable. 
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