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Abstract 
 This paper addresses robust state estimation 
problem for Genetic Regulatory Networks 
(GRNs). A delay-dependent robust 2L L∞−  filter 
is designed for a realistic nonlinear stochastic 
model of GRN. The model provided is the most 
complete model used in the literature so far, in 
the sense that delays are time-varying, 
parameter uncertainties (time-varying and 
norm-bounded) are considered, stochastic 
noises appear at the state equations as well as 
the measurement equations. Besides, stochastic 
noise and disturbance are considered 
simultaneously in this model. Using a proper 
Lyapunov-Krasovskii functional based on delay 
decomposition approach, sufficient conditions 
for the existence of the filter are derived in 
terms of linear matrix inequality (LMI). These 
conditions ensure robust asymptotic mean 
square stability of the filtering error dynamics 
with a prescribed 2L L∞−  disturbance 
attenuation level. By use of delay decomposition 
approach and using a lemma containing a 
stochastic integral inequality, the obtained 
conditions are delay-dependent and have less 
conservativeness. The filter parameters are 
determined then, as the solution of another 
LMI. A simulation study is also given to show 
the effectiveness of the proposed filter design 
procedure.  
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1. Introduction 
In a living cell, two mechanisms are in action: 
genes encode proteins and some of proteins 
regulate gene expression either negatively or 
positively. These mechanisms construct a closed 
loop structure, which is called Genetic Regulatory 
Network (GRN). Gene expression consists of two 
main processes: “transcription” and “translation”; 
genes are transcribed into mRNAs under the 
control of some proteins and each mRNA molecule 
is translated to synthesis a protein. In recent two 
decades, a great deal of research has been done to 
propose a model for GRNs and make analysis on 
them [1]. 

Two approaches are proposed to make a 
mathematical model for GRNs: the discrete time 
approach used in models such as Boolean networks 
[2] and the continuous time approach using the 
differential equations [3], [4]. In the Boolean 
model, only two states, ON or OFF are used to 
express the activity of each gene, and a Boolean 
function of the states of other related genes 
determines the state of a gene [5]. In the 
differential equation model, the concentrations of 
gene products, such as mRNAs and proteins, are 
considered as the continuous state variables. 
Examining practical data, it seems that gene 
expression levels would better be modeled as 
continuous rather than discrete. Therefore, in recent 
years, differential equations have often been used 
to describe genetic networks [6], [7]. 

The time delay is a key factor affecting 
dynamics of gene expression. Mathematical 
models without considering time delays may give 
wrong predictions of the mRNA and protein 
concentrations [8]. So a complete model should 
certainly include a proper consideration of time 
delay. On the other hand, gene regulation is an 
intrinsically noisy process. In general, the noises 
appear in gene expression in one of the two ways, 
namely, intracellular noise and extracellular noise. 
The intracellular noises are due to the probabilistic 
chemical reactions, random births and deaths of 
individual molecules [9] and the extracellular 
noises are created because of environment 
fluctuations [10].  

Furthermore, there are often some unavoidable 
uncertainties in modeling GRNs, which result from 
using an approximate model for simplicity, 
external perturbations, parameter fluctuations and 
data errors. It is very likely that the system 
parameters identified from experimental data may 
form an unknown but bonded time-varying 
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function. Therefore, when investigating the 
dynamical behaviors of GRNs, the norm-bonded 
parameter uncertainties should also be taken into 
account. 
In practice, for identifying genes of interest and 
designing drugs, biologists are interested in 
obtaining the steady-state values of the real 
network states based on the measurement data. 
Unfortunately, due to the time delay, noises and 
unavoidable uncertainties, the actual measurements 
are far from the true states. This leads researchers 
to use filter that is to estimate the GRN states such 
that the estimation error asymptotically converges 
to zero in the mean square sense in the presence of 
time delays, noises and uncertainties. 

A robust filtering problem has been addressed in 
[11] for a linear GRN with stochastic noises, where 
the time delay has been ignored. In [12] the 
filtering issue has been investigated for nonlinear 
delayed GRNs with stochastic noises but without 
considering parameter uncertainties. In [13] the 
robust filter has been designed for GRNs with 
time-varying delays, where stochastic noises have 
been considered at both the state and measurement 
equations but regulation nonlinearities have been 
ignored. The state estimation for stochastic 
nonlinear uncertain GRNs has been addressed in 
[14] and [15] but stochastic noises have been 
considered only at the state equations and the 
delays have been assumed constant. On the other 
hand, in none of the mentioned references, 
disturbance has been considered in GRN model. In 
[3], [16] and [17] a stochastic nonlinear model has 
been developed for GRN under stochastic noises 
and disturbance simultaneously but filtering 
problem has not been studied. 

For time-delay systems such as GRNs, the filter 
design methods can be classified into two 
categories: delay-dependent [18] and delay-
independent [19]. Since delay-dependent methods 
depend on the amount of delay, they are less 
conservative than delay-independent ones. In [20] 
the H∞  delay-independent filter has been designed 
for nonlinear uncertain GRN under stochastic 
noises and disturbance with time-varying delays 
and stochastic noises only at the state equations. 
In the current paper, the nonlinear GRN model in 
the form of differential equations, provided in the 
literature has been made complete such that norm-
bonded parameter uncertainties enter both the 
system and measurement matrices, delays are time-
varying, stochastic noises appear at both the state 
and measurement equations and in addition, 
stochastic noises and disturbance are considered in 
the model simultaneously. The feedback regulation 
is described by a sector-like nonlinear function, the 

time-varying delays enter into both the translation 
process and the feedback regulation process, and 
the stochastic noise is a scalar Brownian motion. 
We aim to estimate the true concentrations of the 
mRNA and protein by designing a delay-dependent 
robust 2l l∞−  filter.  
Using delay decomposition approach [21], a 
Lyapunov-Krasovskii functional (LKF) is chosen. 
It has been showed that this approach leads to less 
conservative results [22]. Then a stochastic integral 
inequality is introduced [21]. Using the LKF, the 
integral inequality and free weighting matrix 
technique [21], [23], [24], delay-dependent 
sufficient conditions for the existence of robust 

2L L∞−  filter are derived. These conditions are in a 
linear matrix inequality (LMI) format and ensure 
that the filtering error dynamics is robustly 
asymptotically stable in the mean square with a 
prescribed 2L L∞−  attenuation level. 
The rest of this paper is organized as follows: in 
section 2 the model and preliminaries are provided. 
In section 3 the delay-dependent sufficient 
conditions for the existence of robust 2L L∞−  filter 
are first obtained in the LMI format, and then filter 
parameters are determined in terms of the solutions 
to some LMIs. In section 4 a three-node GRN is 
presented to demonstrate the effectiveness of the 
proposed filter. Conclusions are finally given in 
section 5.  
 
2. Model formulation and preliminaries 
In this section, the proposed model will be 
provided later as equation (6). To introduce this 
model in some simple steps, first consider the 
nonlinear delayed GRN model with SUM 
regulatory functions [3] provided in [15]: 

1 1 0

2 2

( ) ( ) ( ( ))
( ) ( ) ( )

m t A m t Bf p t B
p t A p t Dm t

τ

τ

= − + − +
 = − + −

&
&

 
 

(1)

where ( )m t  equals 1 2[ ( ), ( ),..., ( )]T n
nm t m t m t ∈ R  and 

1 2( ) [ ( ), ( ),..., ( )]T n
np t p t p t p t= ∈ R  in which ( )im t  and 

( ), 1,...,ip t i n=  are respectively the concentrations of 
mRNA and protein of the ith node at time t for a 
GRN with n nodes; 1 11 12 1{ , ,..., }nA diag a a a=  and 

2 11 12 1{ , ,..., }nA diag c c c=  where 1ia  and 1 , 1,...,ic i n=  
denote, respectively, the degradation rates of 
mRNA and protein of the ith node; 

1 2{ , ,..., }nD diag d d d=  where , 1,...,id i n=  is the 
translation rate of the ith node. ( ) n n

ijB b ×= ∈ R  is the 
coupling matrix defined as follows: 

,
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.
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if transcription factor j isanactivator of genei
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if transcription factor j isarepressor of genei
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( ( ))f p t  equals 1 1[ ( ( )),..., ( ( ))]T
n nf p t f p t  where 

nonlinear function (.)jf  represents the feedback 
regulation of the protein on the transcription. This 
function is supposed to be a monotonic function in 
Hill form [15], ( ) ( / ) /(1 ( / ) )H Hj j

j j jf x x xβ β= +  where 
jH  is the Hill coefficient and 0jβ >  is a constant. 

0B  equals 01 02 0[ , ,..., ]T
nb b b  where 0i ijj Ii

b α
∈

= ∑  in 

which iI  is the set of all j nodes which are 
repressors of gene i. 1 0τ >  denotes the translation 
delay and 2 0τ >  represents the feedback regulation 
delay. 

Assume that vectors m∗  and p∗  are the 
equilibrium point vectors of (1). Shifting the state 
vectors to the origin, ( ) ( ) , ( ) ( )m px t m t m x t p t p∗ ∗= − = −  
yields 

1 1

2 2

( ) ( ) ( ( ))

( ) ( ) ( )
m m p

p p m

x t A x t Bg x t
x t A x t Dx t

τ

τ

= − + −
 = − + −

&
&

 
 

(3) 

where 1 1( ( )) [ ( ( )),..., ( ( ))]T
p p n png x t g x t g x t=  and 

( ( )) ( ( ) ) ( )i pi i pi ii i
g x t f x t p f p∗ ∗= + − . 
Assumption 1: It is assumed that the function (.)ig  
satisfies the following sector condition 

( )
0 , , 0; (0) 0, 1,....,i i

i i i i
i

g x
l x x g i n

x
≤ ≤ ∀ ∈ ≠ = =R

 
(4) 

Considering 0ix >  and (4) we can conclude 
( ) 0i ig x > . So the sector condition (4) is equivalent 

to 
{ }1 2( )( ( ) ) 0, , ,..., 0T

ng x g x Lx L diag l l l− ≤ = >
 

(5) 
In this paper, we consider the following stochastic 
nonlinear model. This model is a completed 
version of the model provided in [12] such that 
delays are time-varying [13], stochastic noises 
appear at both the state dynamics and measurement 
equations [13], norm-bounded parameter 
uncertainties are taken into account [15] and this 
model is considered to have stochastic noises and 
disturbance simultaneously [3], [16], [17]: 
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1 1 1
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1 1 2

1 1
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τ υ
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=
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=
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
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




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
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(6)

where ( )my t  equals 1 2[ ( ), ( ),..., ( )]T r
m m mry t y t y t ∈ R  and 

( )py t  equals 1 2[ ( ), ( ),..., ( )]T r
p p pry t y t y t ∈ R  in which 

( )mjy t  and ( )pjy t  represent respectively the 
expression levels of mRNA and protein of the jth 
node at time t. 1( )C t  and 2 ( )C t  are the 
transformation matrices between the observation 
variables and the internal state variables. The time-
varying scalars 1( )tτ  and 2 ( )tτ  satisfy 
0 ( ) , ( ) 1, 1,2i i i it t d iτ τ τ≤ ≤ ≤ < =&  and τ  is defined as 

{ }1 2max ,τ τ τ= . 1( )tω  and 2 ( )tω  are scalar Brownian 
motions with zero mean and unit variance, which 
are mutually uncorrelated. ( ) mtυ ∈ R  is the 
disturbance belonging to 2L L∞− , i.e. the set of 
signals with bounded 2L  norm. The 2L  norm of 

( )tυ  is defined as 
1/ 2

2 0
( ) { ( ) ( ) }Tt t t dtυ υ υ

∞ =  
 ∫E  , 

where E  denotes mathematical expectation. 
1 2 1 2 1 1 2( ), ( ), ( ), ( ), ( ), ( ), ( )v v v v v v vA t A t C t C t E t F t E t  and 
2( )vF t  form the influence of disturbance on the 

states and measurements. ( ) q
mz t ∈R  and ( ) q

pz t ∈ R  
are the concentrations of mRNA and protein of 
nodes that we are interested. ( )m tφ  and ( )p tφ  are the 
initial condition functions of ( )mx t  and ( )px t . 
The time-varying matrices of system (6) have the 
following form: 

( ) ( ), ( ) ( ),
( ) ( ), ( ) ( )
( ) ( ), ( ) ( ),
( ) ( ), ( ) ( )
( ) ( ), ( ) ( ) , 1, 2

i i i vi vi vi

i i i vi vi vi

i i i vi vi vi

i i i vi vi vi

A t A A t A t A A t
E t E E t E t E E t
C t C C t C t C C t
F t F F t F t F F t
B t B B t D t D D t i

= + ∆ = + ∆

= + ∆ = + ∆

= + ∆ = + ∆

= + ∆ = + ∆

= + ∆ = + ∆ =

 
(7)

where , , , , , , , ,i vi i vi i vi i viA A E E C C F F B  and D  are 
known real constant matrices with appropriate 
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dimensions. 
( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )i vi i vi i vi i viA t A t E t E t C t C t F t F t B t∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

and ( )D t∆  are unknown real time-varying matrices 
representing norm-bounded parameter uncertainties 
satisfying 

1 1 1 1

2 2 1 1

1
1 2 3 4 5

2

1 1 2 2

2 2 2 2

3
1 3 4 5

4

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

v v

v v

v v

v v

A t B t A t E t E t
A t D t A t F t F t

G
t H H H H H

G

C t C t E t E t
C t C t F t F t

G
t H H H H

G

∆ ∆ ∆ ∆ ∆ 
= ∆ ∆ ∆ ∆ ∆ 

 
∆     

 
∆ ∆ ∆ ∆ 

= ∆ ∆ ∆ ∆ 
 

∆     
 

 
(8) 

where ( 1,2,3,4)jG j =  and ( 1, 2,3,4,5)jH j =  are 
known real constant matrices and ( )t∆  is the 
unknown, time-varying, matrix valued, Lebesgue 
measurable function satisfying 

( ) ( ) , 0T t t I t∆ ∆ ≤ ∀ ≥
 

(9) 
The main aim of this paper is to estimate the 
concentration of mRNA and protein, i.e. ( )mx t  and 

( )px t  at (6) through their measurement output, i.e. 
( )my t  and ( )py t . The linear filter considered here is 

of the following form 

[ ]

ˆ ˆ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )

ˆˆ ( ) ( )
ˆˆ ( ) ( )

ˆ ˆ( ) ( ), ( ) ( ), 2 ,0

m f m f m

p f p f p

m mf m

p pf p

m m p p

dx t A x t dt B dy t

dx t C x t dt D dy t

z t H x t

z t H x t

x t t x t t tψ ψ τ

 = +


= +


=
 =
 = = ∀ ∈ −

 
(10) 

where ˆ ( ) n
mx t ∈ R  and ˆ ( ) n

px t ∈ R  are the estimates 
for ( )mx t  and ( )px t , respectively; ( )m tψ  and ( )p tψ  
are the initial functions of ˆ ( )mx t  and ˆ ( )px t , 
respectively; and , , , ,f f f f mfA B C D H  and pfH  are 
appropriately dimensioned filter parameter 
matrices to be determined. 
Defining 

2
2

2

1

1
1

( ) ( ( ))
( ) : , : ,

ˆ ˆ( ) ( ( ))

( ) ( ( ))
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p p
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x t x
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x t x t x t
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τ

τ

τ

τ

τ

τ

ρ φ ψ

−   
= =   −   

−   
= =   

−      
= − = −

 =  

= ( ) ( ) ( )T T T T
p pt t tφ ψ  

 

(11) 

and augmenting the states of the filter (10) to the 
model of (6), the following filtering error dynamics 
is obtained: 

( )

( )

[ ]

11

1

22

2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
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m m p v
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p p m v
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E t K x t E t t d t
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τ
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υ
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υ
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  = + + 
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
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 =
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


 
(12)

where 
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( ) ( ), 1,2

v v v
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(13)

in which 
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(14)

To investigate the convergence of the filtering error 
dynamics, the following stability definitions must 
be considered: 
Definition 1 [20]: A system described by equation 
(6) with ( ) 0tυ =  is said to be robustly mean 
square stable for all admissible uncertainties (8)-
(9), if for any scalar 0ε >  there exists a scalar 

( ) 0δ ε >  such that { }2( )mx t ε<E  and 

{ }2
( ) , 0px t tε< ∀ >E  when { }2

[ 2 ,0]sup ( ) ( )t m tτ φ δ ε∈ − <E  

and { }2
[ 2 ,0]sup ( ) ( )t p tτ φ δ ε∈ − <E . In addition, if 
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{ }22lim ( ) ( ) 0m pt
x t x t

→∞
+ =E  for any initial conditions, 

then this system is said to be robustly 
asymptotically mean square stable. 
Definition 2 [19]: Given a scalar 0γ > , the filtering 
error dynamics (12) is said to be asymptotically 
mean square stable with the 2L L∞−  attenuation 
level γ , if it is asymptotically mean square stable 
with ( ) 0tυ = , and under zero initial condition, it 
satisfies 2

( ) ( )m E
e t tγ υ

∞
<  and 

2
( ) ( )p E

e t tγ υ
∞

<  for 
all nonzero 2( ) [0, )t Lυ ∈ ∞ , where .

E∞
 for the signal 

( )e t  is defined as { }2( ) sup ( )tE
e t e t

∞
= E . 

Assumption 2 [21]: The system (6) with ( ) 0tυ =  
is robustly asymptotically mean square stable. 
Lemma 1 [19]: Given appropriately dimensioned 
matrices 1 2 3, ,Σ Σ Σ  with 1 1

TΣ = Σ , then 
1 3 2 2 3( ) ( ) 0T T Tt tΣ + Σ ∆ Σ + Σ ∆ Σ <  holds for all ( )t∆  

satisfying ( ) ( )T t t I∆ ∆ ≤  if and only if for some 
0,ε > 1

1 3 3 2 2 0T Tε ε−Σ + Σ Σ + Σ Σ < .  
Lemma 2 [21]: Let n-dimensional vector functions 

( )x t , ( )tϕ  and ( )g t  satisfy the stochastic differential 
equation ( ) ( ) ( ) ( )dx t t dt g t d tϕ ω= +  where ( )tω  is a 
one-dimensional Brownian motion. For any 
constant matrix 0 n nZ ×≥ ∈R  and scalar 0h > , if the 
following integration is well defined, then the 
following inequality holds on it  

( ) ( )
( ) ( )

( ) ( )

( )
2 ( ) ( )

( )

T
t

T

t h

T
t

t h

x t Z Z x t
h s Z s ds

x t h Z Z x t h

x t Z
g s d s

x t h Z

ϕ ϕ

ω

−

−

−     
− ≤      − − −     

   
+    − −   

∫

∫
 

(15) 

 
Proof: see [21]. 

 
The purpose of this paper is to design the robust 

2L L∞−  filter of the form (10) for the system (6) 
such that, for all stochastic noises and disturbance, 
admissible nonlinearities, uncertainties and time 
delays, the filtering error dynamics (12) is robustly 
asymptotically mean square stable with a 
prescribed 2L L∞−  attenuation level γ . 
3. Robust 2L L∞−  filter analysis and design 
In this section, we first assume that the filter is 
designed and its matrices are exactly known in 
order to study the stability of the filter, i.e. 
convergence of the filtering error to zero. This 
study is based on the idea of delay decomposition, 
resulting to the delay-dependent conditions under 
which the filtering error is robustly asymptotically 
mean square stable with an 2L L∞−  attenuation 
level γ . Delay decomposition technique is to 
partition the time delay with an integer r . The 
parameter r  is the number of delay partitions and 
the conservatism reduces as r  increases [25].  
Theorem 1: Given an integer 1r ≥ , a scalar 0γ >  
and filter parameters , , , ,f f f f mfA B C D H  and pfH . 
The filtering error dynamics (12) is robustly 
asymptotically mean square stable with the 2L L∞−  
attenuation level γ , if there exist scalars 

0, 1,..., 7j jε > = , matrices 2 20 , 1, 2n n
iP i×> ∈ =R  and 

n n×  matrices 0, 1,2iR i≥ = ; 0kmQ ≥ ; 0kpQ ≥ ; 0kmZ ≥ ; 
0, 1,2,...,kpZ k r≥ = ; 1S  and 2S  such that the 

following LMIs hold 

 
11 12 13 14 15 16 17 18 19 110 111

22 1 2

1 1 3

2 2 6

1

2

3

4

5

6

7

* 0 0 0 0 0 0 0
* * 0 0 0 0 0 0 0
* * * 0 0 0 0 0 0
* * * * 0 0 0 0 0 0
* * * * * 0 0 0 0 0
* * * * * * 0 0 0 0
* * * * * * * 0 0 0
* * * * * * * * 0 0
* * * * * * * * * 0
* * * * * * * * * *

T T
v vE P F P
P PG

P PG
I

I
I

I
I

I
I

ε
ε

ε
ε

ε
ε

ε

Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ
 Ξ
 −


−
 −


Ξ = −
 −

−
−

−
−

0










<



 
 
 
 
 
 

 (16)

1 2
1 22 2

0, 0
* *

T T
m pP H P H
I Iγ γ

   
Ω = > Ω = >   

   
  (17)

where 
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1 1 1 5

2 2 2 6

3 7

4

5 8

2 2

2 2
11

( 1)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0

0
0 0 0 0

0 0 0
0 0 0

m m

p p

r m r m

r p r p

r m

P B
P D

L

Z
Z

Z
Z

+

Γ ∆ ∆
∗ Γ ∆ ∆
∗ ∗ Γ ∆
∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ Γ ∆
∗ ∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗ ∗ Γ

Ξ =
∗ ∗ ∗ ∗ ∗ ∗ ∗

Γ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗

L
L
L
L
L
L
O M

O O O M M M
M M M M M M O O

( 1)

3

4

0 0
0

r p+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∗ ∗ ∗ ∗ ∗ ∗ Γ 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆ 

 (18)

 
In which 
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[ ]
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L
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L
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22 3 6 5 5 7 3 3

,
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TT T T T T T

T T

G P G K S

G P G P G K S G K S

I H H H Hε ε ε

 Ξ =  

 Ξ =  
Ξ = − + + +

L

L

 (19)

And 
1 1 1 1 1

1 1 1 1 3 4 4

2 2 2 2 1

1 4 1 1 6 4 4

3 2 1 5 2 2 4 1 2 5 2 2 2

( 1) ( 1) ( 1)

( 1) , ( 1) , 2
, 2,..., ,

T T T
m

T T T T
m

T T T
p

T T T T
p

T T

im im i m im i m r m r m r m

P A A P K R K K Q K

K Z K H H K H H K

P C C P K R K K Q K

K Z K H H K H H K

d R H H d R I H H
Q Q Z Z i r Z Q

ε ε

ε ε

ε ε

− − +

Γ = + + +

− + +

Γ = + + +

− + +

Γ = − + Γ = − Γ = − +

Γ = − − − = Γ = − −

 
 

(20)

( 1) ( 1) ( 1)

2
1 1 3 2 1 1

1

5 1 7 2

2
2 1 4 1 2 2

1

6 2 8 1

, 2,..., ,

, ,

,

, ,

,

ip ip i p ip i p r p r p r p

r
T T

m km
k

T T T T

r
T T

p k p
k

T T T T

Q Q Z Z i r Z Q

K Z h Z S S

A K S D K S

K Z h Z S S

C K S B K S

− − +

=

=

Γ = − − − = Γ = − −

∆ = ∆ = − −

∆ = ∆ =

∆ = ∆ = − −

∆ = ∆ =

∑

∑
 

Proof: For presentation convenience, we let 
11

22

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
m m p v

p p m v

t A t x t B t g K x A t t

t C t x t D t K x A t t
τ

τ

ξ υ

ξ υ

= + +

= + +  (21)

Then the filtering error dynamics (12) can be 
rewritten as 

( ) 1( ) ( ) ( ) ( ) ( ) ( ) ( )m m m vdx t t dt E t K x t E t t d tξ υ ω= + +  (22)

( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( )p p p vdx t t dt F t K x t F t t d tξ υ ω= + + (23)
Using delay decomposition approach [21], we 
choose the following Lyapunov-Krasovskii 
functional candidate for the system (12): 

1 2 3 4( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )V x t t V x t t V x t t V x t t V x t t= + + +  (24)
where 

 
1 1 2( ( ), )  ( ) ( ) ( ) ( )T T

m m p pV x t t x t P x t x t P x t= +  (25)
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where , 1,2i ih r iτ= = . By Ito's differential formula 
[26], the stochastic differential of (24) along the 
filtering error dynamics (12) is  

( )
( )

1 1

2 2

( ( ), ) ( ( ), )

2 ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( )

T
m m v

T
p p v

dV x t t V x t t dt

x t P E t K x t E t t d t

x t P F t K x t F t t d t

υ ω

υ ω

=

+ +

+ +

l

 (29)

where 
1 2 3 4( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )V x t t V x t t V x t t V x t t V x t t= + + +l l l l l  (30)

and 

( ) ( )
( ) ( )

1

1 2

1

2

( ( ), )

2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T
m m p p

T T T T T
m v m v

T T T T T
p v p v

V x t t

x t P t x t P t

x t K E t t E t P E t K x t E t t

x t K F t t F t P F t K x t F t t

ξ ξ

υ υ

υ υ

=

+

+ + +

+ + +

l

 (31)

2 1 2 12 2

2 1 21 1

( ( ), ) ( ) ( ) (1 ( ))

( ) ( ) (1 ( ))

T T T T
m m m m

T T T T
p p p p

V x t t x t K R K x t t x K R K x

x t K R K x t t x K R K x
τ τ

τ τ

τ

τ

= − −

+ − −

&l

&
 (32)

3 ( ( ), )V x t t =l  

2 2
1

2 2
1

1 1
1

1 1
1

( ( 1) ) ( ( 1) )

( ) ( )

( ( 1) ) ( ( 1) )

( ) ( )

r
T T
m km m

k
r

T T
m km m

k
r

T T
p kp p

k
r

T T
p kp p

k

x t k h K Q K x t k h

x t kh K Q K x t kh

x t k h K Q K x t k h

x t kh K Q K x t kh
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− − − −
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∑

∑

∑

∑

 (33)

2
4 2

1

( 1) 2

2
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2
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( 1) 1

1
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( ( ), ) ( )( ) ( )
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r
T T
m km m

k
r t k h

T T
m km m

t khk
r

T T
p kp p

k
r t k h

T T
p kp p

t khk

V x t t t h K Z K t

h s K Z K s ds

t h K Z K t

h s K Z K s ds

ξ ξ

ξ ξ

ξ ξ

ξ ξ

=

− −

−
=

=

− −

−
=

=

−

+

−

∑

∑∫

∑

∑∫

l

 (34)

Applying Lemma 2 to (22), we obtain 
( 1) 2

2
22

2 2

2 22

2

22

( )( ) ( )

( ( 1) ) ( ( 1) )
( ) ( )

( ( 1) )
2

( )

( ) ( ) ( )

r t k h
T T
m km m

t khk
Tr

m km km m

m km km mk
Tr

m km

m kmk

m v

h s K Z K s ds

K x t k h Z Z K x t k h
K x t kh Z Z K x t kh

K x t k h Z
K

K x t kh Z

E s K x s E s

ξ ξ
− −

−
=

=

=

− ≤

− − − − −     
     − − −     

− −   
+    − −   

× +
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∑

∑

( )
( 1) 2

1
2

( ) ( )
t k h

t kh
s d sυ ω
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 (35)
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   
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∫

∫

 (36)

In a similar way, applying Lemma 2 to (23) yields  
( 1) 1

1
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By using free weighting matrix technique [23], [24] 
and according to (21), for any , 1,2n n

iS i×∈ =R  we 
have 
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Since 11
( ( )) 0p pK x x t tτ τ= − >  and noting (5) we have 
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Then, by considering (21), (31)-(38) and (41), we 
can obtain 
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in which 11( )tΞ  is similar to the matrix 11Ξ in (18) 
with matrices 1 2 3 5 5 6 7 8, , , , , , ,Γ Γ Γ Γ ∆ ∆ ∆ ∆  and 

1 2,P B P D  substituted by matrices 
1 2 3 5 5 6 7 8( ), ( ), , , ( ), ( ), ( ), ( )t t t t t tΓ Γ Γ Γ ∆ ∆ ∆ ∆ , and 

1 2( ), ( )PB t P D t , respectively; and 

12 1 2

1 1 2 2

13 1

14 2

1 1 1 1 1 1

2 2 2 2 1 1

3 2 1

( ) ( ) ( ) 0 ...

0 ( ) ( )

( ) ( ) 0 0 0 0 0 ,

( ) 0 ( ) 0 0 0 0

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( 1) ,

T T
v v

TT T T T
v v

T

T

T T T T
m m

T T T T
p p

t A t P A t P

A t K S A t K S

t P E t K

t P F t K

t P A t A t P K R K K Q K K Z K

t P C t C t P K R K K Q K K Z K

d R

Ξ = 



 Ξ =  

 Ξ =  
Γ = + + + −

Γ = + + + −

Γ = −

L

L

5

5 1 6 2

7 2 8 1

2

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( )

T T T T

T T T T

I

t A t K S t C t K S

t D t K S t B t K S

Γ = −

∆ = ∆ =

∆ = ∆ =

 
(44)

If ( ) 0tυ = , then (42) can be simplified as 
( ( ), ) ( ) ( ) ( ) ( )TV x t t t t t tη η θ≤ Π +l  and since { }( ) 0tθ =E , 

we have 
{ } { }( ( ), ) ( ) ( ) ( )TV x t t t t tη η≤ ΠlE E

 
(45)

Therefore, if ( ) 0tΠ < , based on the Lyapunov 
stability theory, the filtering error dynamics (12) 
with ( ) 0tυ =  is robustly asymptotically mean square 
stable. Consider that applying Schur complement 
formula to (16), for ( ) 0,tυ =  yields 

( )
6

1
0

1

0T T
i i i i i i

i

G G H Hε ε−

=

Ψ + + <∑ % % % %

 
(46)

where 
11 13 14

0 1

2

0P
P

 Ξ Ξ Ξ
 

Ψ = ∗ − 
 ∗ ∗ − 

%

, in which 11Ξ%  is similar 

to the matrix 11Ξ in (18) with matrices 1 2 3, ,Γ Γ Γ  and 
5Γ  substituted by matrices 1 2 3, ,Γ Γ Γ% % %  and 5Γ% , 

respectively; and 
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[ ]

1 1 1 1 1 1

2 2 2 2 1 1

3 2 1 5

1 1 1 1 1

1 1

2 2 1 2 1

2 2

3 3 1

3 4

,

,

( 1) , 2

0 0 0 0 0 0 ,

0 0 0

0 0 0 0 0 0 ,

0 0 0 0 0 0

0 0 0 0 ,

0

T T T T
m m

T T T T
p p

TT T T

TT T T

TT

P A A P K R K K Q K K Z K

P C C P K R K K Q K K Z K

d R I

G G P G K S

H H

G G P G K S

H H

G G P

H H K

Γ = + + + −

Γ = + + + −

Γ = − Γ = −

 =  
 =  

 =  
=

 =  
=

%

%

% %

% L

% L

% L
% L

% L
% L

[ ]

5

4 4 2 4 2

4 1

5 5 2 5 2

5 2

6 6 2

6 4 5

0 0 0 0

0 0 0 0 0 0 ,

0 0 0

0 0 0 0 0 0 ,

0 0 0 0 0 0

0 0 0 0 ,

0 0 0 0 0

TT T T

TT T T

TT

H

G G P G K S

H H

G G P G K S

H H

G G P

H H K H

  

 =  
 =  

 =  
=

 =  
=  

% L

% L

% L
% L

% L
% L  

(47)

Applying Lemma 1 to (46), we have 

( )
6

0
1

( ) ( ) 0T T T
i i i i

i

G t H H t G
=

Ψ + ∆ + ∆ <∑ % %% %

 
(48)

According to Schur complement formula, (48) is 
equivalent to ( ) 0tΠ <  and therefore { }( ( ), ) 0V x t t <lE . 
Thus the filtering error dynamics (12) with ( ) 0tυ =  
is robustly asymptotically mean square stable. Next, 
we will establish the 2L L∞−  performance for all 
nonzero ( )tυ . We define 

{ }0
0

: ( ( ), ) ( ) ( )
t

TJ V x t t s s dsυ υ= −∫E

 
(49)

Under zero initial condition, by considering 
{ }( ) 0, 1, 2id t iω = =E  and (29) it can be seen that 

 

{ }
0 0

( ( ), ) ( ( ), ) ( ( ), )
t t

V x t t dV x s s V x s s ds   = =   
   ∫ ∫ lE E E

 
(50) 

Since { }( ) 0tθ =E , using (49), (50) and (42) for all 
nonzero ( )tυ  we have 

0
0

0

( ( ), ) ( ) ( )

( ) ( )
( )

( ) ( )

t
T

T
t

v

J V x s s s s ds

s s
s ds

s s

υ υ

η η
υ υ

  = −   
     ≤ Φ    

     

∫

∫

lE

E  
(51)

where 12 13 14

1 2

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
v v

v T T
v v v v

t t t E t t F t
t

I E t P E t F t P F t
 Π Ξ + Ξ + Ξ

Φ =  
∗ − + + 

.  

Consider that by Schur complement formula, it can 
be seen that for all nonzero ( )tυ , (16) is equivalent 
to 

( )
7

1
0

1

0T T
v i i i i i i

i

G G H Hε ε−

=

Ψ + + <∑ % % % %

 
(52)

where 
11 12 13 14

0
1

2

12 1 1 2 2 1 1 2 2

7 3 1 6 2 3 1 6 2

7 3

* 0 0
,

* * 0
* * *

0 0

0 0 0 0 0

0 0 0 0 0 0

v

T
T T T T
v v v v

T
T T T T T T

I
P

P

A P A P A S A S

G G P G P G K S G K S

H H

 Ξ Ξ Ξ Ξ
 

− Ψ =  −
 

−  

 Ξ =  

 =  
=  

% %

% L

% L

% L

 
(53)

Applying Lemma 1 to (52) yields 

( )
7

0
1

( ) ( ) 0T T T
v i i i i

i

G t H H t G
=

Ψ + ∆ + ∆ <∑ % %% %

 
(54)

According to Schur complement formula, (54) is 
equivalent to ( ) 0v tΦ < , which ensures 0 0J < , and 

{ } { }

{ } { }

1
0

2
0

( ) ( ) ( ( ), ) ( ) ( )

( ) ( ) ( ( ), ) ( ) ( )

t
T T
m m

t
T T
p p

x t P x t V x t t s s ds

x t P x t V x t t s s ds

υ υ

υ υ

≤ <

≤ <

∫
∫

E E

E E  
(55)

By Schur complement formula, it follows from (17) 
that 

2 2
1 2,T T

m m p pH H P H H Pγ γ< <  (56)

Hence, from (55) and (56), for all nonzero ( )tυ , we 
can obtain 

{ } { } { }
{ }

2

2
1

22 2 2
20 0

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

T T T
m m m m m m m

T
m m

t
T T

e t e t e t x t H H x t

x t Px t

s s ds s s ds t

γ

γ υ υ γ υ υ γ υ
∞

= =

<

< ≤ =∫ ∫

E E E

E  (57)

{ } { } { }
{ }

2

2
2

22 2 2
20 0

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

T T T
p p p p p p p

T
p p

t
T T

e t e t e t x t H H x t

x t P x t

s s ds s s ds t

γ

γ υ υ γ υ υ γ υ
∞

= =

<

< ≤ =∫ ∫

E E E

E  (58)

which implies 
2

( ) ( )m E
e t tγ υ

∞
<  and 

2
( ) ( )p E

e t tγ υ
∞

< , for all nonzero ( )tυ . Thus, the 
filtering error dynamics (12) is robustly 
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asymptotically mean square stable with the 
prescribed 2L L∞−  attenuation level γ . Now we will 
focus on the design of robust 2L L∞−  filter in (10) 
based on theorem 1 such that, the filtering error 
dynamics is robustly asymptotically mean square 
stable with the prescribed 2L L∞−  attenuation level 
γ . 
Theorem 2: Given an integer 1r ≥  and a scalar 

0γ > , if there exist scalars 0, 1,...,7,j jε > =  matrices 

0 n n
iV ×> ∈ R , 0 , 1, 2n n

iW i×> ∈ =R  and n n×  matrices 
0, 1,2iR i≥ = ; 0kmQ ≥ ; 0kpQ ≥ ; 0kmZ ≥ ; 

0, 1, 2,...,kpZ k r≥ = ; 1N ; 2N ; 1S ; 2S ; n r
hB ×∈ R ; 

n r
hD ×∈ R  and , 1, 2n q

iM i×∈ =R  such that the following 
((59)-to(61)) LMIs hold, Then the filtering error 
dynamics (12) is robustly asymptotically mean 
square stable with the 2L L∞−  attenuation level γ : 
 

 
11 12 13 14 15 16 17 18 19 110 111 112 113

22 23 24 25 26

1 1 1

1 2

2 2 3

2 4

1

2

3

4

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

W W
V

W W
V

I
I

I
I

ε
ε

ε
ε

Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ
∗ Ξ Λ Λ Λ Λ
∗ ∗ − − Π
∗ ∗ ∗ − Π
∗ ∗ ∗ ∗ − − Π
∗ ∗ ∗ ∗ ∗ − Π

Λ = ∗ ∗ ∗ ∗ ∗ ∗ −
∗ ∗ ∗ ∗ ∗ ∗ ∗ −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

5

6

7

0

0 0
0

I
I

I

ε
ε

ε

 
 
 
 
 
 
 
 
 
  < 
 
 
 
 
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −  

 (59)

1 1 1

1 1
2

2 2 2

2 2
2

0,

0

T
m

T
m

T
p

T
p

W W H M
V H

I

W W H M
V H

I

γ

γ

 −
 

Σ = ∗ > 
 ∗ ∗ 
 −
 

Σ = ∗ > 
 ∗ ∗ 

  (60)

where 
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1 1 1 1

2 1 2 2

3 2

4

5 1

2 2

2 2
11

(

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0

0
0 0 0 0

0 0 0

m

p
T

T

m m

p p

r m rm

r p r p

r

B Z A S

D Z A S
D S

L
B S

Z
Z

Z
Z

Θ

∗ Θ
∗ ∗ Γ
∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗ ∗ ΓΛ =
∗ ∗ ∗ ∗ ∗ ∗ ∗

Γ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ

%% % L
%% % L

L
L
L
L
O M

O O O M M M
M M M M M M O O

1)

( 1)

3

4

0 0 0
0 0

0

m

r p

+

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆  

 (61)

 

[ ]

12 1 2 1 1 2 2

13 1

15 1

14 2

16 2

17 1 5 6

18 1 1 6

110 3 7 8

19

111

0 0

0 0 0 0 0 ,

0 0 0 0 0

0 0 0 0 0 ,

0 0 0 0 0

0 0 0 ,

0 0 0

0 0 0 0 ,

0 0 0 0 0 0

TT T T T
v v v v

T

T

T

T

TT T T

TT T T

TT T T

T

A A A S A S

E

F

E

F

G

 Λ =  

 Λ =  

 Λ =  

 Λ =  

 Λ =  

 Λ = −Π Π −Π 

 Λ = Π Π 

 Λ = −Π Π −Π 

Λ =

Λ =

% % L

% L

% L

% L

% L

L

% L

L

L

[ ]
3 2 8

112

113 1 2 3 4 6 8

23 1 1 24 1 1 2

25 1 2 26 1 2 2

0 0 0 0 ,

0 0 0 0 0 0

0 0

, ,

,

TT T T

T

TT T T T T T

T T T T
v v v h
T T T T

v v v h

G

E W E V E B

F W F V F D

 Π Π 

Λ =

 Λ = Π Π Π Π Π Π 
Λ = Λ = +

Λ = Λ = +

% L

L

L

 

(62)

in which 
1 1 3 4 5 2 2 6 4 5

1 2
1 1 1 3 4 5 2 2 2 6 4 5

,
T T

v v
v vT T

v h v v h v

W A H H W A H H
A A

V A B C H H V A D C H H
ε ε

ε ε

   + +
= =   

+ + + +   
% %  

1 1 1 1 1 2 1 1 2 1 1 2

1 2 1 2 1 2 2 1 2 2 1 2

,

,
h h

h h

E W E W E E V E B E V E B E

F W F W F F V F D F V F D F

= = + +      
= = + +      

% %

% %  

1 1 1 2 1 3 5 1 3

3 2 2 4 2 4 7 2 4

6 1 1 1 1 1 8 2 2 2 2 2

1 1 1

1 1 1 1
1

1 1 1 1 1 1 1

, , ,

, , ,

, , ,

ˆ ˆ ,

ˆ

h h

h h

T T

m mT m m

m mm m

h h

W G G B G G B G

W G G D G G D G

S G G VG S G G V G

Q Q H HA A
H HQ Q

W A W A
A

V A B C N V A B C

Q

Π = Π = + Π = − +

Π = Π = + Π = − +

Π = = Π = =

   
Θ = + + +   

     
− − 

=  − + + − + 

% %

% %

% %

% % % %
% %% %

%
1 1 1 1 1 1 3 4 4

2 2 2

2 2 2 2
2

2 2 2 2 2 2 2

1 1 2 4 1 1 6 4 4

1 2
1

1 2

,

ˆ ˆ ,

ˆ

,

, ,

T T
m m m m

p p p pT

p pp p

h h

T T
p p p p

m

Q Z R H H H H H

Q Q H H
A A

H HQ Q

W A W A
A

V A D C N V A D C

Q Q Z R H H H H H

WB W D
B D Z

VB V D

ε ε

ε ε

= − + = +

   
 Θ = + + +  
     

− − 
=  − + + − + 
= − + = +

   
= = =   

   

%

% % % %
% %% %

% %

% % % 1

1

1 1 2
1 1 2

1 1 2

,

, ,

m

m

T T
p

p T T
p

Z
Z

Z A A
Z A A

Z A A

 
 
 

     − −
= = =     

− −    
% %%  

(63)

In this case, the parameters of the desired filter (10) 
are given as follows: 

( )
( )

1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1
2 2 2 2 2 2 2 2

, ,

, ,

TT
f f h mf

TT
f f h pf

A X N W Y B X B H Y W M

C X N W Y D X D H Y W M

− − − − − −

− − − − − −

= = =

= = =
 (64)

where 1 2 1, ,X X Y  and 2Y  are any nonsingular matrices 
satisfying 

1 1
1 1 1 1 2 2 2 2,T TX Y V W I X Y V W I− −= − + = − +  (65)

Proof: From (60), it is clear that 1 , 1,2i iV W I i− − =  are 
invertible. Therefore, there are nonsingular matrices 

iX  and , 1,2iY i =  satisfying (65). Now define 
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nonsingular matrices , 1, 2
0

i
i T

i

U I
i

Y
 

ϒ = = 
 

 with 

1
i iU W −=  and 0, 1,2i i

i T
i i

V X
P i

X T
 

= > = 
 

 with 

1 1( ) T
i i i i i i iT Y U V U U Y− − −= − . Now we set  

{ }

1 1 1

1 1
1 1 1 1

2 2 2

1 1
2 2 2 2

1 1 1

2 2 2

1 2 1 2 7

1 1 1 1
1 1 2 1 2

, ,

,

, ,

,

, ,

,

, , ,..., , , , { }

, , , , ,..., , , , , ,

T T
h f h f

T
h

T T
h f h f

T
h

T T T
mf mh mh

T T T
pf ph ph

A Y A X B X B

U A N W U

C Y C X D X D

U C N W U

Y H H W H M

Y H H W H M

diag I I diag I

diag U I U I I I U I U I diag

− −

− −

− − − −

= =

= =

= =

= =

= =

= =

Ο = ϒ ϒ ϒ ϒ

Ο = { }
{ } { }
{ } { }

7

1
1 1 1

1
2 1 2

{ }

, , , , ,

, , , ,

m m

p p

I

diag I diag U I I

diag I diag U I I

−

−

Ο = ϒ Ο =

Ο = ϒ Ο =

 (66)

By some algebraic matrix manipulations, we can 
prove that (59) and (60) are equivalent to 

1 1

1 1 1 1 1 2 1 2

0

0 , 0

T T

T T T T
m m m m p p p p

Ο Ο ΞΟΟ = Λ <

Ο Ο Ω Ο Ο = Σ > Ο Ο Ω Ο Ο = Σ >  (67)

So, by applying congruence transformations to (59) 
and (60), we can obtain (16) and (17). Therefore, we 
can conclude from theorem 1 that the filter (10) with 

, , , ,f f f f mfA B C D H  and pfH  defined in (64) ensures the 
filtering error dynamics (12) to be robustly 
asymptotically mean square stable with the 
prescribed 2L L∞−  attenuation level γ . 
 
4. Simulation results 
In this section, a simulation study is given to show 
the effectiveness of the filter design method 
presented in previous section. Consider the GRN 
model (6) with three nodes and following numerical 
values. This example is an extension to one in [12]. 

1 1{3,3,3}, {0.72,0.1,1.3},
0 0 1.2

0.02 0 0
0 0.2 0

A diag C diag

B

= =

− 
 = − 
 − 

 

 

2 2

1 1

{3.5,3.5,3.5}, {1.2,3.1,0.03},
{1.21,2.12,0.22}
{0.53,0.41,0.42}, {0.51,0.41,0.42}

A diag C diag
D diag
E diag F diag

= =

=
= =

 

The nonlinear function is 
2 2( ) (1 ) , 1, 2,3i pi pi pig x x x i= + = , i.e. 

{0.6, 0.6, 0.6}L diag= . The time-varying delays and 
disturbance are taken from [21] as: 

1 2( ) ( ) 1.41 0.09sin( ) , ( ) [1 5 5] sin( )exp( 2 )Tt t t t t tτ τ υ= = + = −  
and additional matrices are chosen as follows: 

2 2

1 1 2 1

1 2 2 2

1 2

{0.6,0.5,0.5}, { 0.1, 0.6,0.5}

{ 0.8, 0.2, 0.2}, { 0.4,0.3, 0.15}
{0.2, 0.4,0.2}, { 0.2, 0.7,0.6}

0.2 0.1 0.1 0
0 0.2 0 ,
0 0.1 0.2

m p

v v v v

v v v v

E F diag H H diag
A E diag A F diag
C E diag C F diag

H H

= = = = − −

= = − − − = = − −

= = − = = − −

 
 = = 
 − 

1 2

3 4 5

3 4

0.2 0
0.1 0.1 0 ,
0.1 0.5 0.1

0.1 0 0.1 0.1 0.1 0.1
0.1 0.1 0.5 , 0.1 0.1 0.1
0.1 0 0 0.1 0.05 0

{0.2,0.2,0.9}, {0.3,0.1,0.8}, {0.5,0.9,0.1}
{0.4,0.3,0.4}, {

G G

H diag H diag H diag
G diag G diag

 
 
 
  

−   
   = = −   
   − −   

= = =

= = 0.2,0.35,0.25}  
The unknown time-varying matrix ( )t∆  satisfying 
condition (9) is taken as 

( ) {sin( ),cos( ), sin(t)}t diag t t∆ = − . For 1.2γ = , 1r =  and 
by using the Matlab LMI control Toolbox, the LMIs 
in (59) and (60) are solved and the filter parameters 
in (10) are obtained as: 

4.2976 0.0741 0.0338
1.2546 3.2182 0.1424 ,
0.0966 0.0906 3.9441

fA
− − 

 = − 
 − − − 

 

0.1168 0.0406 0.0517
0.0406 0.7052 0.1736

 0.0517 0.1736  0.4832
fB

− − − 
 = − − − 
 − − 

 

4.1322 0.2245 0.0328
0.0559 1.6643 0.2849 , 

 0.3147 7.8405 5.7383

2.0163  0.0873 0.1524
 0.0873  0.1760 0.2721   

0.1524 0.2721 1.9167

f

f

C

D

− − − 
 = − − − 
 − − 
− − 

 = − 
  

 

0.2358 0.0036 0.0063
0.1252 0.3742 0.0194 ,

 0.0255 0.0145  0.0818
mfH

− 
 = − 
 − − − 

 

0.0486 0.0119 0.0039
0.0170 0.6384 0.0917
0.0011 0.1146 0.0553

p fH
− 

 = − − 
 − 

 

Figures (1)-(6) give the time histories of the states of 
the original GRN (6) and their estimates. As seen, 
the expected robustly asymptotically mean square 
stability has been guaranteed and the estimates 
converge to their true values in the presence of 
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stochastic noises, allowable nonlinearities, norm-
bounded uncertainties and time-varying delays.  
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Fig. 1. Trajectory and estimate of 
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Fig. 3. Trajectory and estimate of 

2
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Fig. 5. Trajectory and estimate of 
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Fig. 7. Estimation error of ˆ( ) ( ) ( )m m me t z t z t= −  
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Fig. 8. Estimation error of ˆ( ) ( ) ( )p p pe t z t z t= −  

Figures (7) and (8) show that the estimation error 
converges to zero asymptotically. This convergence 
provides stability condition in definition 2.  
More importantly, under zero initial condition and 
presence of exogenous input, we can obtain 2L L∞−  
attenuation levels: 

 
2

( )
1.0361

( )
m E

e t

tυ
∞ =  and 

2

( )
 1.0815

( )
p E

e t

tυ
∞ =  

both less than the prescribed level 1.2γ = . 
5. CONCLUSIONS 
This paper has been addressed a delay-dependent 
robust 2L L∞−  filter design method for genetic 
regulatory networks. At first, a nonlinear uncertain 
GRN model has been introduced such that the 
parameter uncertainties (time-varying and norm-
bounded) are considered, delays are time-varying, 
stochastic noises appear at both the state and 
measurement equations and this model is considered 

under stochastic noises and disturbance 
simultaneously. Thus, the model provided is more 
realistic than previous proposed models. Based on 
the Lyapunov-Krasovskii functional method, delay 
decomposition approach, the stochastic integral 
inequality and free weighting matrix technique, 
delay-dependent sufficient conditions have been 
derived in the form of LMIs, which ensure robust 
asymptotical stability of the filtering error dynamics 
with the prescribed 2L L∞−  attenuation level. Since 
the results are delay-dependent, they have less 
conservativeness than previous results. Then the 
filter parameters have been determined in terms of 
the solution of LMIs. Finally, a simulation example 
has been given which demonstrates the states of 
estimator converge to their true values in the 
presence of stochastic noises and disturbance, 
allowable nonlinearities, parameter uncertainties and 
time-varying delays. 
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