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Abstract

This paper addresses robust state estimation
problem for Genetic Regulatory Networks
(GRNSs). A delay-dependent robust L, - L, filter

is designed for a realistic nonlinear stochastic
model of GRN. The model provided isthe most
complete model used in the literature so far, in
the sense that delays are timevarying,
parameter uncertainties (time-varying and
norm-bounded) are considered, stochastic
noises appear at the state equations as well as
the measurement equations. Besides, stochastic
noise and disturbance are considered
simultaneoudy in this model. Using a proper
L yapunov-Krasovskii functional based on delay
decomposition approach, sufficient conditions
for the existence of the filter are derived in
terms of linear matrix inequality (LMI). These
conditions ensure robust asymptotic mean
squar e stability of the filtering error dynamics
with a prescribed L,-L, disturbance

attenuation level. By use of delay decomposition
approach and using a lemma containing a
stochastic integral inequality, the obtained
conditions are delay-dependent and have less
conservativeness. The filter parameters are
determined then, as the solution of another
LMI. A simulation study is also given to show
the effectiveness of the proposed filter design
procedure.
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1. Introduction

In a living cdl, two mechanisms are in action:
genes encode proteins and some of proteins
regulate gene expresson either negatively or
positively. These mechanisms construct a closed
loop structure, which is called Genetic Regulatory
Network (GRN). Gene expression consists of two
main processes. “transcription” and “trandation”;
genes are transcribed into mRNAs under the
control of some proteins and each MRNA molecule
is trandated to synthesis a protein. In recent two
decades, a great deal of research has been done to
propose a model for GRNs and make analysis on
them [1].

Two approaches are proposed to make a
mathematical model for GRNSs:. the discrete time
approach used in models such as Boolean networks
[2] and the continuous time approach using the
differential equations [3], [4]. In the Boolean
model, only two states, ON or OFF are used to
express the activity of each gene, and a Boolean
function of the <tates of other related genes
determines the state of a gene [5]. In the
differential equation model, the concentrations of
gene products, such as mRNAs and proteins, are
considered as the continuous state variables.
Examining practical data, it seems that gene
expresson levels would better be modeled as
continuous rather than discrete. Therefore, in recent
years, differential equations have often been used
to describe genetic networks[6], [7].

The time delay is a key factor affecting
dynamics of gene expression. Mathematical
models without considering time delays may give
wrong predictions of the mRNA and protein
concentrations [8]. So a complete model should
certainly include a proper consideration of time
delay. On the other hand, gene regulation is an
intrinsically noisy process. In general, the noises
appear in gene expression in one of the two ways,
namely, intracellular noise and extracellular noise.
The intracellular noises are due to the probabilistic
chemical reactions, random births and deaths of
individual molecules [9] and the extracellular
noises are created because of environment
fluctuations [10].

Furthermore, there are often some unavoidable
uncertainties in modeling GRNs, which result from
using an approximate model for simplicity,
external perturbations, parameter fluctuations and
data errors. It is very likely that the system
parameters identified from experimental data may
form an unknown but bonded time-varying
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function. Therefore, when investigating the
dynamical behaviors of GRNs, the norm-bonded
parameter uncertainties should also be taken into
account.

In practice, for identifying genes of interest and
designing drugs, biologists are interested in
obtaining the steady-state values of the rea
network states based on the measurement data
Unfortunately, due to the time delay, noises and
unavoidable uncertainties, the actual measurements
are far from the true states. This leads researchers
to use filter that is to estimate the GRN states such
that the estimation error asymptotically converges
to zero in the mean sguare sense in the presence of
time delays, noises and uncertainties.

A robust filtering problem has been addressed in
[11] for alinear GRN with stochastic noises, where
the time delay has been ignored. In [12] the
filtering issue has been investigated for nonlinear
delayed GRNs with stochastic noises but without
considering parameter uncertainties. In [13] the
robust filter has been designed for GRNs with
time-varying delays, where stochastic noises have
been considered at both the state and measurement
equations but regulation nonlinearities have been
ignored. The state estimation for stochastic
nonlinear uncertain GRNs has been addressed in
[14] and [15] but stochastic noises have been
considered only at the state equations and the
delays have been assumed constant. On the other
hand, in none of the mentioned references,
disturbance has been considered in GRN model. In
[3], [16] and [17] a stochastic nonlinear model has
been developed for GRN under stochastic noises
and disturbance simultaneously but filtering
problem has not been studied.

For time-delay systems such as GRNs, the filter
design methods can be classified into two
categories. delay-dependent [18] and delay-
independent [19]. Since delay-dependent methods
depend on the amount of delay, they are less
conservative than delay-independent ones. In [20]

the Hy delay-independent filter has been designed

for nonlinear uncertain GRN under stochastic
noises and disturbance with time-varying delays
and stochastic noises only at the state equations.

In the current paper, the nonlinear GRN model in
the form of differential equations, provided in the
literature has been made complete such that norm-
bonded parameter uncertainties enter both the
system and measurement matrices, delays are time-
varying, stochastic noises appear at both the state
and measurement equations and in addition,
stochastic noises and disturbance are considered in
the model simultaneously. The feedback regulation
is described by a sector-like nonlinear function, the
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time-varying delays enter into both the translation
process and the feedback regulation process, and
the stochastic noise is a scalar Brownian motion.
We aim to estimate the true concentrations of the
MRNA and protein by designing a delay-dependent
robust |, - I, filter.

Using delay decomposition approach [21], a
Lyapunov-Krasovskii functional (LKF) is chosen.
It has been showed that this approach leads to less
conservative results [22]. Then a stochastic integral
inequality is introduced [21]. Using the LKF, the
integral inequality and free weighting matrix
technique [21], [23], [24], delay-dependent
sufficient conditions for the existence of robust
L, - L, filter are derived. These conditions arein a
linear matrix inequality (LMI) format and ensure
that the filtering error dynamics is robustly
asymptotically stable in the mean square with a
prescribed L, - L, attenuation level.

The rest of this paper is organized as follows: in
section 2 the model and preliminaries are provided.
In section 3 the delay-dependent sufficient
conditions for the existence of robust L, - L, filter
are first obtained in the LMI format, and then filter
parameters are determined in terms of the solutions
to some LMIs. In section 4 a three-node GRN is
presented to demonstrate the effectiveness of the
proposed filter. Conclusions are finaly given in
section 5.

2. Model formulation and preliminaries
In this section, the proposed model will be
provided later as equation (6). To introduce this
model in some simple steps, first consider the
nonlinear delayed GRN model with SUM
regulatory functions[3] providedin[15]:
1 () =- Am(t) + Bf (p(t-t,)) + B,
1B =- Ap®+Dm(t-t,) @)
where m(t) equals [m(t),m,(t),...m )] T R" and
p(t) =[p, (), p,(1),.... p,®O]" T R™ in which m(t) and
p.(t), i =1..,n are respectively the concentrations of
mRNA and protein of the i!" node at time t for a
GRN with n nodes; A =diag{a,,a,,..a,} and
A =diag{c,,c,,...¢,,} Where a, and c;,i=1..n
denote, respectively, the degradation rates of
mRNA and protein of the i node;
D =diag{d,,d,,..,d,} where d,i=1..n is the
trandation rate of the i node. B=(h,)7 R"" isthe
coupling matrix defined as follows:

ia; if transcription factor jisanactivator of genei,
by :%0

if thereisnolink fromnode j toi,
a; if transcription factor jisarepressor of genei.

)
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f(p)  equals  [f(p(0).... fo(py()]"  where
nonlinear function f, (.) represents the feedback

regulation of the protein on the transcription. This
function is supposed to be a monotonic function in

Hill form [15], f,(x)=(x/b;)" /@+(x/b,)"") where
H, isthe Hill coefficient and b, >0 is a constant.

B, equals [by,b,,..b,]" Where b, =g

which 1, is the set of al j nodes which are
repressors of genei. t, >0 denotes the trandation
delay and t, >0 represents the feedback regulation
delay.

Assume that vectors m” and p are the
equilibrium point vectors of (1). Shifting the state
vectorsto the origin, x, (t) =m(t)- m’, x,(t) = p(t)- p’
yields
i ¥a(0) = - A, (1) + Bg(x, (t- t,))
[ (0) = - A, (1) + DX, (t- 1)
where  g(x, (1) =[g, (X, (1))
g (x; (1) = f (x; (1) + p,*) - f (p,*) .

Assumption 1: It is assumed that the function g, ()
satisfies the following sector condition

..... in

a.
i1 1

3)

9 (X O] and

(4)

Considering x>0 and (4) we can conclude
g,(x)>0. So the sector condition (4) is equivalent
to

9" (9(9(0)- LY £0,L =diag(l,.l,,....I,} >0 )

In this paper, we consider the following stochastic
nonlinear model. This model is a completed
verson of the model provided in [12] such that
delays are time-varying [13], stochastic noises
appear at both the state dynamics and measurement
equations  [13], norm-bounded  parameter
uncertainties are taken into account [15] and this
model is considered to have stochastic noises and
disturbance simultaneoudly [3], [16], [17]:

a7

1ax,(0) =

P& ADX,0+BOGX,E-1,0) + A, Ou() et
P HEX, 0+ E,Ou 0w )

L, (t) =

F & A%, +DOX,(t-t,0) + A, (Du(t)fet

i PR O%, 0+ Fa®u(®dw, ()

:1 dly (1) = €5, () %, (1) + C,y (D (D) et + ©
i 65 (0%, (0 + E,, U Opw, (1)

0, (1) = 5, (0%, (1) + C,p(Du )it +

i 6, (0%, (1) + F.o (Ou (1) e, ()

200 = Hyy X, (1)

T2,(0)=H, %, (1)

1,0 =f (0, %, O =F (), " T [-2,0]

where vy, (t) equals [y,,(t),y,,®),...y, ®]'T R" and
y,(t) equals [y, (t),y,, ).y, ®I' T R" in which
y,(t) and y,(t) represent respectively the
expression levels of mMRNA and protein of the ji"
node a time t. C(t) and C,(t) are the
transformation matrices between the observation
variables and the interna state variables. The time-
varying scalars  t,(t) and t,(t) satisfy
O£t ()£t ,th(t)£d <1,i=12 and t is defined as
t =max{t,t,}. w(t) and w,(t) are scalar Brownian
motions with zero mean and unit variance, which
are mutualy uncorrdlated. u@)i R™ is the
disturbance belonging to L,- L, i.e. the set of
signals with bounded L, norm. The L, norm of
N .1/2
u(t) is defined as |u()|, = iE{(SuT(t)u(t)dt}g ,
where E denotes mathematical expectation.
AL(t), A1), Cy(t), Cp(t), B (1), Fy(t), Eo(t) and
F,(t) form the influence of disturbance on the
states and measurements. z ()T R? and z,(t)T R*
are the concentrations of mRNA and protein of
nodes that we are interested. f (1) and f (t) arethe
initial condition functions of x (t) and x,(t) .
The time-varying matrices of system (6) have the
following form:
A(t) = A +DA(), A;i(t)=A, +DA(1),
E()=E +DE(t), E,;(t) = E,; +DE, (1)
G () =C +DC (1), C,; (t) =C,; +DC, (1),
F(t)=F +DR(), F,(t)=F,; +DF,(t)
B(t) = B+DB(t), D(t) =D +DD(t), i =1,2
where A, A, E.E;,,C,C,,F,F,,B and D are
known real constant matrices with appropriate

(7)
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dimensions.

DA (t), DA, (1), D, (t), DE, (1), DG (1), DS, (1), DF; (0 DF, (8), DB(Y) |

and DD(t) are unknown rea time-varying matrices
representing norm-bounded parameter uncertainties
satisfying

€DA(t) DB(t) DA,(t) DE(t) DEvl(t)u

A(t) DD(t) DA,(t) DR() DR,

6G, U

é LAJD(I)@'|1 H, H; H, Hgg

2U (8)
eDC,(t) DC,u(t) DE() DE,(MU_
&XC,(t) DC,(t) DF() DF,(t)f

gjéD(oeHl Hy, H, M
where G(j=1234) and H;(j=12345 are

known real constant matrices and D(t) is the
unknown, time-varying, matrix valued, Lebesgue
measurable function satisfying

D'®)D{)£1, "t30 9)
The main am of this paper is to estimate the
concentration of mMRNA and protein, i.e. x (t) and
x,(t) a (6) through their measurement output, i.e.
yn(t) and y,(t). The linear filter considered hereis
of the following form

1o, ) = A X, (1) dt + B, dy,, (1)

i d)?p t)=C; §<p (t)dt+ Dy dy,(t)

12, =Hy %,(0)

L2 =H, X0

1.0 =y 0, 2,0 =y @), "1 [-2,0]
where % ()T R" and % (t)T R" are the estimates
for x, () and xp(t), respectively; y ,(t) andy ()

(10)

are the initia functions of X% () and X (1),
respectively, and A,B,,C,,D,,H, and H  are
appropriately  dimensioned  filter  parameter
matricesto be determined.
Defining
- @ﬂn(t)u - @ﬁn(t t,()u
WO oF 2 T& @0l
%, (0= &, Mu _ @((t t1(t))u

NI

&0l ™ g Loy (11)

&, (1) =z,()- Z,(1), &,®) =z,(t)- 2,V

X() =0 X OF

r)=g.0 yn® f,0 y,Of

and augmenting the states of the filter (10) to the

model of (6), the following filtering error dynamics
is obtained:
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T, (1) = §A0) X, (1) + BE) 9(K X, ) + A, (Hu ) fet
! +(EOKX,0)+E,Ou() dw ()
19,0 =EEOR,0+DOK R, +A,Ou(Ofch

i +HFOKR,0+F,0u() dw, @)
16,0 =H,%,0

60 =H, %)

:::i(t):r ®,"t1[-2,0)

1

where

A(t) = A+DA(t), B(t) = B+DB(t),

E(t) = E+DE(t), E,() =E, +DE,(t)

C(t) =C+DC(t), D(t) = D+DD(t),

F(t) = F +DF (), F,(t) = F, +DR,(t)

A1) = A, +DA(D),1=12

in which

(12)

(13)

H —a*m Ho § Hp —9*;) Hy K =[1 0
DA() =GD(t)H,, DB(t) =GD(t)H,,
DE(t) =GD()H,, DE, (t) =G,D(t)H,
DC(t) =G,D{t)H,, DD(t) =GD{)H,,
DF (t) =G,D()H,, DF,(t) = G,D{t)Hs
DA (t) =G;D(t)Hy, DA, (1) = G,D)H,

&G
H,G3 ngG33H_[H 0

(14)

To mvestlgate the convergence of the filtering error
dynamics, the following stability definitions must
be considered:

Definition 1 [20]: A system described by equation
(6) with u(t)=0 is said to be robustly mean
square stable for al admissible uncertainties (8)-
(9), if for any scdar e>0 there exists a scaar

de)>0 suwch tha E{x0f}<e and

E{|xp (t)|2} <e,"t>0 when sup;, » E{|f m(t)|2} <d(e)

and supyj (. g E{|fp(t)|2}<d(e). In addition, if
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lim E{|xm(t)|2+|xp(t)|2} =0 for any initial conditions,
then this system is sad to be
asymptotically mean square stable.

Definition 2[19]: Given ascalar g >0, thefiltering
error dynamics (12) is said to be asymptotically
mean square stable with the L,- L, attenuation
level g, if it is asymptotically mean square stable
with u(t) =0, and under zero initia condition, it
satisfies ||Qn(t)||,-¥ <gfu(®)], and ||ep(t)||E¥ <glu)], for

al nonzero u(®)i L,[0,¥), where |.|_ for the signal

robustly

eft) is defined as et =sup, [E{je]}

Assumption 2 [21]: The system (6) with u(t) =0
is robustly asymptotically mean square stable.
Lemma 1 [19]: Given appropriately dimensioned
matrices  S,,S,,S, with s/ =s, then
S, +S,D(1)S, +SiD' (1)S; <0 holds for al D)
satisfying D' (t)D(t)£1 if and only if for some
e>0, S, +e'S,S] +eS]S, <0.

Lemma 2 [21]: Let n-dimensiona vector functions
x(t), j (t) and g(t) satisfy the stochagtic differential
equation dx(t) =j (t)dt+g(t)dw(t) where w() is a
one-dimensional Brownian motion. For any
constant matrix z3 0f R"" and scaar h>0, if the
following integration is well defined, then the
following inequality holds on it

éxt) UéZ Zué xt) U

Q) OFOBEG g 28

.
6 Xt UéZu. (15)
+2a g e ';'Q g(s)dw(s)
&(t-hg & Zg™n

Proof: see[21].
Xy X Xy Xy X X Xy K Xy Xy
§* X, ER FR 0 0 0o 0 o0 0
é*x * B 0 0O 0 R 0O 0 0
€+ * * B, 0 0 0 0 0 BG
& * * * -l 0 0 0 0 O

X=g* * * x x g 0 0 0 O
é ]
é* * * * * * e3| 0 0 0
e* * * * * * * _e4| 0 O
g* * * * * * * * _e5| O
éx * * * * * * * * -e.|
e* * * * * * * * * *6
e
_& Huu _ep HU

W=e  J'a>0W,=g° "g>0
" g'lg " 9’lq

where
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The purpose of this paper is to design the robust
L,- L, filter of the form (10) for the system (6)
such that, for al stochastic noises and disturbance,
admissible nonlinearities, uncertainties and time
delays, the filtering error dynamics (12) is robustly
asymptotically mean square stable with a
prescribed L, - L, attenuation level g.

3. Robust L, - L, filter analysisand design

In this section, we first assume that the filter is
designed and its matrices are exactly known in
order to study the stability of the filter, i.e.
convergence of the filtering error to zero. This
study is based on the idea of delay decomposition,
resulting to the delay-dependent conditions under
which the filtering error is robustly asymptotically
mean sguare stable with an L,- L, attenuation
level g. Delay decomposition technique is to
partition the time delay with an integer r. The
parameter r is the number of delay partitions and
the conservatism reduces as r increases [25].
Theorem 1. Given an integer r31, a scalar g>0
and filter parameters A,B,,C;,D;,H, and H,.
The filtering error dynamics (12) is robustly
asymptotically mean square stable with the L, - L,
attenuation level g, if there exist scaars
e;>0,j=1.,7, matrices R>07 R*"*,i=12 and
n"n matrices R20,i=12; Q,%0; Q,30; Z,30;
Z,30k=12.., S and S such that the
following LMIs hold

r,

x

oo oooooooooooaooaoc

(16)

P O 0000 o o oo

(17)
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gq 0 0 0 RBD O 0O O L © 0 D 08
& G RDO O O DL O 0 L O 0 0 Dy
g* * G 0 0 0O 0O 0 0 L © 0 o0 D78
& * * G L 0 0 0 0 L O 0 0 0g
g* *x x* * G 0 O 0O O L O 0 D 03
g * * * * G 0 Z, 0 L O 0 0 00
e u
A* * * * * * 0 22 O M 0 0 0,
=€ GZP p u
" gx x x x x x x O O O 0 how wd (18)
& 1 ¥ W ¥ W O oG, 0 z, 0 0 0f
é* * * * * * * * * qp 0 er 0 OL;l
g* * * * * * * * * * qH-])m 0 0 OH
g* * * * * * * * * * * CEtr+1)p 0 08
é* * * * * * * * * * * * D3 OLzl
Q* * * * * * * * * * * * * Dl,(l
e 42U
] Gfp ZQP'Qi-l)p' Zp~ Zippol =21, G{rﬂ)p:'zrp' Qp
Inwhl_ch . i _@6 e«
X12:86§1;1F2)l+%H;H4K A§1—2F)2+66H;H4K 0 Dl_ ZJm’Q_ Eka a Sl
0 AS ALSf D, =AK'S, D =D'K'S
_&DFE N T 28 T
X;=6REK 0 0 L 0 0 0f, D,=K'Z,,0,=iQ %,-S- S,
= - T _ e
Xs=§GR 0 0 L 0 GK'S 0 D, =C'K'S, 0, =B'K'S
X,=§0 RFK 0L 00 OEJT Proof: For presentation convenience, we |et
= 00 L 0 &Ks of X (t) = A(t) X, (1) + B(t) g(K X, ) + Ay (Bu(t) 21)
%o ZERR =S o (19 x,0=COR,O+DOKE,, +A0u()

X,=[0 0oL o0o0(d,
L, — — T
Xs=§0 GB, 0 L 0 0 GK'S}
Xp=[0 00 L 0O C,
L — —. N
Xs=§0 GPR, 0 L 0 0 GK'S}
%.=@R GR 0 L 0 GK'S GK'SY
Xy, == 1 +(&;+€;) Hy Hy +&, Hi H,
And
G =RA+AR+K'RK+K'Q,K
- K"z, K+e H H, +e,KTH ] H, K
G, =RC+C'R+K'R,K+K'Q,K
-K'Z,K+e,H/H, +e, KTH,H, K
G3:(dz'1)R1+65H2TH21G4:(d1'1)szGs:'ZI+ezH2TH2
Qm =Q|m- Q(i-l)m- Zim- Z(i»l)m’i =2,..1, G(r+l)m =- Zrm' Qrm

(20)

Then the filtering error dynamics (12) can be
rewritten as

0%, (1) =X, (1) ot +( EC)) KX, () +E, (O (D)) dw, () (22)

o, (1) =, (t) dt +(F () K X, (1) + F, (Qu (1)) dw, 1) (23)
Using delay decomposition approach [21], we
choose the following Lyapunov-Krasovskii
functional candidate for the system (12):

V(X(1),1) =V, (X(1),1) +V,(X(1),1) +V5(X(t).,1) +V, (X(t).t)  (24)
where

V0D = %O RX,0+% OB X,(1) (25)
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V,(X(®).0) = (‘) %n(9K'R KX, (5)ds IV, (X().1) = é’l X7 (O K™Z,, K)X, (1)
(26) kel
"0, BOK R G A RO Z, K (90
VED.0= A0 RUOKQ KR (9ds o (34)
T k=l Q-k“z 27) +§xg O K'Z, K)x (1)
$  (t(k-Dh_ _ k=1
T(9K'Q K ds t (k-1
+§10l«1 % (9K Q, KX, (5) ] hé. Q:hl )mx;(s)(KTka K, (9
k=1
vV, (X(),t) = é_ 0., rQQt X! (s)(h, K'Z,, K)x.,(s) dsdq Applying Lemma 2 to (22), we obtain
- +q
§ .
s cem @8 haQ, Gz b
+a Okfl Qﬂxp(s)(th Z,,, K)x,,(s)dsdg k=2
K & k-Dh)U &7, Zy UEKX, (- (k- Dh)D

where h=t,/r,i=12. By Ito's differential formula ée
[26], the stochastic differential of (24) along the ¢
filtering error dynamics (12) is Y- d &g

dv(x(t),t) = IV(x(t).t) ot C8 KX (t-Ky) §i & Zad

+2%, ()R ( E() KX, 1) +E,(tu (t)) dw (t) (29) . c‘)t (e (E(S) KX (s)+E,(su (S)) dw, (9)
+2%] (1) B (FO KX, () + F, (0u(®) dws (1) "

(t-
Xtk 8 82 -Znl KR KY) B g5
&KX, (t- (k- J)hz)u €Z, U

-h, ) Xn((K'Z,, K)x,,(9)ds£
where 0,
IV(X(), 1) = IV (X(0),1) + IV, (X, 1) + IV (X, 1) + IV, (X().1) G ¢ 20 TeKZK Kz %0 0
&xa-miS z Kk -z, X (- h)H (36)
and € KX, () u ezlm
VEODE R s I CEISCRECIOEVE
25, () R, (1) + 25 (O Bx, (1) In asimilar way, applying Lemma 2 to (23) yields
+(—T(t) KTET(t)mT(t)EJ(t)) (E(t)Kxn(t)@V(t)u(t)) (31) h é \t.;:.mxg SIZ, K (90
k=2

X OKF O+ OF O)R(FOKX,0+F0u)

g &KX, (t-
IV, (X(t),t) =X, (KR KX, (1) - (0- th (1) Xy ,KTR KX, 32) E‘zg KX
+X) (KR, KX, (1) - (1- (1) X5, KR KX,

(k- l)hl)u e—Z ka l)él(ip(t- (k-l)hi)u
k) ﬂgzkp kagg KX (t- i

H(t- k) g 37)
(t- (k- ])h)u €Z,u
7

+26 9Ki
SOV IS
IV;(X(t),t) = (ke
Q. " (FOKR,(9)+F (9u(9) dws(9)
ér T(t- (k- Dh)K'Q,, KX, (t- (k- Dh,) -thmx ()(K"Z, K)x,(s)dsE
:16 é X0 ue—KTZ1 K KTzlpue X, U
-ax X (t- K, )KT Qg KX (- k) KRt-niS ZK -z, )l (39)
S e DK . B9 e kxo dezy (FOKR,9+F (u()dus(s)
A % (t- (ke JKTQ, KXt (k- D) 28 % t-nd &7 U Q
s By using free weighting matrix technique [23], [24]
- A% (- K)K'Q, KX, (t- Kn) and according to (21), for any ST R""i=12 we
= have

51
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24 (OK'STK{ A%, (1) + B (K X,,) + AU () - X, () =0 -
2x,(HK'S] K{C(t)ip(t) +DA)K X, +A(u() - xp(t)} =0

Since Kx,, =x,(t-t,(t)) >0 and noting (5) we have
-29" (KX, N(9(KX,,)- LK%, )3 0

(40)
It follows from (30), (39) and (40) that
V()1 £
IV,(X(®),8) + IV,(X(0),1) + IV, (X(1).1) + IV, (X(1).1)
+2G OKTSK{AD, 1) +BO 9(KX,,) + A, 00 - X,0)} (41)

+2x] OK'SK{CO)%,0) + DK, , + A, 0u(D) - X,(1)}
- 29" (KX, (9(KXy,) - LKX,,)
Then, by considering (21), (31)-(38) and (41), we
can obtain
amu _  d®u
~ - ~ ,+ t
S TOT
(1) X+ XsOEO+XOFROU
é — = —r = u
é EMREM+FR ORFRW) g
hO=[X0) KO XK XK
gT(Kim) X (t- h)KT Y;(t-hl)KT
X(t- th)KT X (t- )K" xIOK™ xT KT
g &KK,(t- (k- Dh)U 62, 0

=29 a 1K
W=2a¢ 5 () 48z, 0

1-(k-1)r2( E(9KX, (9 +E,(su (S))dwl(s)

IV(X(t).) £ F(t) (42)

where F(t) =

s\

Q..

§ &,(t- (k- D) 62, 0
TR My 87,0
Hk-l)m(ﬁ(s) Kyp(s) + E(S)U (S))dWZ(S)

(43)

0.,
P (1) =X, (1) + X, () B XG(0) + X, 0O B X (1)

in which X, (t) is similar to the matrix X,in (18)

with  matrices G,G,G,G,D;,,D,D,D, and
RB, B,D substituted by matrices
G/(1), G,(1), G;, G, Ds(t), Dy (1), D, (1), Dy(t) and

PB(t), P,D(t), respectively; and

52

X, =§A, P AP O ..

0 AMK'S AOK'SY
X ()=RE®K 0 0 L 0 0 0,
X,0=¢ RFOK 0 L 0 0 of
G =RAD+A (R +K'RK+K'Q, K- K'Z,K,
Gt =RCH+C' (R +K'RK+K'Q, K- K'Z_K,
G=(d,-)R.G=-2I
DM =A"()K'S, D, =C"®)K'S,
D,(t)=D'()K'S, D) =B'(K'S
If ut)=0, then (42) can be smplified as
VX)) En)"P(Mh(t)+qt) and since E{q(t)} =0,
we have
E{IVE®),1) £ E{h " P(t)h(t)}

(44)

(45)

Therefore, if P(t)<0, based on the Lyapunov
stability theory, the filtering error dynamics (12)
with u(t) =0 isrobustly asymptotically mean square
stable. Consider that applying Schur complement
formulato (16), for u(t) = 0, yields

Yo+é6(e.'1("5 & +e WA ) <0 (46)
i=1
§%11 X13 x143
v=&* -B 0y, inwhich X, issmilar
to the matrix X, in (18) with matrices G, G,, G, and
G, substituted by matrices &,6,6 and &,
respectively; and

= *

where Y
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6 =RA+AR+K'RK+K'Q, K-K'Z, K,
& =RC+C'R+K'RK+K'Q K- K'Z_K,

6 =(d,- IR, G=-2I
&=ggR 0L 0 GK'S 00 0 0f,
H,=gH, 0 0 L O

&=¢3R 0 L 0 GK'S 00 0 Of,
M,=[0 00 0 H, 0 L (

&=¢ oL 0GR of,

M,=gH,K 0 L 0 0 H, O O
&=¢ GR 0L 0GK'S 00 0f, (47)
H,=0 H, 0 L o

&= Gr oL 0GK's 00 0f,
Ms=[0 0 H, 0 0 0 L (

&= oL 00 Gry,
M,=¢0 HK O L 0 H;, 0 Of
Applying Lemma 1 to (46), we have

Yo+a (G DnH +AID 0 ) <o (48)

According to Schur complement formula, (48) is
equivalent to P(t) <0 and thereforeE{ IV (x(t),t)} <0.
Thus the filtering error dynamics (12) with u(t) =0
is robustly asymptotically mean square stable. Next,
we will egtablish the L,- L, performance for all
nonzero u (t) . We define

J, =E{V(X(®),1)} - duT (s)u(s)ds (49)

Under zero initial condition, by considering
E{dw, (1)} =0,i =1,2 and (29) it can be seen that

E{V(X®).1)} = {lqu(x(s) S)E—EiQIV(x(s) s)dsE (50)

Since E{q(t)} =0, using (49), (50) and (42) for all
nonzero u (t) we have

3= E\I{ d§V(R(s),s) - uT(s)u(s)Hdsg

téh( )u diu ¢ (51)

Q&9 7 ()&()“O'SY

E,Et

PO X0+ XsOEM X OF 0 8
e* -I+EOREW®+F ORFOG
Consider that by Schur complement formula, it can
be seen that for all nonzero u (t), (16) is equivalent
to

Yvo+é(e;1<°é. & +e M) <0

where F(t) =

_ (52)
where
Ky Ko X Xl
v =é* -1 0 Oy
Wes o« p ol
g* * * F)L'l
co : (53)
X,=¢AR AR O L 0 AlS ASH
&=GR GR 0 L 0 GK'S GK'S 0 0 0f
M,=@ 0 0 L 0 H, 0 O
Applying Lemma 1 to (52) yields
Yo+ (DA +HD 0d ) <0 (54)
i=1

According to Schur complement formula, (54) is
equivalent to F,(t) <0, which ensures J, <0, and

E{X, ()R, (0} £ E{VRO.0} < duT (9u(s)ds

1 (55)
E{XT ()R %, (0} £ E{VO.0} < QU Qu(9ds
By Schur complement formula, it follows from (17)
that
HoH, <g’R, Hy H, <g’R, (56)
Hence, from (55) and (56), for all nonzero u(t), we
can obtain

£{ e, (0"} =E{ €0 6,0} =E{ OFTA%,0)}

<g’E{X, (R, (1)} (57)
<g* QU (YU dEG Y U (u( ds=7u o)
E{|ep(t)| } =E{ 0e, 0} =E{X OH]H,, 1)}
<g’E{X] ()R, (1)} (58)
<gzc‘juT(s)u(s)ds£gzc‘; uT(u(e) ds=g? ()’
which implies ||e;ﬂ(t)||E¥ <gfu®)], and

||ep(t)||E¥ <gfu(),, for al nonzero u(t). Thus, the

filtering error dynamics (12) is robustly
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asymptotically mean sguare stable with the
prescribed L, - L, attenuation level g. Now we will
focus on the design of robust L,- L, filter in (10)
based on theorem 1 such that, the filtering error
dynamics is robustly asymptotically mean square
stable with the prescribed L, - L, attenuation level
g.

Theorem 2: Given an integer r31 and a scalar
g>0, if there exist scalars e, >0,j=1,..,7, matrices

é‘ll L12 L13 L14 L15 L16 L17 L18 L19 LllO
g* Xp Ly Ly Ly Ly O 0 0 0
€ * W -W 0 0 0 0 P, O
€ * * v 0 0 0 0 P, O
g* * * * 'V\é 'V\é 0 0 0 0
g * * x x .y, 0 0 0 0

L:g* * * * * * _e1| 0 0 0
e * * * * * * _e2| 0 0
é
é* * * * * * * * 'esl 0
é * * * * * * * * * -el
é* * * * * * * * * *4
é
é* * * * * * * * * *
e?\' * * * * * * * * *
e
éNl \Nl HT'Mlg
e u

S=¢ v ML §>0
g o g
gNz W2 H;T)'TMzg

Szze* A H, l:1>0
g o

where

V,>01 R"", W>01 R"",i=12 and n n matrices
R30,i=12; Qw2 0; Qe 0; Zn®0;
Z,%30k=12..r; N; N,; S; S, BIR",
D,T R"" and M, T R"9,i =1,2 such that the following
((59)-to(61)) LMIs hold, Then the filtering error
dynamics (12) is robustly asymptotically mean
square stable withthe L, - L, attenuation level g:

,_
I
E
-
WL O O og
-
I
@

o
S

N

o

(59)

* P O OO OO o o oo

*+ P O O O O O

*

P OO0 0000 o0 oo oo
o oo oooooooooooooo oo oo

(60)
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g 0 0 0 B2 0 0 0 L
e
& Qb oo o2z 0 0 L O
é
& * G000 0 0 0 L 0
é* * * G L 0 0 0O 0 L O
& * * * g 0 0 0 0 L O
2* * * ok % G&m 0 sz 0 L 0
Ln:é* * * * * * gp O 22p O M
g* * * * * * * O O O 0
g unu N N o oG, 0 ZzZ,
g* * * * * * * * * qp 0
g* * * * * * * * * * qr+1)m
A% * * * * * * * * * *
e
€x x  x  x  * * * * * * *
g* * * * * * * * * * *
, T
LIZZSA; ATz 0L 0AS Tz%H
L.=¢%& 00 L 00 Of,
L;=9 B 0L 0O ou
Ly, =5 00|_ooog,
. T
Ls=§ % 0L 00 Ol
L,=¢P] Pl 0L 0 -P] Of,
=T § oL 0Pl of (62)
L= 0 -P] PT 0 L 0 -PIf,
L,=[0 0 0L 0O 0
Ly, = 0 P; & OLOPgu,
Ly,=[0 0 0L 0O q
=¢] P P} Pl O L 0P PIY
=EqW, L, =E,V,+E, B,
x=FaW, Ly =R\, +F; D0
in which
_& WAreHIH, Uy € WA, reHIH, U
' gllAll-'-BhC +eH H %/A12+Dhcv2+e6H4H53

£ =@gVE vlelg%féflElﬂEz V,E, +B, E,

F=g\F WFgF

:é/ZF1+DhF2 V2F1+DhF2g

o As ou
u
0 0 Asg
0 0 Dsy
0 0 04
0o B's 04§
0 0 o u
o 0 04
! yoooy (61)
u
0 0 04
Z, 0 0y
0 0 004
u
Gp 0 0y
* p 00U
u
* * D4 b
P,=WG, P,=8+BG, P,=-¢ +BG,
P3:V\4GE'P4:&2+DhG4vP7:'&z+DhG4v
P,=5G, c”ﬁrvel P,=5G,6,=VG,
oo G080 D
AR an #. Kl
A=§ -WA WA U
EVA+BCG+N VA+BnQu
4,=Q,- Z,,+R. A, =g H'H, +e,H]H,
.0 QU e A (63)
Q=A+A+ Pa+e
80, 44 F
A=§ WA -WA U
&§VLA+DC+N, -V,A+DGCh
& :le'zlp"'Rz I'OAI ZGAHIH1+66HIH4
ewsuty9 &/, Dy _gzlmq
_e\/Bu &, D _&m‘ﬁ’
ﬁl _?"Aiu e-Aku
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0 A=E

pu A &AG
In this case, the parameters of the desired filter (10)
are given asfollows:

1 1y-T 1 STYSTVRY
A =XINWIYTL B =X Hy =(Y WM,
Cr =X N,W'Y, T, Dy = XDy, Hy =(Y2'1V\£1'V|2)T
where X, X,,Y, and Y, are any nonsingular matrices
satisfying
XY =-VWE XYy = VWt

(64)

(65)

Proof: From (60), it is clear that vw*-1,i=12 are
invertible. Therefore, there are nonsingular matrices
X, and Y,i=12 satisfying (65). Now define
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&J, lu.

nonsingular  matrices ii:éYTi ol 712 with
e’i u

U, =W and i =2V‘T X‘@>0,i =172 with
X Ta

T =Y U, (V,- U HU,Y . Now we set

A=YAX] , B =XB ,

U'A =N, W=Ut

G, =Y%,CiX; . D,=X,D; ,

UG =N Wo=Ug

Y Hp =Hp s WHp =M,

Y, HY =HT , WHT =M, (66)

O=diag{i i p lselhi1i o ciag{1}}

O, =diag{U;",1,U;%1,1,...1,U %1, Uz, | diag {1}

O, =diag{i .1}, O,, =diag{U; ", 1,1},

O, =diag(i .1}, 0, =diag{U;", 1.1}

By some agebraic matrix manipulations, we can
prove that (59) and (60) are equivalent to

0]0'X00, =L <0

O, 0LW0,0,,=5 >0, O, O;W,0,0, =S,>0

So, by applying congruence transformations to (59)
and (60), we can obtain (16) and (17). Therefore, we
can conclude from theorem 1 that the filter (10) with
A ,B;,C,,D; H, and H_ defined in (64) ensures the
filtering error dynamics (12) to be robustly
asymptotically mean sguare stable with the
prescribed L, - L, attenuation level g.

(67)

4. Simulation results

In this section, a simulation study is given to show
the effectiveness of the filter design method
presented in previous section. Consider the GRN
model (6) with three nodes and following numerical
values. This example is an extension to onein [12].
A =diag{3,3,3}, C, =diag{0.72,0.1,1.3},

60 0 -120
_é ¥
B=g002 0 0y
g0 -02 0§

A, =diag{35,3535, C, =diag{1.2,3.1,003,
D =diag{1.21,2.12,0.2%
E, =diag{0.53,0.41,0.42, F, =diag{0.51,0.41,0.42

is
i.e

The nonlinear function

gi(xpi)zxii/(l-'-xgz)i)l =123,
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L = diag{0.6,0.6,0.6} . The time-varying delays and
disturbance are taken from [21] as:

t,(t) =t,(t) =1.41+0.09sin(t) , u(t) =[155]" sin(t)exp(- 2t)
and additional matrices are chosen asfollows:

E, =F, =diag{06,05,05, H, =H_ =diag{-0.1- 06,05

A, =E, =diag{-08,-02,-03, A, =F, =diag{- 04,03 - 0.15
C,=E,=dag{02,-04,03, C,=F,=dag{-02-07,06

@2 01 01 €0 02 04

H,=g0 02 04 H,=g01 01 0y
g0 -01 02§ @1 05 0§
@1 0 -0  ¢é01 01 Oluy

G=®1 01 053G =801 01 -0Ij
@1 0 O0Ff £01-005 OFf

H, =diag{0.2,02,0.9, H, =diag{0.30.1,0.8, H, = diag{0.5,0.9,0.
G, =diag{0.4,0.304, G, =diag{0.2,0.350.25
The unknown time-varying matrix D(t) satisfying
condition 9) is taken as
D(t) = diag{ sin(t),cos(t),-sin(t)} . For g=1.2, r =1 and
by using the Matlab LMI control Toolbox, the LMIs
in (59) and (60) are solved and the filter parameters
in (10) are obtained as:

é-4.2976  0.0741 -0.03380
A =§12546 -32182 01424

g 0.0966 -0.0906 - 3.9441
¢-01168 -0.0406 -0.05170
B, =g-0.0406 -07052 -0.1736;
g-00517 -01736 0.4832§
¢-41322 -02245 -0.03280
C, =g-00559 -16643 -0.2849y,
g-03147 7.8405 -57383f
¢-20163 - 00873 0.15240
D, =g - 00873 01760 0.2721;
g 01524 02721 1.9167§
¢ 02358 -0.0036 0.0063 U
Hy =a-01252 03742 00194 |,
g§-00255 -00145 - 0.0818f

600486 -0.0119 0.0039 U
H, =§00170 06384 -00917;

00011 01146 -0.0553j
Figures (1)-(6) give the time histories of the states of
the original GRN (6) and their estimates. As seen,
the expected robustly asymptotically mean square
stability has been guaranteed and the estimates
converge to their true values in the presence of
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stochastic noises, alowable nonlinearities, norm-
bounded uncertainties and time-varying delays.

1.8 T T T T T T
Trajectory of xpz(t)

£ S estimate of x,,0) ||
16 ‘ ‘ ‘ ‘ ‘ : 14 i
Trajectory of X, (t) .
Y estimate of x_, (1) || 12 |
1.2 i ! 1
. 1 eg 08 i
x
08 1 06 i
Tz 06 i o4 |
x
0.4 i |
0.2 1 of
0 0.2 : : ‘ ‘ : :
0 1 2 3 4 5 6 ’
s | Time(Sec.)
) F1g. 4. Trejectory and estimate of x;, (1)
Time(Sec.)
Fig. 1. Trajectory and estimate of x, (t) " | |

Trajectory of Xm3(t)

............ estimate of x_.(t) |

Trajectory of xpl(t)

................. estimate of ., t)

Xms(t)

X,

0 1 2 3 4 5 6 7
Time(Sec.)
155 I > 3 . s s 7 Fig. 5. Trajectory and estimate of x,, (t)
Time(Sec.)
Fig. 2. Trajectory and estimate of x, (t) ‘ ‘ T
Trajectory of XpB(t)
------------------ estimate of XpB(t) M
1.6 ! ! ! ! ; ;
Trajectory of xmz(t) T
----------------- estimate of xmz(t) il
»:% | i
1 e
s s 5 6 7
Time(Sec.)
3 4 5 6 7 Fig. 6. Trajectory and estimate of X, (t)

Time(Sec.)

Fig. 3. Trajectory and estimate of X, (t)
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T T
Estimation error em(t)

e,

. . . . . .
0 1 2 3 4 5 6 7
Time(Sec.)

Fig. 7. Estimation error of e, (t) = z,(t)- Z,(t)

0.8

’ Estimation error e _(t) L
0.6 P

0.4F

0.2

ol

&0

-0.2F

-0.4F

-0.6

0.8}

L

-1.2

0 1 2 3 n 5 6 7
Time(Sec.)

Fig. 8. Estimation error of e, (t) =z, (t) - Z,(t)
Figures (7) and (8) show that the estimation error
converges to zero asymptotically. This convergence
provides stability condition in definition 2.

More importantly, under zero initial condition and
presence of exogenous input, we can obtain L, - L,

attenuation levels:

e o), e, ],
o, Jucl,

both less than the prescribed level g =1.2.

5. CONCLUSIONS

This paper has been addressed a delay-dependent

robust L,- L, filter design method for genetic

regulatory networks. At first, a nonlinear uncertain

GRN model has been introduced such that the

parameter uncertainties (time-varying and norm-

bounded) are considered, delays are time-varying,

stochastic noises appear at both the state and

measurement equations and this model is considered

1.0361 and = 1.0815

under  stochastic noises and  disturbance
simultaneoudly. Thus, the model provided is more
realistic than previous proposed models. Based on
the Lyapunov-Krasovskii functional method, delay
decomposition approach, the stochastic integral
inequality and free weighting matrix technique,
delay-dependent sufficient conditions have been
derived in the form of LMIs, which ensure robust
asymptotical stability of the filtering error dynamics
with the prescribed L, - L, attenuation level. Since

the results are delay-dependent, they have less
conservativeness than previous results. Then the
filter parameters have been determined in terms of
the solution of LMIs. Finaly, a simulation example
has been given which demonstrates the states of
estimator converge to their true values in the
presence of stochastic noises and disturbance,
allowable nonlinearities, parameter uncertainties and
time-varying delays.
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