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Abstract: 
Active fault detection consists of finding an 
auxiliary input signal the use of which allows 
detection of the masked faults using a multi-model 
framework in continuous or discrete- time cases. In 
this paper, a modified approach to optimal 
auxiliary signal design in robust fault detection 
based on a multi-model formulation of healthy and 
faulty systems is used to study the problem of active 
fault detection for a class of systems with nonlinear 
coupled continuous state-space equations in the 
presence of uncertainties and disturbances. Due to 
the nonlinearity in the state-space equations, the 
traditional active fault detection approach is not 
straightforward to be employed. To overcome this 
difficulty, a modified solution is proposed in order 
to design an optimal auxiliary signal to guarantee 
robust fault detection for this class of nonlinear 
systems in the presence of uncertainties and 
disturbances. Finally, the proposed solution for 
optimal auxiliary signal design is applied to a 
Lumped Tire-Road Friction system. 
 
Key Words: Active Fault Detection, Auxiliary 
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1. Introduction 
Automobile manufacturers have made enormous 
efforts to increase safety and improve handling 
characteristics. Related to this propose, the 
accuracy of information obtained by direct 
measurement is crucial; however the appropriate 
sensors may be unreliable, out of the calibration, 
etc. Since some control systems such as Anti-lock 
Brake System3, Traction Control System4 or 
many variants of Electronic Stability Program5  
are strongly dependent on efficient transmission 
of the forces from vehicle wheels to the road, 
control and fault detection for ABS and tire-road 
friction is an essential task of vehicle dynamics 
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control and is still a challenging issue for 
researchers [1-5]. 
However, the fault in the above mentioned 
systems would be revealed in special maneuvers. 
For example, in ABS, the fault in normal 
operation of system happens in high speed 
movement [1]. To have a better sense of masked 
faults, an example is given here. Suppose that you 
drive a car with a faulty braking system, and the 
controller masks this fault. You do not realize this 
until you push the brake pedal and encounter this 
problem. These kinds of faults are usually known 
as masked faults and incipient faults. Because of 
the robustness of controller, the masked faults are 
damped or not apparent in normal operation of the 
breaking system. 

Model-based fault detection is one of the 
common approaches to fault detection. Therefore, 
using an accurate model of system is the 
fundamental part of trustable result for fault 
detection.  
In this paper, in order to have a better fault 
detection, one of the accurate models which can 
introduce the behavior of ABS, is considered. In 
[3], a nonlinear model for tire-friction modeling 
is suggested. The mentioned model is very helpful 
to tire friction as well as ABS model. Therefore, 
a nonlinear tire-road friction model is used instead 
of ABS model in the present study.  
On the other hand, choosing a proper fault 
detection strategy is another important factor for 
ABS system. By this way, two basic types are 
considered, passive fault detection6  and active 
fault detection7. 

In PFD method, thanks to some reasons such 
as reliability, safety, and stability of system, the 
fault detection process has no interaction with the 
system. However, unfortunately, the PFD 
method, does not guarantee the detection of some 
kinds of faults known including masked faults 
such as a number of ABS system faults, happen 
but are masked in low speed.  

Although, inputs and outputs are observed 
continuously by PFD system, this fault is not 
detected. In other words, merely observing input 
and output is not adequate to guarantee the correct 
decision between the faulty and healthy systems. 

3 .ABS: Anti-lock Brake System 
4 .TCS: Traction Control System 
5.ESP: Electronic Stability Program 
6 .PDF: Passive Fault Detection 
7 .AFD: Active Fault Detection 
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In contrast, injecting a proper signal into the 
system is useful for more accurate fault detection. 
Considering another aspect of his issue, in AFD 
approach the system is monitored for a short 
period of time, while monitoring in PFD is 
continuous. 

In AFD, approach at least two models, healthy 
and faulty, are defined to describe the system 
behavior. In order to detect the abnormal 
behaviors of the system, an auxiliary signal “ ” is 
injected into the system, as shown in Figure 1. 
Mathematically, this proves that if the proper 
auxiliary signal is injected into a multi-model 
system, the healthy and faulty models of system 
will be completely separated and detected [6]. 
Therefore, this problem of AFD leads to 
designing a proper auxiliary signal. 
This paper, concentrates on designing an optimal 
auxiliary signal which is highly effective in 
detecting abnormal behaviors with minimally 
disruptive regular operations of the system. 
According to this goal, the problem is finding the 
auxiliary signal " " in which the following 
conditions are satisfied; minimally disturbing 
regular system operation, being analytically 
computable, and guaranteeing the separation of 
system models. 

An auxiliary signal   guarantees fault 
detection if and only if   ( ) ∩  ( ) = ∅, 
where   ( )is the set of outputs   with model  , 
healthy model ( = 0) and faulty model ( = 1), 
for a given input signal    [6]. 
The first idea for using auxiliary signal in fault 
detection was presented in [7] and later developed 
in [8, 9]. The view point of both researches was 
stochastic set up. Later, in [6], AFD was 
formulated in deterministic set up. Regarding that 
work, a number of linear application examples 
have been tested [9- 11].  
 

 
Figure 1.Active Fault Detection Diagram 

 

Despite the fact that all of the existing 
publications have used PFD approach for fault 
detection and estimation of tire-road systems [12-
16], PFD approach cannot guarantee the detection 
of masked and incipient faults [17]. Therefore, 
one of the main contributions of the present study 

is using AFD for ABS or tire-road friction system 
to boost the reliability and safety of ABS systems. 
Unfortunately, in spite of cons of AFD blaming 
its nonlinearity, uncertainty and complexity in 
ABS-system equations, using AFD is not 
straightforward. In this paper, a solution is 
presented to convert the model of system to a 
proper form and finally design the optimal 
auxiliary signal guaranteeing the fault detection. 
The rest of this paper is organized as follows. A 
problem formulation is given in Section 2. In 
Section 3, preliminaries and problem solution are 
discussed. In Section 4, the auxiliary signal for a 
numerical example is designed. Finally, Section 
5, concludes the research and give suggestions for 
future research. 
 
2. Problem Formulation 
In this section, the problem of auxiliary signal 
design for a lumped tire-road friction model and a 
general problem is formulated. Based on [3], the 
one-wheel model with lumped tire-road friction 
model is described as follows   ̇ = −   (   +    ̇) −    +      (1)   ̇ = (   +    ̇ +     )     (1)  ̇ =   −    |  | (  )        (2)  (  ) =   + (  −   )  |  /  | /      (3) 
 
where   is 1/4 of the vehicle mass and  ,   are the 
inertia and radius of the wheel, respectively.   is 
the angular velocity of the wheel,     is the 
accelerating (or braking) torque, σ  is the viscous 
rotational damping, and parameters    and    are 
the normalized coulomb friction level and the 
normalized static friction so that   ≤   ∈[0,1]. The parameters   ,   and    are the 
normalized rubber longitudinal lumped stiffness, 
normalized rubber longitudinal lumped damping, 
and the normalized viscous relative damping, 
respectively. The other parameters are    that is 
the Stribeck relative velocity, and the relative 
velocity is   = (  −  ).    is the normal force 
and   is considered as internal friction state. The 
parameter   denotes the parameter related to the 
unexpected changes in the road conditions, which 
can be interpreted as system fault. Hence, the 
system has two models, which are healthy model 
( = 1) and faulty model ( ≠ 1).  It is assumed 
that, just parameter   is measurable.  
Regarding (1)-(4), two simple coordinate 
transformations are defined as follows   =   +             (4)  =    +        (5) 
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Hence, the system equation (1)-(4) are converted 
to 

⎩⎨
⎧ ̇ =        −    +                  ̇ = −      +       −     +    ̇ =   −    |  | (  )                                  (6) 

In [3], noise, uncertainty, and disturbance were 
not considered in the original model, but in this 
paper they are considered as an additive term in 
the system equation. Moreover, it is shown that 
they can be helpful in the fault detection.  
To formulate the problem of auxiliary signal 
design for one-wheel model with lumped tire-
road friction, a general state-space system 
equation is presented which is used for some other 
systems such as Seri DC motors and some robotic 
models [18]. Therefore, proposed method will be 
useful for fault detection of these classes systems. 
The general state-space form of the system in (7) 
is as follows  ̇ =   +  ( , ) +    ( ,  ,  )     (7)  =             (8) 

where  =      ,  =   ,  =  . A and   are the 

constant matrices with proper dimensions as 
follows 

 = ⎣⎢⎢⎢
⎡−       0 00 −     0−    0 0⎦⎥⎥⎥

⎤,   =
[0 1/ −      / ].   is a linear function of input and output, which 
are    and  , respectively so that 
  ( ,  ) =  ( ,   ) =    +    =    +              
(9) 
where 
   = [1 1 0] ,   =
        +        −        −     . 
The function   is the nonlinear function of input, 
output and state vector  . The nonlinear term of 
(8), can be pulled up and rewritten as    ( , , ) = ℱ            (10) 
where   =  00−1 [0 0 1], ℱ =   . |  |  (  )⁄ . 

                                                             
8 RAFD: Robust Active Fault Detection 

It is straightforward that (8) and (9) can be 
rewritten as follows  ̇ =   +    +     + ℱ        (11)  =         (12) 
By using (12) and (13), the behavior of the multi-
model system is   ̇ =     +     +        + ℱ          
(13)  =           
(14) 
where healthy model and faulty model are shown 
by ( = 0) and ( = 1) respectively. Now, the 
general problem is defined as ‘optimal auxiliary 
signal,  , design that guarantees fault detection,. 
Despite the fact that general problem has been 
formulated, it is not still applicable to apply to the 
algorithm of auxiliary signal design described in 
[6]. Therefore, in the next section, a solution is 
provided to solve this problem and then the 
auxiliary signal can be designed.  

 
Figure 2. Lumped Tire-Road Friction System [3] 

 

3. Strategy of Solution 
In the previous section, the general problem was 
formulated but it is not appropriate for auxiliary 
signal design. In this section, at first, the standard 
model of auxiliary signal design will be discussed 
and finally, a solution for AFD design will be 
presented. 

To consider the nonlinearity and inaccuracy in 
system modeling, the effect of the disturbance and 
noise on the actual systems, and the term of 
uncertainty should be considered in the model. 
Consequently, robust active fault detection8 
method is used for the sake of more accuracy in 
AFD. 

Based on [10], suppose that the time period of 
injection auxiliary signal is [0, ] and be relatively 
short. Moreover, there are two models of system, 
healthy (  = 0) and faulty (  = 1) models with 
model uncertainty and additive disturbance, 
which are  
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 ̇ ( ) = (  +    )  (t)+(  +    )  ( ) +      ( )  ( ) = (  +    )  ( )+(  +    )  ( ) +      ( )     
 (15) 
Here,   (t) and  ( ) are state variables and 
measured output of system, respectively.  ( )/ ( )is an auxiliary signal/input signal and    ( ) 
is additive disturbance such as measurement 
error, noise, and disturbance. 
Parameters (    ,     ,    ,    ), are represent 
the model uncertainties. To generalize the model, 
the model uncertainties is considered as follows               =         ∆(    )   (16) 

where matrices    ,    ,   ,    are providing 
structure and weights of the uncertainty terms. 
The matrix, “∆” is parameter uncertainty matrix in 
which ‖∆‖ ≤ 1. 
Another uncertainty with an energy-type 
constraint composed of additive uncertainty (   ) 
and initial condition (  (0)) is   (0)   ,   (0) + ∫ ‖   ( )‖     < 1  (17) 
where   ,  is a weighting matrix on initial 
condition. In what follows, let    ,  ∆  ,   , =         (18) 

Now, by removing the output “ ”, rewrite (16) as 
follows 

⎩⎪⎨
⎪⎧ ̇ ( ) =     ( ) +     ( ) + (      )    , ( )  , ( ) 0 =     ( ) +     ( ) −   , ( )                   ( ) =     ( ) +     ( ) + (      )   , ( )  , ( ) 
      (19) 
By relaxing and adding the uncertainty constraint, 
for 0 ≤  ≤  , regarding to (19), (18) can be 
rewritten as   (0)   ,   (0) + ∫    , ( )  +    , ( )  −     , ( )    < 1     (20) 

We define the  =       =  0I ,  =       ,  =      , where   =    ,    ,    ,    .  Hence, 

the augmented model can be rewritten as   ̇( ) =   (t) +   ( ) +   ( )   ( ) =   ( ) +   ( ) +   ( )   (21) 

Now, (21) can be described as  

   = (  (0),   ,  ) =   (0)   ,   (0) +∫             < 1,   ∀ ∈ [0, ]    
(22) 

The problem is finding the optimal auxiliary 
signal   with the minimum energy, in which the 
output sets of the healthy model and faulty model 
are separated completely. To satisfy this 
condition, there should be no simultaneous 
solution to (22) and (23) for  = 0, 1. In other 
words, the optimization problem for standard 
AFD form is inf  ,  ,   ,  max (    ,    )  
Subject to (22) for  = 0, 1. 

Now, the above optimization problem to 
design optimal auxiliary signal could be solved by 
an algorithm described in Appendix A [6]. In spite 
of this method, applying the mentioned nonlinear 
model to this standard form is not straightforward. 
Therefore, in what follows, a general nonlinear 
model will be introduced and converted to AFD 
standard form. 

 
4. Auxiliary Signal Design 
First of all, the output and state disturbance are 
added to the system equation defined by (12) and 
(13) and for more generality, the uncertainty in 
input is considered. Therefore, the system model 
is described as  ̇ =   + (  +   ∆) +     + ℱ     +       +        (23)  =   +          (24) 
Next, to simplify the computation without losing 
generality, some assumptions are considered in 
disturbance weightings, M and N. Can be 
considered to satisfy the proper disturbance 
weighting so that satisfying the following relation      +        =         =         (25) 

Moreover, due to technical reasons, it is assumed 
that matrix    is full row rank. Regarding (26), the 
system model (24)-(25) can be rewritten as   ̇ =   + ℱ      +      + (  +   ∆)  +           
(26)  =   +          
(27) 
With regard to prior discussions, two models 
should be defined. To obtain these two faulty and 
normal models, the nonlinear term "ℱ " is 
decomposed to a constant and nonlinear term. 
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Hence, by using Teylor-Series and eliminating the 
small and ignorable terms, the outcome is ℱ =   |  | (  ) =   |  |   (     )    ( |    ⁄ |  )  ≅   1 + ∆ (  ) ≤  (1 + ∆    )         (29) 
where   is a positive constant, and    is an 
unknown limited positive constant. It means that 
this assumption helps find a bound for the worse 
case by taking a first order of derivation on   1 + ∆ (  )  subject to    and equal to zero. In 
this way the maximum value of    and ∆ (  )can 
be calculated. 
Based on the discussion above, the bound of 
uncertainty, ∆ , is obtained. In the next step, by 
changing the variables, the Eq. (26) is 
transformed to  ̇ =   +   . . +   . +  ∆   + (  +  ∆) +         (30) 
where    . .∆ . =   ∆   ∆ =   ∆     (31) 

Finally, the faulty model ( =   ) and healthy 
model ( =   ) are considered. Therefore the 
State-Space of the augmented system is 

   ̇ =    +       +      +    ∆      +    +    ∆     +      =     +     
(32

) 
Regarding the recent equations, the model of 
system is transformed to the desired form. Now, 
the auxiliary signal can be designed. In the next 
section, the solution of the present study will be 
applied to a numerical example. 
 
5. Simulation Results 
In this section, the present approach is applied to 
one-wheel with lumped tire-road friction model to 
design an auxiliary signal. Based on [19], the 
following values for one-wheel model parameter 
are taken   = 40(1/m),   = 4.9487 (s/m),   =0.0018(s/m),    = 0.0001(     ⁄ ),   = 0.5,   = 0.9,    = 12.5 (m/s),  = 0.25 ( ),  =50(  ),   = 0.2344(    ),   = 14(      ⁄ ) 

   , =  −0.005 0 00 −8.0923 0−0.8 0 0 , 

   , =  00−1 [0 0 1],    , =  110 ,      , =         +        −        −     ,  
  , = [0 4.2662 −73.8927],           = 1,   = 0.8,   = [1],  = 0 × ,     = 0 × ,     = [  × ⋮   × ],   

   =    0 ×     ×  ,  = 0.15,  = 0.18, 
  ∆  =   ∆  0 0 00 0 00 0   1 + ∆    ,    
∆  =  0 0 00 0 000 × 00 ×   1 + ∆     0 × 

 ,    
∆  =  0 0 00 0 000 × 00 ×   1 + ∆    .  0 × 

 ,  
 ∆=    ∆ ×  ⋮ ∆ ×  = 0 × … … … … . + … … … … … …∆ ×  ⋮ ∆ ×  = 0 ×  , ‖∆‖ ≤ 1 

By using (29) the parameter ‘ ’ is calculated as   = 2500 and  ∆  = 0.28 ×    . 
 
As it was mentioned in the appendix A, the 
maximum injection time-period should be 
determined experimentally. For this case the 
injection time period has been assumed as 0.4s. 
In this example, the auxiliary signal is designed 
for variety values of uncertainty weighting. To 
have a better sense of uncertainty effect on 
auxiliary signal, the uncertainty weighting 
matrices    and    are normalized. As 
mentioned in Table 1,    is given a constant 
value equal to 1 and    has different values 
between 0 and 1. This specifies that by increasing 
the value of uncertainty weighting   , the energy 
of optimal auxiliary signal decreases. The related 
simulation results are demonstrated in Fig.2. In 
the next step, as shown in Table 2, the inverse 
condition is considered,    is given as a constant 
value equal to 0.6 and    has different values 
between 0 and 1. The simulation result shows that 
the increasing uncertainty value leads to 
decreasing energy of auxiliary signal. The second 
simulation results are shown in Fig. 3 and Fig. 4. 
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In Table 3, both of the uncertainty weighting 
matrices    and    are varied and the results 
confirm our previous claim, stating that more 
uncertainty in model cause to smaller auxiliary 
signal design. Additionally, by analyzing the 
results of Table 1 1-Table 3, it is concluded that 
the auxiliary signal is more sensitive to parameter    than   . The simulation related to Table 3 is 
depicted in Fig.5. 
 
Table 1: Auxiliary Signal Energy for   =  ,  ≤   ≤  

Item       ‖ ‖ 
1 1 0.0 124.44 
2 1 0.2 107.70 
3 1 0.4 77.87 
4 1 0.6 63.90 
5 1 0.8 41.28 
6 1 1.0 11.45 

 
Table 2. Auxiliary Signal Energy for   =  . ,  ≤  ≤   

Item       ‖ ‖ 
1 0.0 0.6 4400.50 
2 0.2 0.6 1875.23 
3 0.4 0.6 74.50 
4 0.6 0.6 65.19 
5 0.8 0.6 64.52 
6 1.0 0.6 63.90 

 
Table 3: Auxiliary Signal Energy for  .  ≤   ≤ .  ,  .  ≤   ≤  .   

Item       ‖ ‖ 
1 0 0.2 5200.00 
2 0 0.6 4400.50 
3 0.2 0.2 2230.48 
4 0.2 0.6 1875.23 
5 0.6 0.2 120.27 
6 0.6 0.6 65.19 

 

 
Figure 2. Auxiliary Signal for   =  ,  ≤   ≤   

 
Figure 3. Auxiliary Signal for   =  .  ,  .  ≤   ≤ .   

 
Figure 4. Auxiliary Signal for   =  .  ,  .  ≤   ≤   
 

 

 
Figure 5. Auxiliary Signal Energy for  .  ≤   ≤ .  ,  .  ≤   ≤  .   
 

6. Conclusion and Future Works 
This paper presents a solution to design an 
auxiliary signal for a one-wheel model with 
lumped tire-road friction. Although, this solution 
is limited for this application, it can be 
generalized for a class of nonlinear systems. 
Moreover, the simulation results proved the 
theoretical claim of the study, saying that the 
effect of uncertainty in model is useful in 
designing optimal auxiliary signal. For future 
works, the designed auxiliary signals will be used 
for improving fault detection, especially to detect 
the masked faults in the closed-loop control 
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system for general class of uncertain nonlinear 
systems.  
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Appendix A 

In this section, the construction of an optimal 
proper auxiliary signal is summarized [6]. The 
general models are in the form of   ̇ ( ) =     (t) +     ( ) +     ( )    ( ) =     (t) +     ( ) +     ( ) 

 (A.1) 
where i = 0, 1 correspond to healthy and faulty 
system models respectively. The   is the auxiliary 
signal which is computed prior to the test while   
are outputs that become known during the test. 
Since v, y are known they are common to both 
models. However, y cannot be used to design v 
since 
v is computed before the test.  
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The unknown initial conditions    (0) and 
uncertainty parameter ν are assumed to satisfy the 
bounds   =   (0)   ,   (0) + ∫             < 1,∀ ∈[0, ]             (A.2) 
where the   ’s are signature matrices. That is,    is 
a diagonal matrix with 1 and −1 on the diagonal 
and also assume that νi ∈ L2.  
This formulation includes a number of different 
problems. For example, it includes the case of 
purely additive noise where Ei = I and Ji = I. In 
that case we need only consider s = T, since the 
integrand is non-negative and the maximum value 
of the integral occurs at s = T. Now, suppose we 
have  , given a  , consistent with one of the 
models. We seek an optimal   for which 
observation of   provides enough information to 
decide from which model   has been generated. 
That is, we seek an optimal proper  . The first 
step is to characterize the proper  . That is those   for which there exist no solution to (A.1) and 
(A.2) for   = 0 and 1 simultaneously. 
The optimality criterion of minimizing is the L2 
norm of the auxiliary signal. In the other words, 
the solution is min |‖ ‖|                      ( ) ∩  ( ) = ∅ 
where |‖ ‖| = ∫ ‖ ‖      and   ( )is the set of 
outputs   with model  , healthy model ( = 0) and 
faulty model ( = 1), for a given auxiliary signal   . 
The goal of the algorithms is to find the minimum 
proper signal,  , where a proper signal is one 
which makes the two output sets disjoint. This 
signal is then input into the system during a short 
test period and the output is measured. Based on 
the measurement, a decision is made whether the 
system is healthy or faulty. 
If (  ,   ,   ,   ) satisfies the models (A.1) and 
the uncertainty bound (A.2), then  , guarantees 
that the output of each model will be distinct. 
Else, if (  ,   ,   ,   ) satisfy the models and   is 
a proper auxiliary signal, but the outputs are still 
not distinct, then (  ,   ,   ,   ) must not satisfy 
the uncertainty bound (A.2) for i = 0, 1. Thus, if 
(  ,   ,   ,   ) satisfies the models and   is a 
proper auxiliary signal, but an output   is still in 
both output sets, it must be that   (0)   ,   (0) + ∫             ≥ 1. 
 (A.3) 
Since this is true for all (  ,   ,   ,   ) that satisfy 
the models but do not have distinct outputs, it is 

sufficient to ensure it is true for the minimum of 
them. Thus, min  ,  ,        {  ,  } ≥ 1   (A.4) 

The algorithm is to find the minimum proper 
signal   such that (A.4) holds.  
 


