
MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL. 13, NO.4, WINTER 2014 

85 

Multivariable Adaptive Output-
Feedback Regulation Using Adaptive 

Observer 
 

Mohammad Hosein Kazemi 1 
 

Received 06/03/2016:           Accepted: 08/06/2016 
 

Abstract 
In this paper, an innovative adaptive output 
feedback control scheme is proposed for general 
multi-input multi-output (MIMO) plants with 
unknown parameters in a regulation task; such 
that the outputs of the plant converge to zero as 
well as the control gains remain uniformly 
bounded. First an adaptive observer is designed to 
estimate the state variables and system parameters 
by using the inputs and outputs of the plant. Then 
a linear combination of the estimated states by 
adaptive control gains is used to design a robust 
adaptive controller. Some theorems are given to 
show the convergence of the modeling errors and 
the control gains. The proposed controller is used 
to control a two degree of freedom robot 
manipulator such that the robot moves from any 
initial configuration to zero position. Simulation 
results exhibit the effectiveness of the proposed 
scheme to control the robot manipulator with 
different initial conditions and parameter 
perturbations. 
 
Keywords: Adaptive observer; robust adaptive 
control; multivariable control; robot manipulator 
control; 
 
1. Introduction  
The extension of single-input single-output 
adaptive control algorithms to multivariable 
systems has been considered by several authors 
[4, 11, 17, 19]. An indirect adaptive interval type-
2 fuzzy controller by using fuzzy descriptions to 
model the plant is proposed in [11] to handle the 
training data corrupted by noise or rule 
uncertainties. State feedback output tracking 
design for MIMO systems, using a less restrictive 
matching condition is employed in [18] and a 
simple controller structure is offered. High-
frequency gain matrix decompositions, commonly 
used with output tracking designs, are presented 
in [7]. In [16], the design of adaptive controller 
for autonomous and non-autonomous control of a 
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nonlinear system using delta models is described 
based on a matrix approach and polynomial 
theory. An output-feedback adaptive dynamic 
surface control scheme is proposed for linear 
time-invariant multivariable plants based on the 
norm estimation of unknown parameter matrices 
in [21]. Later attempts were about various 
modifications such as - modification [6],  
modification [14] for robust adaptive control 
strategy. Since adaptive control is an appropriate 
method to control the plats where involving 
different sent points, different operating points, 
and parameter variations, a two degree of 
freedom robot manipulator is chosen to 
demonstrate the effectiveness of the proposed 
method in this paper. 

The simplest adaptive approach is gain 
scheduling, where the control parameters are set 
with respect to the selected work space region and 
load condition. The main disadvantage of such 
approach is a time-consuming determination of 
the adequate work space schedule for the 
complete work space range. Direct model 
reference adaptive methods do not show these 
disadvantages; their design and the design of the 
belonging adaptation mechanism is based on 
assuring the stability of a complete adaptive 
system. Because of inherent nature of the moving 
paths and loads, the operating points of a robot 
manipulator will be varied as a nonlinear manner 
during a moving cycle. Therefore, various 
schemes based on adaptive control theory have 
been proposed to deal with large parameter 
variations, such as inverse dynamics control [2, 
20], sliding mode control [12, 22], Fuzzy logic 
theory [1, 10, 13] and robust adaptive control [3, 
5]. The main objective of these control strategies 
is to extend the margins of the regions of stability 
and therefore to satisfy the increasingly complex 
control requirements in robot manipulators. From 
a control strategy point of view, the extension of 
single-input, single-output robust adaptive control 
algorithms to multivariable and large-scale 
systems has been considered by several authors 
[4, 19]. In [9] an adaptive robust output-feedback 
control strategy has been proposed for 
multivariable systems and it is used in multi-area 
power system in [8]. 

In this paper we introduce an adaptive control 
scheme based on an adaptive observer to estimate 
the set of state variables and parameters of a 
general MIMO plant. The main objective of 
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proposed control is to regulate the outputs of the 
plant. A linear combination of the estimated 
states with adjustable gains is fed back as a stable 
robust adaptive control signal such that the 
outputs of the plant asymptotically converge to 
zero. 
The remainder of this paper is organized as 
follows. A full description of the problem 
statement is presented in Section 2. Section 3 
presents the proposed adaptive control structure 
consist of adaptive observer and adaptive 
controller. Simulation results are demonstrated in 
Section 4. Finally, the conclusions are given in 
Section 5.  
 
2.  Problem Statement  

Consider the MIMO plant under consideration 
with the following state space form, 

,
,

p p p p

p p

x A x B u
y C x

= +

=

&
  (1) 

where n
px R∈ , pu R∈  and my R∈  are the state 

vector, control input vector and output vector, 
respectively. The matrices n n

pA R ×∈ , n p
pB R ×∈  

and m n
pC R ×∈ with unknown elements describe 

the dynamics of the plant.  Here without loss of 
generality, we consider q m= , and assume that 
the pair ( , )p pA B is controllable, and the pair 
( , )p pC A  is observable. Since the plant is 
assumed to be completely observable, it can be 
transformed to: 

( ) ,
,

x A GC x Bu
y Cx

= + +
=

&
  (2) 

where, A, B, and C are constant matrices with 
appropriate dimensions, ( , )A B  is controllable, 
and  ( , )C A  is an arbitrary known observable pair, 
such as observable canonical form. Now, the on-
line parameter identification problem is to 
estimate the unknown matrices B and G from the 
input and output data and to generate also x̂  as 
estimation of x. The main objective is to design a 
robust adaptive output feedback control for the 
plant (2) such that the outputs of the plant, y, 
converge to zero. The first part of the proposed 
control strategy is to construct an adaptive 
observer, which estimates the state vector x̂  and 
system parameters ( B and G ) from input and 

output data. This is discussed in the following 
section. 
Considering the plant (2), the first stage in 
developing the proper controller is aimed at 
constructing an adaptive observer so that the 
unknown matrices B and G, as well as the state 
vector x are estimated asymptotically. Knowing 
that ( , )C A is observable, we may find an n m×  
matrix 0G  so that the 0A G C+  is asymptotically 
stable. This leads to rewrite (2) as: 

0 0( ) ( ) ,
.

x A G C x G G Cx Bu
y Cx

= + + − +
=

&
  (3) 

An adaptive observer can then be introduced as: 

0 0
ˆ ˆˆ ˆ( ) ( ) ,

ˆ ˆ ,
x A G C x G G y Bu v
y Cx

= + + − + +
=

&
  (4) 

where x̂  is the estimate of the states, Ĝ  and B̂  
are the estimates of the parameters B and G 
respectively and v  is an auxiliary signal that must 
be chosen so that the stability of the estimation is 
ensured. 
 
3.  Observer and Controller Adaptive Laws 

This section, at first introduces an adaptive law 
for the adaptive observer (4), and then 
proposes the control law with its appropriate 
adaptive law, as depicted in Figure 1. 

 
Figure 1. Proposed adaptive control structure. 

From (3) and (4), the state estimation error 
equation is described by 

0

1

ˆ ˆ( ) ( ) ( ) ,
,

e A G C e G G y B B u v
e Ce

= + + − + − +
=

&
  (5) 
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where ˆ:e x x= − , and 1 ˆ:e y y= − . Denote, 
ˆ: G Gϕ = − , ˆ: B Bψ = − , and rewrite (5) as: 

[ ]0

1

( ) ,

,

u
e A G C e v

y
e Ce

ψ ϕ
 

= + + + 
 

=

&
  (6) 

It can be shown that the given error equation (6), 
together with the adaptive law [8], 

ˆ( ) ,T TX C y y= − −&l   (7) 

and the auxiliary signal v X= &l results in the 
uniform stability and 1lim 0t e→∞ =  as well, where 

ˆˆ([ , ])Vec B G=l . The ( )Vec M , denotes the vector 
formed by stacking the columns of M into one 
long vector, and the matrix X consists of m 
matrices : n nX R R+ ×→  as: 

1 2 2

0

0

[ , , , ] ,
( )

, 1,..., ,
( )

m

i i i

i m i m i

X X X X
X A G C X Iu

i m
X A G C X Iy+ +

=

= + +
=

= + +

L
&
&

  (8) 

and I is an identity matrix of size n. If, in 
addition, iu  is persistently exciting with sufficient 
number of frequencies [15], it can be also shown 
that ϕ , ψ , and therefore e tends to zero 
asymptotically.  
The next stage of the proposed controller consists 
of designing a robust adaptive output feedback 
control so that the outputs, y, converge to zero 
asymptotically. The following control law is 
proposed to meet this control objective. 

* ˆ ,u K x=   (9) 

where * m nK R ×∈  is the feedback gain, and x̂ is 
the estimated state vector which is constructed 
from the adaptive observer (4). By adding and 
subtracting the term *BK x , in the plant equation 
(2), and using the control law (9), we obtain 

* *( ) .x A GC BK x BK e= + + +&   (10) 

Hence, if *K  is chosen to satisfy the algebraic 
equation 

* ,mA GC BK A+ + =   (11) 

where, n n
mA R ×∈  is a desired stable matrix, then 

by knowing that 0e →  exponentially fast, we can 
conclude that the transfer matrix of the closed-
loop plant is the same as that of the reference 
model 0x →  exponentially. We should note that 

in general, no *K may exist to satisfy the 
matching condition (11) for the given matrices A, 
B, G, C, mA , indicating that the control law (9) 
may not have enough structural flexibility to meet 
the control objective. But if the structure of those 
matrices are known, then mA may be designed so 
that (11) has a solution for *K . By this 
assumption, we can propose the control law 

ˆ( ) ,u K t x=   (12) 

where ( )K t is the estimate of *K , to be generated 
by an appropriate adaptive law. 
By adding and subtracting the term, *BK e in the 
plant equation (2), using control law (12), and 
matching condition (11), we obtain 

*ˆ ,
,

mx A x BKx BK e
y Cx

= + +
=

%&
  (13) 

where *:K K K= −% is the controller parameter 
error. 
It can be shown that, the error equation (13) and 
the following error system have the same outputs 
as 0t → , [9]. 

Theorem 1 

The matrices n mD R ×∈ , and 
2

: n nY R R+ ×→ , can 
be determined so that the system equation (13) 
follows asymptotically the error system 

1

,
,

m d dA DCYB k YB k
C

ε ε
ε ε

= + −
=

&% %&   (14) 

where, ( )k Vec K=% % , d nB I B= ⊗ , and ⊗  denotes 
the Kronecker product, and the matrix Y consist 
of n matrices : n n

iY R R+ ×→  such that: 

1 2

, 1,..., ,
[ , , , ] .

i m i i

n

Y A Y Ix i n
Y Y Y Y

= + =
=

)&

L
  (15) 

Proof 
The following lemma is first stated. 
Lemma 1 [15] 
 Let ( )Z s be a matrix of rational functions such 
that ( ) 0Z ∞ =  and Z(s) has poles only in 
Re[ ]s µ< − , ( 0µ > ). Let ( , , )C A B  be a minimal 
realization of ( )Z s . Then, ( )Z s  is Strictly 
Positive Real (SPR) if and only if there exist a 
symmetric positive-definite matrix P and a matrix 
L such that: 
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2 ,
.

T T

T

A P PA LL P Q
PB C

µ+ = − − = −

=
  (16) 

Now we may proceed the proof of the theorem 1. 
The equation (13) can be rewritten as: 

*

1

ˆ ,
n

m i i
i

x A x BK e xϕ
=

= + + ∑&   (17) 

where, iϕ  ‘s are the column vectors of matrix 
: BKϕ = % , and ˆix  ‘s are elements of x̂ . Using (15) 

into (17) we can obtain 

*

1

{ ( ) }.
n

m i i m i i i i
i

dx A x BK e Y A Y Y
dt

ϕ ϕ ϕ
=

= + + − −∑ &&  (18) 

Since ( , )mC A is observable, there exists a matrix 
D so that mA DC+  is asymptotically stable and 
we may choose D so that the system ( , , )mC A D is 
SPR. By defining 

*

1

: { ( ) ( )( )} ,
n

i i m i i
i

dBK e Y A DC Y
dt

η ϕ ϕ
=

= + − +∑   (19) 

Equation (18) will be reduced to 

.m d dx A x DCYB k YB kη= + + − &% %&   (20) 

Now, we introduce the Lyapunov function 
T
i iV Pξ ξ=  for the system 

( ) ,i m i iA DCξ ξ ρ= + +&   (21) 

where, i i iYξ ϕ=  and P is the positive definite 
symmetric matrix obtained from Lemma 1. 
Evaluating the time derivative of V along the 
trajectory of the system (21), and using Lemma 1, 
imply that 

2( ) .

T T
i i

T T T T
i i i i i i

V LL
P L C C

ξ ξ

ξ ρ µξ ξ ξ ξ

= −

+ − +

&
  (22) 

Now µ  is chosen sufficiently large such that 

( ) 0 ,T T T T
i i i i i iP L C Cξ ρ µξ ξ ξ ξ− + <   (23) 

then V&  becomes negative; this implies the 
boundedness of  iρ . Substituting iρ  from (21) 
into (19), we obtain 

*

1

.
n

i
i

BK eη ρ
=

= + ∑   (24) 

Knowing that, ˆe x x= − is the state estimation 
error of the adaptive observer, (5), where its 
boundedness is established, concludes that η  is 

bounded. Define : xγ ε= − , and subtracting (14) 
from (20), imply 

.mAγ γ η= +&   (25) 

Since mA  is a stable matrix, according to the 
input-output stability theorems[15], boundedness 
of η  results in the convergence of Cγ  to zero 
asymptotically. In other words y tends to 1ε  as 

.t → ∞  
 --------------------------- 
Now we may use the next theorem to obtain the 
adaptive laws.  

Theorem 2 

 The origin of the error system (14) and the 
following adaptive law 

1 ,T T T
dk B Y C ε= −&%   (26) 

is uniformly stable in the large. 

Proof 
Considering the following Lyapunov function 

,T TV P k kε ε= + % %   (27) 

and evaluating V&  along (14) and (26), and using 
the result of Lemma 1, it follows that 

2 ( ) .T T T T T T
d dV LL P PYB B Y C Cε ε ε µ ε= − − −&   (28) 

Obviously choosing µ  sufficiently large such that 
0T T T

d dP PYB B Y C Cµ − > , result in 0,V <& and 
therefore uniformly stability of the origin of (14) 
and (26). 
--------------------------- 
Since 1ε  tends to y asymptotically, the adaptive 
law 

,T T T
dk B Y C y= −&%   (29) 

can be practically used to stabilize the origin of 
the system (13). The only remaining problem is 
that the matrix dB  is unknown, and therefore the 
adaptive law (29) is not applicable. To solve this 
problem, we can use the estimate of dB ,i.e., ˆ

dB  
as 
ˆ ˆ .d nB I B= ⊗   (30) 

However, such substitution may make some 
errors in the convergence of the overall system. 
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To avoid that, a robust adaptive law is proposed 
as following theorem. 

Theorem 3 

The error system (14) with the adaptive law 

1
ˆ ,T T T

dk B Y C kε σ= − −&%   (31) 

where, 

0 1 1 0

1 0

,
0

if K

if K

σ ε ε
σ

ε

 ≥= 
<

  (32) 

( )k Vec K= , 0K , 0σ  are design constants 
satisfying *

0 || ||K k>  and 0 0σ > , * *( )k Vec K= ; 
converges to the residual set 

{
}

22
min

2*

( , ) | ( )

ˆ2 ( )

T

T T T T
d d

R k LL k

k k B B Y C C

σ ε λ ε σ

σ ε

= +

< + −

% %

%
  (33) 

Proof 
Considering the Lyapunov function (27), and 
evaluating  V&  along (14) and (32), and using the 
result of Lemma 1, it follows that 

2
ˆ2 ( ) 2
ˆ2 2 .

T T T

T T T T T
d d

T T T T T
d d d

V LL k k

k B B Y C C P

PYB B Y C C PYB k

ε ε σ

ε µε ε

ε ε σε

= − −

+ − −

+ +

%&
%   (34) 

The following inequality is easily established for 
the three last terms of above equation 

2
min 0

ˆ2 2
ˆ2 2

( ) .

T T T T T
d d

T T T T
d d d

d

P PYB B Y C C

PYB k PYB B Y C C

P PYB k C

µε ε ε ε

σε

µλ σ ε

− +

+ ≤ − −
+ − 

  (35) 

By choosing µ  sufficiently large so that the right 
hand side of the inequality (35) becomes 
negative, the following inequality is obtained. 

2
ˆ2 ( )

T T T

T T T T
d d

V LL k k

k B B Y C C

ε ε σ

ε

≤ − −

+ −

%&
%

  (36) 

Using inequality * *2 T T Tk k k k k k− ≤ − +% % % in (36), 
we have 

* *

ˆ2 ( )

.

T T T T T T
d d

T T

V LL k B B Y C C

k k k k

ε ε ε

σ σ

≤ − + −

− +

%&
% %

  (37) 

This implies that the error system (14) with the 
adaptive law (31) converges to the residual set 
(33). 
--------------------------- 
 
4.  Simulation Results 
In this section, the proposed adaptive regulation 
scheme is applied to a two-link planar rotary 
robot manipulator, shown in Figure 2. The 
control objective is to move the robot from the 
any initial condition to the vertical position 

1 2 0q q= = .  
Through the Euler-Lagrangian approach, its 
dynamic equation is derived as compact form: 

( ) ( , ) ( )D q q C q q G q τ+ + =&& &   (38) 

where, 

1 1

2 2

, ,
q

q
q

τ
τ

τ
   

= =   
     

2 2
11 1 2 1 2 2 2 1 2 2( ) ( ) 2 cos ,D q M M L M L M L L q= + + +  

2
12 21 2 2 2 1 2 2( ) ( ) cos ,D q D q M L M L L q= = +

2
22 2 2( ) ,D q M L=  

2
2 1 2 1 2 2 2

2
2 1 2 1 2

(2 )sin
( , ) ,

sin
M L L q q q q

C q q
M L L q q

 − +
=  

 

& & &&
&  

1 2 1 1 2 2 1 2

2 2 1 2

( ) sin sin( )
( ) ,

sin( )
M M L g q M L g q q

G q
M L g q q

− + − + 
=  − + 

 

 
Figure 2. Two-link planar rotary robot manipulator. 

The physical parameters of the robot manipulator 
are defined as follows: 1L = 2L =1(m), 

1M = 2M =1(kg). According to the proposed 
method we should first consider the linear 
dynamic equation (2) for the system with 
unknown parameters G  and B , and known 
observable pair ( , )C A  which is chosen by 
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designer. In this implementation, the parameters 
A  and C are selected as follows: 

0 1 0 0
1 4 0 0

0 0 0 1
0 0 1 4

A

 
 − − =
 
 − − 

, 
1 0 0 0
0 0 1 0

C  
=  

 
 

By constructing the adaptive observer (4) with the 
adaptive low (7), and selecting the matrix 0G  to 
assign the eigenvalues {-3, -4, -5, -6} to 0A G C+ , 
the estimated states x̂  will be generated for using 
in control law (12). Now we can implement the 
control law (12) with the adaptive law (31) to put 
the manipulator in the vertical position. We start 
up the proposed control scheme by choosing 
random initial conditions for the observer 
adaptive law (7) and the control adaptive law 
(31). Figure 3 shows the parameter and control 
convergence trends. As we can see in the figure, 
the estimations of the parameters and control 
gains have reached to constant values at less than 
140 seconds. The joint angles deviations are also 
shown in Figure 4. It should be noted that this 
does not mean that the estimation of the 
parameters or control gains are converged to their 
true values, because for this purpose it is needed 
that the control signal to be sufficiently reach at 
some frequencies to satisfy the persistent 
excitation condition. Beside, because of the 
nonlinearity of the system there are not any fixed 
values for the system parameters except in the 
goal position, i.e., vertical position of the 
manipulator. However, from control pint of view 
the only important subject is the convergence of 
the error signal to zero that is achieved as shown 
in the simulation results. Figure 5 shows the 
response of the robot manipulator to the proposed 
control with the initial condition 

4 41 2,q qπ π= = − . The response of the robot 
manipulator for the initial condition 

3 61 2,q qπ π= − =  is also depicted in the Figure 
6. In this case the control actions are shown in the 
Figure 7. It is obvious that the control signals or 
the manipulator joint torques have satisfactory 
deviations. For investigating the robustness of the 
proposed method against the manipulator 
parameters variations, we have made a parameter 
perturbation about 30% on the lengths and masses 
of the robot manipulator. Figure 8 shows the 
manipulator joint angles with 1L =0.7(m), 

2L =1.3(m), 1M =1.3(kg), and 2M =0.7(kg). As 
we can see in the simulation results, the control 
objective is completely met by the proposed 
control scheme, and manipulator joint angles 
converge to zero fast from any initial condition 
and have an acceptable robust performance. 
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Figure 3. Convergence trend of estimated parameters and 
control gains when the proposed control is started up with 
random initial conditions. 
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Figure 4. Joint angles deviation when the proposed control 
is started up with random initial conditions. 
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Figure 5. Joint angles deviation from initial position 
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Figure 6. Joint angles deviation from initial position 
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Figure 7. Manipulator joint torques for initial position 
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Figure 8. Joint angles deviation for 30 percent perturbation 
on robot parameters. 
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Figure 9. Manipulator joint torques for 30 percent 
perturbation on robot parameters. 

5. Conclusions 
This paper described a robust adaptive regulator 
based on designing an adaptive observer for 
general multivariable systems. As evidenced by 
fundamental theoretical results on the 
convergence of system outputs to zero, this 
framework successfully presented the utilization 
of a multivariable adaptive observer in an 
adaptive control structure to regulate the outputs 
of wide class of MIMO systems. With the 
introduction of an estimated state feedback 
control law, and an innovative adaptation laws, 
the proposed controller was able to compensate 
the nonlinearity and uncertainties in the dynamic 
model. The successful design of the adaptive 
control architecture relied on a key selection of 
the observable pair ( , )C A in adaptive observer 
design stage. Although Theorem 3 had implied 
convergence of the error signals to a residual set 
without any further assumption on the observable 
pair ( , )C A , but it should be noted that the 
inappropriate choosing of the pair ( , )C A   may 
obviously affects the convergence duration of the 
parameters estimation and control gains 
adaptation in start-up stage of control 
implementation.  

Numerical simulation was used to illustrate the 
control of a regulation task imposed on a two-
degree-of-freedom robot arm with unknown 
kinematics parameters. The results demonstrated 
desirable regulation performance and smooth 
control input even with a large percentage of 
parameter perturbation. 
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