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Abstract

In this paper, an innovative adaptive output
feedback control scheme is proposed for general
multi-input multi-output (MIMO) plants with
unknown parameters in a regulation task; such
that the outputs of the plant converge to zero as
well as the control gains remain uniformly
bounded. First an adaptive observer is designed to
estimate the state variables and system parameters
by using the inputs and outputs of the plant. Then
a linear combination of the estimated states by
adaptive control gains is used to design a robust
adaptive controller. Some theorems are given to
show the convergence of the modeling errors and
the control gains. The proposed controller is used
to control a two degree of freedom robot
manipulator such that the robot moves from any
initial configuration to zero position. Simulation
results exhibit the effectiveness of the proposed
scheme to control the robot manipulator with
different initial conditions and parameter
perturbations.

Keywords: Adaptive observer; robust adaptive
control; multivariable control; robot manipulator
control;

1. Introduction

The extenson of single-input single-output
adaptive control agorithms to multivariable
systems has been considered by several authors
[4, 11, 17, 19]. Anindirect adaptive interval type-
2 fuzzy controller by using fuzzy descriptions to
model the plant is proposed in [11] to handle the
training data corrupted by noise or rule
uncertainties. State feedback output tracking
design for MIMO systems, using a less restrictive
matching condition is employed in [18] and a
simple controller structure is offered. High-
frequency gain matrix decompositions, commonly
used with output tracking designs, are presented
in [7]. In [16], the design of adaptive controller
for autonomous and non-autonomous control of a
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nonlinear system using delta models is described
based on a matrix approach and polynomial
theory. An output-feedback adaptive dynamic
surface control scheme is proposed for linear
time-invariant multivariable plants based on the
norm estimation of unknown parameter matrices
in [21]. Later attempts were about various
modifications such as ¢- modification [6], e,
modification [14] for robust adaptive control
strategy. Since adaptive control is an appropriate
method to control the plats where involving
different sent points, different operating points,
and parameter variations, a two degree of
freedom robot manipulator is chosen to
demongtrate the effectiveness of the proposed
method in this paper.

The simplest adaptive approach is gain
scheduling, where the control parameters are set
with respect to the selected work space region and
load condition. The main disadvantage of such
approach is a time-consuming determination of
the adequate work space schedule for the
complete work space range. Direct model
reference adaptive methods do not show these
disadvantages; their design and the design of the
belonging adaptation mechanism is based on
assuring the stability of a complete adaptive
system. Because of inherent nature of the moving
paths and loads, the operating points of a robot
manipulator will be varied as a nonlinear manner
during a moving cycle. Therefore, various
schemes based on adaptive control theory have
been proposed to deal with large parameter
variations, such as inverse dynamics control [2,
20], diding mode control [12, 22], Fuzzy logic
theory [1, 10, 13] and robust adaptive control [3,
5]. The main objective of these control strategies
isto extend the margins of the regions of stability
and therefore to satisfy the increasingly complex
control requirements in robot manipulators. From
a control strategy point of view, the extension of
single-input, single-output robust adaptive control
algorithms to multivariable and large-scae
systems has been considered by several authors
[4, 19]. In [9] an adaptive robust output-feedback
control strategy has been proposed for
multivariable systems and it is used in multi-area
power system in [8].

In this paper we introduce an adaptive control
scheme based on an adaptive observer to estimate
the set of state variables and parameters of a
general MIMO plant. The main objective of
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proposed control is to regulate the outputs of the
plant. A linear combination of the estimated
states with adjustable gains is fed back as a stable
robust adaptive control signal such that the
outputs of the plant asymptotically converge to
zero.

The remainder of this paper is organized as
follows. A full description of the problem
statement is presented in Section 2. Section 3
presents the proposed adaptive control structure
consist of adaptive observer and adaptive
controller. Simulation results are demonstrated in
Section 4. Findly, the conclusions are given in
Section 5.

2. Problem Statement

Consider the MIMO plant under consideration
with the following state space form,

X, = A%, +Bu, )
y=C,X,,

where x,T R", ul R® and yI R"™ are the state
vector, control input vector and output vector,
respectively. The matrices A,T R"", BT R"?
and C,T R™"with unknown elements describe
the dynamics of the plant. Here without loss of
generality, we consider g=m, and assume that
the pair (A,,B,)is controllable, and the pair
(C,,A,) is observable. Since the plant is

assumed to be completely observable, it can be
transformed to:

k=(A+GC)x+Bu,

y=Cx, )

where, A, B, and C are constant matrices with
appropriate dimensions, (A,B) is controllable,

and (C, A) isan arbitrary known observable pair,

such as observable canonical form. Now, the on-
line parameter identification problem is to
estimate the unknown matrices B and G from the
input and output data and to generate also X as
estimation of x. The main objective is to design a
robust adaptive output feedback control for the
plant (2) such that the outputs of the plant, vy,
converge to zero. The first part of the proposed
control strategy is to construct an adaptive
observer, which estimates the state vector X and
system parameters ( B and G ) from input and
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output data. This is discussed in the following
section.

Considering the plant (2), the first stage in
developing the proper controller is aimed at
constructing an adaptive observer so that the
unknown matrices B and G, as well as the state
vector x are estimated asymptotically. Knowing
that (C, A)is observable, we may find an n" m
matrix G, so that the A+G,C is asymptotically
stable. Thisleads to rewrite (2) as:

k=(A+G,C)x+(G- G,)Cx+Bu, 3
y =Cx.

An adaptive observer can then be introduced as.

&= (A+G,C)%+(G- G,)y+Bu+v, @
y=CX,

where X is the estimate of the states, G and B
are the estimates of the parameters B and G
respectively and v isan auxiliary signal that must
be chosen so that the stability of the estimation is
ensured.

3. Observer and Controller Adaptive Laws
This section, at first introduces an adaptive law
for the adaptive observer (4), and then
proposes the control law with its appropriate
adaptive law, as depicted in Figure 1.

Plant

Y

Parameter
Adjustment

AA

Figure 1. Proposed adaptive control structure.

From (3) and (4), the state estimation error
equation is described by
é=(A+G,C)e+(G- G)y+(B- B)u+v,

6 =Ce, ©®)
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where e=X-x, and g:=y-y. Denote,
] =G- G,y =B- B, andrewrite (5) as:

. 1éuu
é=(A+G,Cle+ly j |a gtV
ety Tl ()

e =Ce,
It can be shown that the given error equation (6),
together with the adaptive law [8],

f=-X"C"(y-y), (7)

and the auxiliary signal v= X{ results in the
uniform stability and lim,,, g =0 aswell, where

I =Vec([B,G]) . The Vec(M) , denotes the vector

formed by stacking the columns of M into one
long vector, and the matrix X consists of m

matrices X :R* ® R"" as:
X =[Xy, X, Xon]
X = (A+G,C) X, + 1y,
Xism = (A+GC) X + 1y,

(8)

1i :11-~-1m1

and | is an identity matrix of size n. If, in
addition, u; is persistently exciting with sufficient
number of frequencies [15], it can be aso shown
that j , y, and therefore e tends to zero
asymptotically.

The next stage of the proposed controller consists
of designing a robust adaptive output feedback
control so that the outputs, y, converge to zero
asymptotically. The following control law is
proposed to meet this control objective.
u=K’X, 9)
where KT R™" is the feedback gain, and Xis
the estimated state vector which is constructed
from the adaptive observer (4). By adding and
subtracting the term BK x, in the plant equation
(2), and using the control law (9), we obtain

k=(A+GC+BK")x+BK’e. (10)

Hence, if K' is chosen to satisfy the algebraic
equation

A+GC+BK = A,, (11)

where, A, T R"" is a desired stable matrix, then
by knowing that e® O exponentialy fast, we can
conclude that the transfer matrix of the closed-
loop plant is the same as that of the reference
model x® 0 exponentialy. We should note that
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in general, no K may exist to satisfy the
matching condition (11) for the given matrices A,
B, G, C, A,, indicating that the control law (9)
may not have enough structural flexibility to meet
the control objective. But if the structure of those
matrices are known, then A, may be designed so

that (11) has a solution for K'. By this
assumption, we can propose the control law

u=K(x, (12)

where K (t) isthe estimate of K", to be generated
by an appropriate adaptive law.

By adding and subtracting the term, BK ein the
plant equation (2), using control law (12), and
matching condition (11), we obtain

%= A x+BKX+BK'e,

= (13)

where K=K - K'is the controller parameter
error.

It can be shown that, the error equation (13) and
the following error system have the same outputs
ast® 0,[9].

Theorem 1
The matrices DT R"™, and Y:R*® R"", can
be determined so that the system equation (13)
follows asymptotically the error system

é=Ae+DCYB,K- YB |
e, =Ce,

(14)

where, K=Vec(K), B, =1,AB, and A denotes
the Kronecker product, and the matrix Y consist
of nmatrices Y, : R* ® R"" such that:

¥=AY+14 i=L..n, (15)
Y =[Y,Y,,L,Y,].

Proof

The following lemmais first stated.
Lemmal[15]
Let Z(s)be a matrix of rational functions such

that Z(¥)=0 and Z(s) has poles only in
Re[s] <-m, (m>0). Let (C, A B) beaminimal
redlization of Z(s). Then, Z(s) is Strictly
Positive Real (SPR) if and only if there exist a

symmetric positive-definite matrix P and a matrix
L such that:
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AP+PA=-LL" - 2nP=-Q,
(16)
PB=C".

Now we may proceed the proof of the theorem 1.
The equation (13) can be rewritten as:

= Ax+BK'e+qj %, (17)
i=1
where, j; ‘s are the column vectors of matrix

j =BK,and X ‘sareelementsof X. Using (15)

into (17) we can obtain

K= A+ BK e+ A {00 )= A - i} (19)
i=1

Since (C, A,)is observable, there exists a matrix

D so that A, +DC is asymptoticaly stable and

we may choose D so that the system (C, A,,,D)is
SPR. By defining

h = BK*e+;‘3_”1{%(Yij )- (A, +DO)Y] )} . (19)

Equation (18) will be reduced to

%= A x+h +DCYB,K- YB,&. (20)

Now, we introduce the Lyapunov function
V =xPx; for the system

® = (A, +DC)X +1, , (21)

where, x; =Yj; and P is the positive definite
symmetric matrix obtained from Lemma 1.
Evaluating the time derivative of V aong the
trajectory of the system (21), and using Lemma 1,
imply that
\ﬁ =- XiT I_LTXI

(22)

+2(XITPr| - rTXITLXI +XITCTCX|) .

Now m is chosen sufficiently large such that
(' Pr;- mx'Lx, +x'C"Cx;) <0,

then ' becomes negative; this implies the
boundedness of r;. Substituting r, from (21)
into (19), we obtain

(23)

h=BK'e+qr, .

i=1

(24)

Knowing that, e=X- xis the state estimation
error of the adaptive observer, (5), where its
boundedness is established, concludes that h is
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bounded. Define g:=x- e, and subtracting (14)
from (20), imply

¢=Ag+h.

Since A, is a stable matrix, according to the
input-output stability theoremg[15], boundedness
of h results in the convergence of Cg to zero

asymptotically. In other words y tends to e, as
t® ¥.

(25)

Now we may use the next theorem to obtain the
adaptive laws.

Theorem 2

The origin of the eror system (14) and the
following adaptive law
k=-BY'Ce, , (26)

isuniformly stablein the large.

Proof
Considering the following Lyapunov function

V=e"Pe+K'K, (27)

and evaluating ' along (14) and (26), and using
the result of Lemma 1, it follows that

V=-e"LLl'e- 2" (mP- PYB,B]Y'C'C)e . (28)

Obviously choosing m sufficiently large such that
nmP- PYB,B]Y'C'C >0, result in W<0,and

therefore uniformly stability of the origin of (14)
and (26).

Since e, tends to y asymptotically, the adaptive
law

k=_BY'Cy, (29)

can be practically used to stabilize the origin of
the system (13). The only remaining problem is
that the matrix B, is unknown, and therefore the
adaptive law (29) is not applicable. To solve this
problem, we can use the estimate of B, ,i.e., B,
as

B,=1,AB. (30)

However, such substitution may make some
errors in the convergence of the overall system.
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To avoid that, a robust adaptive law is proposed
as following theorem.

Theorem 3

The error system (14) with the adaptive law

f=_BY'Cle-sk, (31)

where,

g iselel i el ko -
10 it lel <k,

k=Vec(K), K,,s, ae design constants

satisfying K, >||k || and s,>0, k" =Vec(K");
converges to the residual set

R =Bl s 4
, A (33)
<s [k +2%" (8, - BY"CTCe}

Proof

Considering the Lyapunov function (27), and
evaluating M aong (14) and (32), and using the
result of Lemma 1, it follows that

V=-eTLl'e- K"k
+2K"(B, - B,)"Y'C"Ce- 2ne"Pe
+2e"PYB,B,"Y'CCe + 2se"PYB,k .

(34)

The following inequality is easily established for
the three last terms of above equation

- 2me"Pe + 2¢"PYB,B,"Y'C"Ce
+25e"PYB,E - 2§ |PYB,B,"Y'C'C| (35)
+1M 1 (P) - 5o [PYBAK]IC] Yel” -

By choosing m sufficiently large so that the right

hand side of the inequality (35) becomes

negative, the following inequality is obtained.
VE-eTLle- 25 Kk

0 - (36)
+2K" (B - By)'Y'C'Ce

Using inequaity -2K'k£-K'K+KkTK in (36),
we have
ME-e"Ll"e+2K"(B, - B,)"Y'C'Ce

37
-sKK+skTK' . 47
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This implies that the error system (14) with the
adaptive law (31) converges to the residual set
(33).

4. Simulation Results

In this section, the proposed adaptive regulation
scheme is applied to a two-link planar rotary
robot manipulator, shown in Figure 2. The
control objective is to move the robot from the
any initial condition to the vertical position

G =0 =0.

Through the Euler-Lagrangian approach, its
dynamic equation is derived as compact form:
D(a)é+C(d,0) +G(a) =t (38)

where,

Di1(q) = (M +M,) L2 + M, L5 +2M,L,L, cosa,,
Dy,(0) = D, (0) = M,L5 + M, L L, cosqy,
D,,(q) = M,L3,

C(d,9) :g' le—ll—z(z@adi f&g)squg’

é M,L,L,é sing, a
?(M1+M2)Ligsmoa' MszgSin(Ch"'CIz)l\;l

G(q) = : ,
g 'le-zgsm(oa"'%) H
y A /,// M ,
// - q2
M
g
ql I—1
X
o >

Figure 2. Two-link planar rotary robot manipulator.

The physical parameters of the robot manipulator
ae defined as follows: L =L,=1(m),
M,=M,=1(kg). According to the proposed
method we should first consider the linear
dynamic equation (2) for the system with
unknown parameters G and B, and known
observable pair (C,A) which is chosen by
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designer. In this implementation, the parameters
A and C are selected asfollows:

60 1 0 04
é ¥ , \
60 0 0 10~ ® 0 1 of
g0 0 -1 -4§

By constructing the adaptive observer (4) with the
adaptive low (7), and selecting the matrix G, to
assign the eigenvalues { -3, -4, -5, -6} to A+G,C,
the estimated states X will be generated for using
in control law (12). Now we can implement the
control law (12) with the adaptive law (31) to put
the manipulator in the vertical position. We start
up the proposed control scheme by choosing
random initial conditions for the observer
adaptive law (7) and the control adaptive law
(31). Figure 3 shows the parameter and control
convergence trends. As we can see in the figure,
the estimations of the parameters and control
gains have reached to constant values at less than
140 seconds. The joint angles deviations are also
shown in Figure 4. It should be noted that this
does not mean that the estimation of the
parameters or control gains are converged to their
true values, because for this purpose it is needed
that the control signal to be sufficiently reach at
some frequencies to satisfy the persistent
excitation condition. Beside, because of the
nonlinearity of the system there are not any fixed
values for the system parameters except in the
goal position, i.e, vertical position of the
manipulator. However, from control pint of view
the only important subject is the convergence of
the error signal to zero that is achieved as shown
in the simulation results. Figure 5 shows the
response of the robot manipulator to the proposed

control with the initial condition
=%, =-% . The response of the robot
manipulator ~ for  the initial  condition

0, =-"%4, 0, =0 isaso depicted in the Figure
6. In this case the control actions are shown in the
Figure 7. It is obvious that the control signals or
the manipulator joint torques have satisfactory
deviations. For investigating the robustness of the
proposed method against the manipulator
parameters variations, we have made a parameter
perturbation about 30% on the lengths and masses
of the robot manipulator. Figure 8 shows the
manipulator joint angles with L =0.7(m),
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L,=1.3(m), M,;=1.3(kg), and M,=0.7(kg). As
we can see in the simulation results, the control
objective is completely met by the proposed
control scheme, and manipulator joint angles
converge to zero fast from any initial condition
and have an acceptable robust performance.

5 ‘ ‘ 5

?

/
I
é

'
(&)]
T

KR
o

Parameter estimations

150

Time(s)

Figure 3. Convergence trend of estimated parameters and
control gains when the proposed control is started up with
random initial conditions.
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Figure 4. Joint angles deviation when the proposed control
is started up with random initial conditions.
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Figure 5. Joint angles deviation from initial position
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40

: ql
20 ~\ a2 |
N N
> ,i; \
S oliihf
E ' \ ..... ~f'
2
8 20
-40 H¥
-60
0 2 4 6 8 10
Time(s)
Figure 6. Joint angles deviation from initial position
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Figure 7. Manipulator joint torques for initial position
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Figure 8. Joint angles deviation for 30 percent perturbation
on robot parameters.
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Figure 9. Manipulator joint torques for 30 percent
perturbation on robot parameters.

5. Conclusions

This paper described a robust adaptive regulator
based on designing an adaptive observer for
general multivariable systems. As evidenced by
fundamental  theoretica  results on the
convergence of system outputs to zero, this
framework successfully presented the utilization
of a multivariable adaptive observer in an
adaptive control structure to regulate the outputs
of wide class of MIMO systems. With the
introduction of an estimated state feedback
control law, and an innovative adaptation laws,
the proposed controller was able to compensate
the nonlinearity and uncertainties in the dynamic
model. The successful design of the adaptive
control architecture relied on a key selection of
the observable pair (C, A)in adaptive observer

design stage. Although Theorem 3 had implied
convergence of the error signals to a residual set
without any further assumption on the observable
pair (C,A), but it should be noted that the
inappropriate choosing of the pair (C,A) may
obviously affects the convergence duration of the
parameters estimation and control  gains
adaptation in start-up stage of  control
implementation.

Numerical simulation was used to illustrate the
control of a regulation task imposed on a two-
degree-of-freedom robot arm with unknown
kinematics parameters. The results demonstrated
desirable regulation performance and smooth
control input even with a large percentage of
parameter perturbation.
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