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Robust finite time stabilization for uncertain
switched delay systems with average dwell time

Elahe Moradi*, Mohammad Reza Jahed-Motlagh®* and Mojtaba Barkhordari Yazdi®

Abstract— This paper investigates the robust finite time
stability and finite time stabilization for a class of uncertain
switched systems which have time delay. The emphasis of
the paper is on the cases where uncertainties are time
varying and unknown but norm bounded. By using the
average dwell time approach and multiple Lyapunov like
functions, delay dependent sufficient conditions for finite
time stability of uncertain switched systems with time delay
in terms of a set of the linear matrix inequalities are
presented. Then, the corresponding conditions are obtained
for finite time stabilization of uncertain switched time delay
systems via a state feedback controller. The controller is
designed by virtue of the linear matrix inequalities and the
cone complement linearization method. We solved the
problem of uncertainty in uncertain switched time delay
systems by resorting to Yakubovich lemma. Finally,
numerical examples are provided to verify the effectiveness
of the proposed theorem.

Index Terms—: Uncertain switched time delay systems; Multiple
Lyapunov-like functions; Finite time stabilization; Average dwell
time; Cone complement linearization method.

. INTRODUCTION

Most of the existing researches related to stability and
stabilization of systems have studied Lyapunov
asymptotic stability analysis, which is defined over an infinite
time interval [1-10]. There are some cases that are concerned
about the dynamical behavior of a system over a finite interval
of time, such as network congestion control [11], network
control systems [12-13] and switched systems [14]. It should be
noted that finite-time stability and Lyapunov asymptotic
stability are different concepts and they are independent of each
other: a system may be finite time stable but not Lyapunov
asymptotic stable and vice versa. A system is finite-time stable
(FTS) if the system states retain certain prescribed bounds in
the fixed time interval under bounded initial conditions [15-16].
Switched systems are a class of hybrid systems which consist
of a finite number of subsystems and a switching signal
controlling at any time instant that subsystem is active[17]. In
the last decades, switched systems have received extensive
attention for their practical applications and importance in
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theory development [18] such as power electronics [19],
network communication [20] and chemical processing [21]. In
the mentioned applications, delay plays an important role in the
switched systems and therefor it is not avoidable in control
design.

Time delays exist in many physical processes which may
degrade system performance, cause oscillation and even
instability [22]. For switched systems , due to the interaction
among continuous dynamics, discrete switching and time delay,
the problem of switched time-delay systems (STDS) is more
complex than switched systems without time-delay and time
delay systems that are without switching [23]. So far, Lyapunov
asymptotic stability analysis for STDS [24-28] and finite time
stability for non-switched systems [12-13, 15-16, 29-32] have
been investigated by many researchers.

For stability analysis of STDS under arbitrary switching,
usually the common Lyapunov function (CLF) is used, but this
approach is conservative and it is often difficult to find the CLF
for all subsystems. The multiple lyapunov functions (MLF) and
the average dwell time (ADT) approach have been suggested as
effective tools for reducing conservatism in stability STDS. In
order to analyze and synthesis the problem of FTS, often the
multiple Lyapunov-like functions are employed. The
advantages of multiple Lyapunov-like functions are in their
flexibility, because different Lyapunov-like functions can be
constructed for various subsystems.

Parameter uncertainty is often met in various practical and
technical systems that make it difficult to extend an accurate
mathematical model. It has been shown that uncertainty is the
source of instability and often causes undesirable performance
of control systems [28], Therefore, robust finite time stability
of uncertain switched systems is important in theory and
application.

However, compared with numerous researches on Lyapunov
stability of STDS [24-28], few results on finite-time stability of
STDS [33-39] have been studied in the previous literature. In
[33], finite-time stability, finite time boundedness and finite
time weighted L,-gain for a class of switched systems with
sector-bounded nonlinearity and constant time delay have been
investigated. The finite-time H., control problem for a class of
discrete-time switched nonlinear systems with time-delay is
discussed based on the average dwell time approach in [34].
The problem of finite time control of linear stochastic switched
systems with constant time delay are presented in [35]. The
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authors of [36] investigated finite-time control for a class of
switched delay systems via dynamic output feedback. Finite-
time stabilization (FTSz) under asynchronous switching is dealt
with a class of switched time-delay systems with nonlinear
disturbances via the differential mean value theorem in [37]. In
[38], the problem of finite time boundedness for switched linear
systems with time-varying delay and external disturbance was
discussed based on the Jensen inequality approach and the
average dwell time method. Sufficient conditions were obtained
in [39] for finite-time filtering of switched linear systems with
a mode-dependent ADT by introducing a newly augmented
Lyapunov-Krasovskii and considering the relationship between
time-varying delays and their upper delay bounds. Up to now,
to the best of our knowledge, the issue of finite time stability
and finite time stabilization for STDS with uncertainties has
received little attention in the previous research. However, in
practical engineering, switched systems are commonly
subjected to time delay and uncertainties. Moreover, some
practical systems are just required that their state trajectories are
bounded over a fixed interval. Considering the wide application
of switched time delay systems with uncertainties and the
requirements for transient behaviors in engineering fields, it is
a significant task to investigate finite time stability and
stabilization for switched systems with time delay and
uncertainties.

In this paper, we consider the problems of FTS and FTSz of
linear switched system with time delay and uncertainty. Based
on the multiple Lyapunov-like function and average dwell time,
sufficient conditions are proposed to guarantee FTS and FTSz.
The state feedback controller design problem is solved by using
the cone complement linearization (CCL) algorithm.

The remainder of the paper is organized as follows. In section
2, Problem formulation, Definitions and some necessary
lemmas are given. In section 3, based on the average dwell time
method and multiple Lyapunov-like functions, some new
delay-dependent conditions guaranteeing finite-time stability
and stabilization of the uncertain switched time-delay system
(USTDS) are developed. In Section 4, numerical examples are
given to show the validity of the obtained results. Concluding
remarks are given in Section 5.

Notations: The notations used in this paper are standard. The
symbol ‘*’ denotes the elements below the main diagonal of a
symmetric matrix. The superscript ‘7” stands for matrix
transposition. R" indicates the n-dimensional Euclidean space. |
and 0 signify the identity matrix and a zero matrix. The notation
X > 0 means that X is real symmetric and positive definite.
diag {... }denotes for a block-diagonal matrix. The notation
‘sup’ means the supremum. A,,;,, (P)and A,,.,(P) stand the
minimum and maximum eigenvalues of matrix P, respectively.

2. Preliminaries and Problem formulation

Consider the USTDS as follows

x(t) = Ayyx () + Agoyx(t — d) + Byyu(®x(t) =
Where x(t) € R™ is the state vector, u(t) € R™ is the control
input, ¢(t) is a continuous vector-valued initial function
on[—d, 0], d > 0 is the constant time delay. o(t): [0, ) —

L ={1,2, ..., N} is a switching signal which is right continuous
and piecewise constant and N is the number of subsystems.
Corresponding to the switching signal o(t), the switching
sequence as follows

{(ig, to), (iy, 1), woor (pr tre), s lig € Lk = 0,1, ... 3
Where t, is the initial time, the i,th subsystem is activated
when t € [ty, tyrr)-
For each i € L, A;,A,;, B; are uncertain real-valued matrices
with appropriate dimensions. We assume that the uncertainties
are norm bounded as follows

Ai = Ai + AAl', Adi = Adi + AAdL'I Bi = Bi + ABL (2)

[AA; AAg AB;] = M;F;(t)[N; Ng Npl (3)

Where A;, Ay, Bi, M;, N;, Ng; and Ng; are known real-valued
constant matrices with appropriate dimensions. F;(t) is
unknown and possibly time varying matrix satisfying

FI(®F @) <1 (4)

Definition 1 [40]. For anyT >t > 0, let N, (¢, T) indicate the
switching number of a(t) over(¢t,T). If N,(¢t,T) < N, + ?

holds for 7, > 0 and an integer N, = 0, then ¢, is called an
average dwell time and N, is called the chattering bound. For
the sake of convenience and following the common practice in
the literature, we consider N, = 0.

Definition 2 [41]. Switched system (1) with u(t) = 0 is said
to be finite time stable with respect to (cq,c;, Ty, R, 0 (t)),
where 0 < ¢; < ¢,, Ty isatime constant, R is a positive definite
matrix and o (t) is a switching signal, if

sup {x"(O)Rx(0)} < c; = xT(ORx(t) <c, Vte€ (0,Tf] (5)
—d=<6<0
Remark 1. Switched system (1) with u(t) = 0 is said to be

uniformly finite time stable with respect to (cy, ¢, Ty, R), if
condition (5) holds for any switching signal. The meaning of
‘uniformly’ is with respect to the switching signal, rather than
the time [42].

Lemma 1( Schur complement [43]). Let G, S and R be given
matrices such that R > 0. Then

G(x)
ST(x)

5(x) ()T
“R(0) <0 ©SERTX)ST)+G6(x) <0 (6)
Lemma 2 ( Yakubovich Lemma [44]). Let my(x) and 7, (x) be
two quadratic matrix functions on R™, and m;(x) < 0 for all
x(t) € R™ —{0}. Then my(x) < 0 holds for all x(t) € R* —
{0} if and only if there exist the constant € > 0 such that

mo(x) —emy(x) <0, Vx(t) € R™—{0} )

3. Main results

In this section, the problem of finite time stability for STDS
with uncertainties is investigated and then robust finite time
stabilization analysis of the USTDS via state feedback is
studied.
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3. Finite time stability analysis
Consider the USTDS without the control input. In this
subsection, sufficient conditions which guarantee finite time
stability of system (1) are given.

Theorem 1. Consider uncertain switched system (1) with
u(t) = 0. If for each i €L, there exist positive definite
symmetric matrices P;,Q; with appropriate dimensions and
positive scalars @, A,,4,,15, u = 1 such that

®i1n PAy N0 PM; PM;
* —e®Q;, 0 NI 0 0

| * * -1 0 0 0 | <0 (8)
* * L | 0 0

| * * * * -1 0 |

l * * * * * —1 J
(A, + de®@13)c; < Ayce™TF 9)

Then, under the following average dwell time

Tanu
ln(llcze_an)—ln [(Az+de®@A3)cq]

Ty > 15 = (112)

The USTDS is finite
to(cy, ¢, Tr, R, 0 (t)), where
@ig1 = AP+ PA; — aP 4+ Q;

~ . _1 _1
A= g}g}(’lmin(Pi)) = g}gﬁ(’lmin(R 2PR 2))

time stable with respect

~ S
Ay = r\};}gi((/lmax(Pi)) = rg}gi((lmax(R 2PR 2))

= 11
Az = g}gg(lmax(Qi)) = g}gg(lmax(R 2Q;R 2))
Proof. Choose a Lyapunov-like function as follows
V(t) = Vg (0)
The form of each V;(x) (Vi € L) is given by

V(@) = Vy(8) + Vi (1) (12)
Where
Vii(8) = xT(OPx(E), Vo) = f %7 ()9 Qix(s) ds (13)

Taking the derivative of V(t) with respect to t along the
trajectory of the unforced switched system (1) yields

Vi (0)=x" (£) (AT P, + PA)x(t) +

xT(t) (MF;(t)N) Px(t) + xT ()P;(M;F;(t)N;)x(t)

+xT(t — )AL, Pix(t) + xT ()P Ag; x(t — d) + xT(t —
d)(MF;(t)Ng)" Pix (t) + x" () Py(M;F;(t)Ng;) x(t — d) (14)

Voi () = aVpi(8) + xT(O)Qux(t) —x"(t — d)e®Qix(t —d) (15
Then, It follows from (14) and (15) that

V(x(®) = av(x(®) = T (0)AL(t) (16)

Where
W =K"®) «"t-d) P{GEt) Pi@t)] and
Pi(i,t) = F(O)N;x(8),

Y,(i,t) = Fi(t)Ngix(t — d) (17)
9i1n Pl PM; PM;
d
A= r e 00 (18)
* * 0 0
* * * 0

Also, If we prove that A; < 0, then we can indicate the USTDS
is finite time stable in the following. Because of the existence
of zero on the main diagonal matrix A; , we cannot simply
conclude that A; < 0. We apply Lemma 2 to solve this problem
which is caused by uncertainties. Using (4) and (17), we obtain

Y1 (@O 1) = xT(@ON]F (OF;(£)N;x (t) < xT(ON]N; x(t)
YL DY, (0, 1) = xT(t — dA)NGF (¢)F;()Ngix(t — d) <

xT(t = d)NJNg; x(t — d) (19)
According to Lemma 2, if
“V(x®) —aV(x(®) = ET@®)AE(E) <E (20)

Where

E= 10001 — x"(ONN; x(1) +
(YT OP, (1, ) —xT(t — AN Ny x(t — d)) (21)

Then, we will prove that system (1) is finite time stable.
Therefor (20) is rewritten such that

V(x() —aV(x(®))-E<0 (22)
Now, using Lemma 2, we have
Tyle=g = E<0 (23)

Then o (x) = V(x(t)) — aV(x(t)) < 0 holds if and only if
mo(x) —em(x) <0 (24)

So, we find that (24) is equivalent to (22). Writing (22) in the
matrix form, we have

Hy;  Hy,
[ * sz] <0 (25
Where
H Pi11 +NL Nl PiAdi ]
11— ad T ’
* —e®Q; + Ng;Ny;

O O

According to the Lemma 1, (25) is equivalent to
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¢in1 PAy N0 PM; PM;
* —e“in 0 N;"l- 0 0
* * -0 0 0 1<0 (26)
| * * * -1 0 0 l
| * * * * -1 0 |
l * * * * * —IJ

So, we have
V(x(t)) — aV(x(t)) <0 27)

According to (10) and (12), at the switching moment t,, we
will have
V() < uV(te™) (28)

So from (27) and (28) for t € [ty, tx4+1) and using the iterative
method

V(t) < eIV (L) < pe® =ty (t,7) < pe® eIy (t, ) < - <
ea(:—o)”NU(o,:)V(O) < equHNU(O,Tf)V(O) (29)

From definition 1, we know N, (0, T;) < :—f , this leads to
T a
s

V(t) < e*futav(0) (30)
Then
V() = xT(©)Pix () = Ain(P:)xT (ORx(L) =
LxT (E)Rx(t) (31)
On the other hand
V(0) < Amax(P)x" (0)Rx(0)
+de ™ Amax(Q) sup {x"(0)Rx(6)} <
—d<6<0
(A, + de®@23) sup {xT(O)Rx(6)} (32)
—d<6<0
Putting together (30)-(32) leads to
xT(ORx() < 52 < ean”z WO o Gprdehole Ty (33)

From (9), it follows that in(1,c,) — aT; — In[(4, + de® ;5 )c;] > 0

By virtue of (11), we will have

Tr o ln(llcze_an)—ln[(22+de“d/13)c1] (34)

Ta inu
Substituting (34) into (33) leads to
xT(O)Rx(t) < c, (35)
According to Definition 2, we know that system (1) with u(t)=0
is finite time stable with respect to (¢, c,, T¢, R, 0(t)). The
proof is completed at this point.
Remark 2. Parameter u in Theorem 1 can be selected as u =
1. In this case, we will have 7, > 7; = 0 which denotes that

the switching signal o can be arbitrary. It can be obtained from
(10) that

PP<P, Q=<0Q;, Vij€L (36)
It is possible to consider (36) in the form of (37):
Pp=P =P, Q;=0Q =0 (37)

This shows that a common Lyapunov-like function is needed
for all subsystems such as

V(t) = Vi(t) + Va(t),
Vi) = x"(©)Px(t),
Va(®) = %" ()Qe ™t )x(s) (38)
Corollary 1. If there exist positive definite symmetric
matrices P,Q with appropriate dimensions and positive
scalar @, such that

11 PAg NiT 0 PM; PM;

[ * —eadQ 0 Ngi 0 0 ]
* £ -1 0 0 0lo (g
* * * -1 0 0

[ * * * * —] 0
* * * * * -1

(Amax (P) + de® A (Q))c1 < Codmin (P)e™""7(40)

Then the unforced switched system (1) is uniformly finite time
stable with respect to (cy, ¢, Ty, R), Where
@11 = ATP + PA; — aP +Q,
1 1 1 1
P=R2PR2,0 =R 2QRz.

Proof. Choose a common Lyapunov-like function as (38). The
proof procedure is similar to that of Theorem (1), hence it is
omitted.

The following theorem studies sufficient conditions for finite
time stabilization of the USTDS (1) with state feedback
controller.

3.2 Finite time stabilization analysis

Consider system (1), under the controller u(t) = Ky)x(t),t €

(O,Tf), the corresponding closed-loop system is given as
follows

x(t) = (Aa(t) + Ba(t)Ka(t))x(t) + Ada(t)x(t - d)
x(t) = (), te[-d,0] (41)
Theorem 2. Consider uncertain switched system (41). If for
each i € L, there exist positive definite symmetric matrices
X;,Y; and matrix Z; with appropriate dimensions and positive
scalar &, pu = 1 such that

[Ain AaXe XNJ 0 ZINg M M M
* —ey, 0 XNL 0 0 0 0
* * =1 0 0 0 0 0
x * * -1 0 0 0 0]l<o42)
* * * * -1 0 0 0
* * * * —I 0 0
* * * * * * —1 0
* * * * * * >; —J4
1 de®d cpe BF
I:/lmin()zi) + Amin(xi?i_l)zi) Cl < Amax()?i) (43)
Xi<suX, XTWXT'<pXT'XTU,VijeL (44)
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Then, under the controller u(t) = K,)x(t) and the following

average dwell time
Tanu

Ty > Th = Toad (45)

n cge” [ —In[(—=
Amax(Xp) Anin®D " Apin X ¥71X)

)c]

The corresponding closed-loop systems is finite time stable
with respect to (¢, ¢;, T, R, o(t)), where

Ai,11 = X,'A'Lr + AiXi - a’XL- + Yl + BiZi + Z,'TBLT, Xi =
1 1 1 1
R3X,Rz, ¥, = RaY;Rz

Moreover, the state feedback controller gain is given by K; =
ZX7t.

Proof. Choose a Lyapunov-like function as Theorem 1.
Taking the derivative of V(t) with respect to t along the
trajectory of the USTDS (1) yields

V(x()) — aV(x(@®) = xT(®)(ATP, + PA; — aP; + Q;
+ PiBiKi + KLTB;TP,_)X(t)
+x7(t) (MF;(t)N)" Pix(t)
+ xT ()P, (MF;(t)N)x(t)
+ xT () [(MF;(t)Np; K;)" P;
+ P;(M;F;(t)Np;K;)]x(t)
+xT(t — )AL, Pix(t) + xT ()P Ag; x(t — d)
+x"(t — d)(M;F;()Ng;) " Pix(t)
+xT () Pi(MF;(£)Ng;) x(t — d)

+xT(t — d)e*Q;x(t — d) (46)
Then, (46) is rewritten as the following linear inequality
V(x(®) = av(x(®) = £ ()A(t) (47)

Where

f_Tgf) =) x"(t-a) PiGt) YIGEt) i@l
an

Y1 (i, t) = Fi(O)N;x(¢),

Yo (i, t) = Fi(t)Ngx(t — d),

PY3(i,t) = [Fi(£)Np; K;]x(¢) (48)
[Pinr Pl PiM; PM;  PiM;)
B *  —e%Q; 0 0 0
A= « * 0 0 0 (49)
* * 0 0
l * * * * 0 J

@ir1 = AP+ P,A; — aP; + Q; + P,B;K; + K/ B[ P;

Now, If we prove that A;< 0, then we can show the USTDS is
finite time stabilization in the following.. Using (4) and (48),
we obtain

Y1 (@ OP (6 1) = xT@ON]FT (O F()N;x(t) <
xT (NI N; x(¢)

Y7 (6 P, (1, 1) = xT(t — NG F () F;(£)Ngix(t —d) <
xT(t —d)NgiNg; x(t —d) Y5, Ps(i t) =
xT(OKINEFF (O F;(t)Ng Kix(t) < xT(t)KI NI Ng; K; x(t)  (50)

Like the proof of Theorem 1 (20)-(24), according to Lemmaz2,
we have

1212

H
[ 1 ] <0 (51)
* Hy,
Where
g [Pt N{'N; + K{ Nj;NpK; PiAg;
) PM; PM *PM et Naad]
o — i i i
., = [ 0 0 0 ]
-1 o0 o0
le = * _I 0
[ * L |
According to the Lemma 1, (51) is equivalent to
[@i11 PAa N 0 KINE PM; PM; PM;]
x  —e"Q, 0 NI 0 0 0 0
* * -1 0 0 0 0 0
* * x =] 0 0 0 0 1<0(52)
* * * * -1 0 0 0
* * * * * * * -]

Using diag {P;*, P7,1,1,1,1,1,1} to pre and post-multiply the
left term of (52), and let X; =P >0,Y; = P'Q;P7* > 0,
we have

a1 AaXi XiNJ 0 XiK{Ng; M; M; M
* —e®™y; 0  X;NT, 0 0 0 0
* * -1 0 0 0 0 O
£+« o100 0 0lcg(53)
* * * * -1 0 0 O
* * * * * -1 0 0
* * * * * =] 0
* * * * * * —]

i1 = X, AT + AX; — aX; + Y, + BiK;X; + X;KT BT

Let K; = Z;X;*, then (53) is equivalent to (42). From (9)-(11),
for P, = X7 *and Q; = X;*Y;X;"!, we have condition (43)-(45).
The proof is completed at this point.

We will obtain the following stability conditions in the matrix
form with analyzing nonlinear condition (43) and (45).
Corollary 2 . Consider the USTDS (41). If foreach i € L, there
exist positive definite symmetric matrices X; , Y; and matrix Z;
with appropriate dimensions and positive scalars a, 14, 4,, 43,
u = 1 such that the conditions (9), (42), and

X, 1 ]
[ R B (54)
AT 17D,
! _.|>0 1S, . |<o0 (55)
I X Xt 250

Then, under the average dwell time (11), the closed-loop
systems (41) is finite time stable with respect to



MORADI et al ROBUST FINITE TIME STABILIZATION FOR UNCERTAIN SWITCHED DELAY SYSTEMS

(c1, €2, Ty, R, 0(t)). The state feedback controller gain is given
by Ki = Zle_l
Proof. Let

M < X740 > X7 Al > XX (56)
Then from (43) and (56) we obtain (9).Furthermore from (45)
and (56) we will get (11). According to the Schure complement,
from (56) we obtain (54)-(55). The proof is complete at this
point.
Remark 3. It is worth noting that in Corollary 2 the inequalities
are not in the LMIs form due to (55). To solve this non-convex
feasibility problem, we use the following minimization
algorithm subject to LMI constraints [43].

USTDS problem
min {4,y + trace Z(XiRi +Y.8)}

i€l

Subjectto (9), (42), (54) and

T alels B [ dee [F 1)
[1 e RN ] e T e R e

0, [’111 )1/] >0Vi€eL (57)
If the solution of the above minimization problem is equal to

2n+1, then the conditions in Corollary 2 are solvable. The
algorithm in detail is developed below that n and k denote state
variables and the number of iterations, respectively.

USTDS algorithm

Step 1. Find a feasible set (X2, ¥°, R?,82,29,13,23,v%

satisfying (9), (42), (54) and (57). Set k = 0.

Step 2. Solve the following minimization problem

T* = min {AXy + 1,y ¥
+ trace Z()?ikﬁi + VS, + X, RE
i€l

+¥.51}

Subject to (9), (42), (54), (57) and denotes T* be the optimized

value.

Step 3. If the matrix inequalities (9), (42), (54) and (57) are

satisfied and

Ay + 4y * + trace Z()?ikﬁi + VS, + X, RE + V,.8))
i€l

-(2n+1)|<$6

Holds for a sufficiently small scalar >0 , then (XY,
Ri, Si, A4, 15, A5, v) are a feasible solution and exit.

Step 4. If k > q, where g is the maximum number of iteration
allowed, then exit. Otherwise, set k = k + 1 and go to Step 2.

4. Numerical examples

Now, two examples are employed to verify the proposed
theorem in this paper.
Example 1. Consider the uncertain open loop switched system
(1) with parameters as

-17 1.7 0 1 -1 0
A;=|13 -1 07],4,=[07 0 -06
07 1 —06 17 0 -17
1.5 =17 01 -1 0 01
Ap=|-13 1  -03|,40,=|13 -01 06
-07 1 06 1.5 01 1.8
02 0 —07 —08 0 —0.7
Ni=| 0 -09 —-01|N,=| 0 04 0.1
[—05 —01 0 —05 0 —0.8!
10 0 1 0 0
Ngyy =10 1 0f, Ngp =10 1 0
0 0 1 0 0 1
[0.01 0 0 0.02 0 0
Mi=l0 001 o0 |M=[0 002 o]
[ o 0 001 0 0 0.02]

@(t) = [0.7 00]"

The values of ¢y, ¢;, Ty, d and matrix R given as follows

¢, =05, ¢, =100,Tf =10,d =02 ,R =1

By virtue of Theorem 1 and solving (8) and (9) for &« = 0.015
leads to feasible solutions

[ 65.3342 8.3026  —11.0567
P, =1 8.3026 95.2520 —48.1515],
[—11.0567 —48.1515 70.9817
[101.5078 6.3782 52.0920
P, =1 63782 413732 2.0302 |,
[ 52.0920 2.0302 73.7269
[ 30.4514 —32.1724 44.9440
Q, =|-32.1724 819195 —36.8890],
L 449440 —36.8890 102.2389
[ 30.5022 —32.1381 44.9399
Q, =1—-32.1381 82.5640 —36.4247
| 449399 —36.4247 102.5921

According to (11), one obtains t, > t; = 4.1308 . Then, by
using of theorem 1 for any switching signal o, (t) with average
dwell time 7, > 7, switched system (1) with u(t) = 0 is finite
time stable with respect to (cy, ¢, Ty, R, 0, ). We choose 7, =
4.15 . The phase plot of state and the norm of the state vector
for the open loop switched system are shown in Figure 1 and
Figure 2. It is clear that the unforced switched system (1) is
finite time stable under switching signal o, . For guaranteeing
finite time stable of the switched systems (1), we need the
switching signal is slow switching. If the switching is very
frequent, it is possible that the system is not finite time stable.
The switching signal and the norm of the state vector of the
unforced USTDS under a periodic switching signal a,(t) over
0 -~ 10 with average dwell time 7, = 1.2 are shown in Figure
3and Figure 4. It is observed that the unforced switched system
(1) is not FTS with respect to (cy, ¢, Ty, R, 03).

X -1 .05

2
Figure 1. Phase plot of state x(t)

X1
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Figure 4. Time history of xT (t)Rx(t)under switching signal o,

Example 2. Consider the USTDS (41) with parameters of
examplel and as follows

002 0 0
Np1 =[ 0 002 0 l
0 0 002
—-003 0 0
N32=[ 0 —003 0 l
0 0 —0.03
1 01 05 “1 05 0.1
Bl={o.6 1 04| B2=[02 0 0.6]
03 02 1 1 04 —01

The values of ¢y, ¢,, Ty, d and matrix R given as follows

¢, =05, ¢,=50Tf=10,d=02, R=1

From Corollary 2 and the CCL algorithm, we get the matrix
solutions for @ = 0.015 as follows

10551  0.2686  —0.0365
X, = | 0.2686 0.9546  0.0538 ]
—0.0365 0.0538 12671
0.9483 0.0135 —0.3264
X, =10.0135 1.4340 —0.0215},
—0.3264 —0.0215 1.0164

2.8644 —0.0645 0.0295
v, = [—0.0645 2.7466 —0.0258],
0.0295 —0.0258 2.7807
2.8017 —0.0036 —0.1822
Y, = [—0.0036 29479  0.0071 ]
—0.1822 0.0071 2.7906

The corresponding state feedback matrices are:

-1.7671 0.1983 0.3196
K, =] 0.2403 —1.9954 —0.3909],
0.5794 —-0.7111 -1.6402
3.5379 —1.8038 2.7650
K, =|—4.5434 —3.9339 —5.4013]
4.9042 —2.6474 8.9467

According to (11), we get 7, > t; = 1.1805. We choose 7, = 1.2,
hence the closed loop switched system is robust finite time stable with
respect to (cl, 2, Tr R, 02). The norm of the state vector of the closed
loop system with state feedback is given in Figure 5.

1 T T T T T T T T T

0.8 b

0.6 1

o 1 2 s 4 5 & 7 8 s 10
Time(s)
Figure 5. Time history of xT (t)Rx(t) of closed loop system

5. Conclusion

In this paper, robust finite time stability and stabilization problems for
a class of switched systems with time delay have been investigated.
The uncertainties under consideration are norm bounded and time
varying in the model. Bases on the average dwell time method and
multiple Lyapunov-like functions, sufficient conditions which can
guarantee finite time stability and stabilization of the USTDS are
presented. The state feedback controller design problem is solved by
using the cone complement linearization algorithm. The problem of
uncertainty in switched systems with time delay is investigated by
virtue of Yakubovich lemma. In most of literature, FTS and FTSz of
STDS are discussed with time-dependent switching. It is needed that
switching sequence to be known in advance and fast switching is not
allowed with time-dependent switching, but state-dependent switching
is based on the current value of the system states, that is more practical
and the switching sequence does not require to be known
beforehand. A challenging further investigation is how to
extend the results in this paper with state-dependent

switching.
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