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Enhanced Prognosis of Hybrid Systems with
Unknown Mode Changes

Mojtaba Danes*, Amin Ramezani™, and Javad Zahedi Moghaddam’

Abstract— In this paper, a new model for degradation has been
introduced to cover multiple dynamics for prognostics purposes.
Firstly, Augmented Global Analytical Redundancy Relations
(AGARRs) have been introduced to track system’s health
constantly. Whenever an inconsistency appears, the proposed
algorithm checks the Mode Change Signature Matrix (MCSM)
and decides if inconsistency is due to a change in modes or an
existence of a faulty component. Using Mode Dependent Fault
Signature Matrix (MD-FSM), a Set of Candidate Faults will be
generated and fed into PF part to estimate the actual fault and
parameters of the degradation model. Finally, by applying
obtained degradation model, Remaining Useful Lifetime (RUL)
will be estimated.

Index Terms— Hybrid Bond Graph; Prognosis; Particle Filter;
Remaining Useful Life Tim

I. INTRODUCTION

As the complexity of industrial systems increase, fault
diagnosis and failure prognosis become more and more
vital since they are critical means to maintain system safety and
reliability. Such complex systems, can be modeled as hybrid
systems that consist of interacting event-driven and time-driven
dynamics. There exist two major issues towards monitoring
hybrid systems. The first issue is the method used for modeling
the hybrid system such as hybrid automata [1] and hybrid bond
graph [2]-[4] . The second issue is simultaneous estimation of
continuous and discrete states.
Hybrid Bond Graph (HBG) model is vastly used for model-
based fault diagnosis and failure prognosis in literature. The
reason is its capability to model incipient faults as well as its
ability to model hybrid behavior with switched signals.
Regarding model-based fault diagnosis in HBG, [5] proposed a
method for offline simultaneous fault diagnosis and mode
tracking based on parameterization of unknown mode changes.
Assuming there is only one fault, [6] introduced an online
method for mode tracking in the presence of fault. However, it
cannot be used in multiple fault condition.
Assessing the failure prognosis of hybrid systems and fault
diagnosis literatures reveals the fact that prognosis is a more
recent concept. Model based failure prognosis of hybrid
systems is simply based on formulating mathematical models
for faulty components and then, applying a proper estimation
tool such as Particle Filter (PF) which will lead to a complete
model that describes the faulty parameter evolution in time.
Using estimated parameters, the Remaining Useful Life (RUL)
will be extrapolated. RUL can be used for Condition Based
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Maintenance (CBM) purposes. Having mentioned the above, it
is worth to note that there have been a great amount of research
towards failure prognosis recently. Reference [7] had a novel
look at the prognosis problem in the presence of uncertainty. It
had very limiting assumptions where the degradation model is
a priori and the system under consideration have to be modeled
with continuous form of HBG method called Bond Graph (BG).
In [8], the authors have considered the prognosis of HBG model
assuming multiple faults which are non-detectable at fault-
initiating mode and known mode sequence. Reference [9] has
introduced an integrated approach for prognosis of hybrid
systems with unknown mode changes in which a Diagnostic
Hybrid Bond Graph (DHBG) is used to generate a Set of
Candidate Faults (SCF). Then PF enters and refines the real
faults and estimates the parameters of fault model for prognosis
part. While it seems to be a good solution for prognosis of
hybrid systems, it lacks the speed requirements for online
implementation due to slow estimation of PF. Therefore it
exerts significant delay in RUL determination. In addition, the
model used, is considered to be linear or exponential. This
assumption has limited the range of systems the algorithm can
work with.

This paper is organized as follows: In Section 2, the AGARR-
based diagnosis of HBG models are introduced. In addition,
DHBG and the algorithm concerning AGARR-based diagnosis
and prognosis are presented. Section 3 will be devoted to joint
state-parameter estimation via PF. RUL prediction is
introduced in Section 4. In Section 5 simulation results will
show the performance of the proposed degradation model.
Finally, Section 6 will conclude the paper.

I. AGARR-BASED DIAGNOSIS OF HYBRID BOND GRAPH

A. Hybrid Bond Graph

As mentioned in introduction, HBG methodology is vastly used
in fault diagnosis and failure prognosis community. HBG
provides the opportunity to model several energy domains into
a single model and to integrate event-driven dynamics into
time-driven dynamics. DHBG is HBG equipped with a special
feature [10]. It has a special causality assignment Sequential
Causality Assignment Procedure for Hybrid Systems (SCAPH)
[11]. Using SCAPH, there will be no requirement to reassign
causality of the HBG model after a mode has been changed. In
[10], an AGARR is introduced in which mode changes, sensor
and actuator faults are included.
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B. AGARR Generation

Based on Mode-Dependent Fault Signature Matrix (MD-FSM)
it can be seen that, due to probable off switches, some faults
might not show any impact on measurements and thus the fault
cannot be detected. In other words, MD-FSM shows that in a
given mode an individual combination of residuals may or may
not be useful for fault diagnosis since they are not isolable.
Instead, it generates a set of candidates for faults and feed them
to an estimator for accurate parameter estimation.

Regarding mode tracking, Mode Change Signature Matrix
(MCSM) is introduced to show the plausibility of an unknown
mode change based on residual analysis. If the calculated
residual shows an inconsistency then our first guess would be a
change in mode. Comparing residuals with MCSM, it can be
checked if inconsistency is due to an unknown change in mode
or a fault has occurred.

For instance, in Fig. 2. , DHBG model of a two-tank system
(Fig. 1. ) is presented. AGARRs, MD-FSM and MCSM for
mode = [1 00 1] are derived as follows
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Fig. 1. Two-tank system [6]
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Fig. 2. DHBG model of a two-tank system [6].

TABLE I. MCSM FOR MODE=[1 0 01]
Parameters | AGARR 1 AGARR 2 Detectability | Isolability
a, 1 0 1 0
a, 0 1 1 1
a, 1 1 1 1
a, 1 0 1 0
TABLE II. MD-FSM FOR MODE=[1001]
Parameters | AGARR1 AGARR 2 | Detectability
R, 1 0 1
R, 0 0 0
R, 0 0 0
R, 1 0 1
C, 1 0 1
C, 0 1 1
B 1 0 1
B, 1 0 1
1
P 0 1 1

C. AGARR-Based Mode Tracking and Fault Diagnosis

For monitoring purposes, a Coherence Vector (CV) is
calculated as CV = [AGARR,, AGARR;] [9] . The proposed
algorithm works as follows. The CV is constantly under
supervision and whenever its entries become non-zero then
firstly the algorithm will check MCSM to see whether this
inconsistency can be due to an unknown change in modes or
not. Then it will calculate AGARRs for all modes. If the
algorithm was able to detect a new mode in which CV is
consistent, then the system under investigation is healthy and a
new mode has been identified. On the other hand, if the
algorithm was not able to find a mode in which CV is
consistent, there is only one possible explanation for
inconsistency and that is a fault. Knowing that the modes have
not changed, algorithm checks all the MD-FSM to see which
fault might have happened. There is a great possibility that more
than one fault have the signature of the calculated CV. In this
situation, the algorithm will send all fault candidates to PF in
order to estimate the actual values of parameters and find the
real fault.

After fault occurrence, the algorithm will not be able to track
modes. Therefore, a particle filter will be implemented to track
the system states. At this time, the AGARRs will be calculated
based on filtered observations while system modes are also
modeled as parameters and will be estimated via PF.

In situations where the system is in steady state, the derivation
of a signal is equal to zero. Hence, if there is a switch at that
part in AGARR, the derivation is multiplied by mode
parameters and as a result the change of that mode cannot be
detected. Here, a false mode tracking has occurred.
Unfortunately, there is no way to detect the actual mode until a
known mode change occur. The problem is that this unknown
and undetectable change of modes can lead to a poor fault
diagnosis and failure prognosis. To overcome the above-
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mentioned issue, in addition to monitoring the CV in known
modes, other modes are checked while system is in steady state.
By doing that, at least we can infer other information about
system’s mode. As a result, a set of possible modes are
generated. In this situation, when an undetectable fault occurs
at the new mode, the algorithm will be aware of possible
undetectable faults. Since the fault will grow in the new mode,
after mode has changed to another trackable mode, the fault will
show itself in residuals like a huge step change. [9] has
introduced an Auxiliary Residual (AR) to formulize this
actions. AR is defined as the derivation of all residuals.
Therefore, a step like change in AGARR will lead to a spike in
AR.

In Fig. 23, the proposed algorithm has been depicted. For the
sake of simplicity, estimation steps are explained in the next
sections.

Il. PARTICLE FILTER

A. Particle Filter

After obtaining the set of candidates for the faulty parameters,
the next part of the algorithm will start to jointly estimate the
state and the parameters. For this purpose, PF [12], [13] which
is also known as Sequential Monte Carlo (SMC) is used. A
degradation model should be applied to enable PF to augment
the state estimation with parameter estimation. The major issue
is that an accurate degradation model is not available [14]. In
our proposed method, a combination of a linear and exponential
framework is used to cover linear and nonlinear degradation
behaviors.
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Fig. 3. Schematic of Prognosis framework
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In (2), F,, is the faulty parameter, F, is the parameter before fault
occurrence, kg is the fault occurrence time, T is the sampling
period, ! and r2 are the degradation rates and F'and F? are
coefficients that describe the faulty parameter dynamics. Since
there is always a delay between fault occurrence and fault
detection in (2), kg should be changed to kj, .

While Kalman Filter (KF) and its extensions, Unscented
Kalman Filter (UKF) and Extended Kalman Filter (EKF), are
known for state estimation in linear systems and non-linear
systems with additive Gaussian noise, PF has the ability to
handle non-linear systems with non-Gaussian noises. Recently,
this tool has been used for prognosis of engineering systems
[15].

System dynamics can be modeled as:

Xy :fk (Xk—l’vk—l)
Y =h (X,,n) @

For each fault candidate, there are three parameters that
describe the degradation dynamics. Therefore, we augment the
state vector with these parameters. [r*,72,F,FZ]. In other
words, for a SCF € R™ , the new augmented state will be of
order R"**™ and is defined as follows:

z =[x F* F? r'r?] “@

It is worth to note that, the dynamics of the degradation
parameters is random walk. For instance, for F*:
1 _ 1 1 ®)
Fo=FR_.+o

where o, is random noise with the pdf shown in Fig. 4.

Rarcom Noises- PDF

Fig. 4. Random Noise used in random walk.

The augmented model will be like:

Zy = f_k (Zk—l’vk—l) (6)
Y« :hk (Zk’nk)
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Preparing the augmented model, it is time to use PF for joint
state-parameter estimation. PF consists of two steps:
prediction and update. In prediction, using state model the
prior pdf of states are obtained. Then, having new
measurements, PF updates the results. PF uses the idea of
weighted particles.

N '
p(zk|y1:k):ZW;|<5(Zk—Z|'<) ™
i1

where z l'( is a set of independent random particles from
P(z, | Yy ), N is the total number of particles, w, is the
weight of ith particle at time k. Since, in practice p(z, |y,,)

is usually unknown; here, importance sampling is utilized to
sample z, from an arbitrary chosen distribution q(z%|z:_,, vi)
called importance-density function. Thus, the weights are
given by:

i iy 8)
o =0 py, l1z,)p(z |2, )
k — %k i i
Q(Zk |Zk—11yk)
The weights are normalized by:
i
i
O =GN ©)
12 %k
If the importance density function is chosen as [12]
i i _ i i (10)
Q(Zk |Zk—1’yk)_ p(zk |Zk—1)
Then the update stage will be as follows:
11)

| 1 1

o =a 4Py [2¢)
A common problem with this kind of PF is the degeneracy
phenomenon, where after a few iterations, all but one particle
will have negligible weights. It has been shown that the
variance of the importance weights can only increase over time,
and thus, it is impossible to avoid the degeneracy phenomenon.
This degeneracy implies that a large computational effort is
devoted to updating particles whose contribution to the
approximation of p(x,|z,.,) is almost zero. A practical
approach for estimating the effective sample size IVeff is
introduced in [12].

~ 1

Ny =

> (@)

(12)

One of the methods by which the effects of degeneracy can be
reduced is to use resampling whenever a significant
degeneracy is observed. Here, we have used the systematic
resampling [12].

I. PARTICLE FILTER-BASED PROGNOSTICS AND RUL
PREDICTION

After running the PF, the resulted particles are used to predict
RUL. Each particle will propagate forward until it reaches its
End Of Lifetime (EOL). Therefore the m-step prediction of

each particle will be computed as follows:
Fkl+m = Fk];i e)(p(_rkll;,I (k +m — kD )T ) + (13)
FoMA-r2 (k +m —k,)T)

Since the weights of particles in propagation stage remains
constant at wj,, the expectation could be computed as:

Z a)k o (14)

If we define a failure thresholdF,;,, the EOL of each particle
can be obtained by solving the following equation:

Fo =F exp(-r (K +T o —kp)T) + &
Fo'(F, =12 (K +Tgo =k )T)

E(F

k+m

The pdf of Ty, shows the statistical distribution of RUL. In
addition the expected value of RUL can be calculated by:

Z a)k EoL (16)

RUL

Il. SIMULATION

In this section, another example of DHBG system, Fig. 5. Fig.
6. is adopted from [9] to show the performance of the
algorithm.
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Electric Circuit with hybrid dynamic[9]

Fig. 5.
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Fig. 6. DHBG of Electric Circuit[9]
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AGARRSs can be calculated as follows:

(ﬂ )+ A (f,.
W ﬂDe1 I:22 v 2 ﬂDe1
d De,, 1 De,
—C ()= ( =)
dt ﬁDe R ﬂDe1 ﬁDez
__1 (De 2)_ d  De,
2 R ﬂDe ﬁDe dt ﬂDe2
_3 (De, De,,
R4 ﬂDe2 ﬁDe1
G. - 1 De, B)__ d  De,
? ’ R4 ﬂDe2 ﬂDe dt ﬂDe3

The circuit in Fig. 6. has two switches. Hence, there are four
different modes each one represented with an array with
binary entries. For instance, [0 1] stands for the mode in
which first switch is open and the second switch is closed.

The nominal parameters are:

An exponential incipient fault at 1020 step has been inserted to
C, when the system is at mode = [0 0]to show the performance
of the algorithm. The second residual will act as Fig. 7., other
residuals are below the threshold. Then CV will change to =
[010].MCSM (TABLE Il1l.) will be used to decide whether
the inconsistency is due to a change in mode or not. Since CV
is inconsistent with MCSM, the change should be due to a fault
in parameters.

TABLE Il MCSM
Cl G, | G, | G, | Detecta bility | I1solability
SW l(ai) 1 0 0 1 1
W, (az )| O 1 1 1 1

Now based on MD-FSM in = [0 0] TABLEIV. , a set of
candidate faults have been identified by the algorithm
including Cy, Bpe1, Bpez, R3. PF has to refine the correct faults
and also estimate degradation parameters. Therefore an
augmented model is created with 19 state.
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It is worth to note that, noise is a challenging problem here since
there is derivatives in AGARR generations which intrinsically
boosts the noise. To handle the problem we used a low-pass
filter to elminate the derivation of a noisy siganl.

The value of the threshold is chosen by observing residual
responses under a system-healthy condition. It is worth noting
that threshold should be carefully set to avoid false alarm. To
deal with measurement noise a low-pass filter is adopted.

Fig. 8. illustrates the estimated states of the system at fault
occurrence. Estimated parameters of degradation model for
each candidate fault were used to find the estimated value of
estimated fault. If the estimated value was near the nominal
value, then we can infer that it was not the true fault and vice
versa. The real fault’s corresponding particles are used to
calculate RUL . Fig. 9. shows the RUL distribution.

TABLE IV.  MD-FSM ([0 0])
G, | G, | G, Detectability
Bp | 2] 1|0 1
B |1 1] o0 1
B | 0] 00O 0
B, | 1] 00 1
B |0 0]o0 0
R |1]0]o0 1
R, |0]o0]o0O 0
R, |1 1|0 1
R, |0] 00O 0
c,|1/0|0 1
c,|o|1]o0 1
c, |ojojo 0
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Fig. 8. Estimated States
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Fig. 9. Estimated RUL Distribution

I11. CONCLUSION

In this paper after introducing AGARR-based fault diagnosis
and mode tracking, we proposed a new model for degradation
behavior for prognosis. Since the proposed model has the
ability to handle linear and exponential dynamics, it could be
beneficial for prognostic purposes where a flexible dynamic is
needed. The model and PF were able to estimate true fault
correctly and extract RUL in an acceptable manner. Our model
however, has a negative side. In our approach, the uncertainty
in model was not taken into account which has a significant
effect on results. In our future works, we will deal with
uncertainty in model to increase the performance of the
algorithm.
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