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Abstract—This paper studies the consensus problem of
nonlinear leader-following multi-agent systems (MAS). To do this,
the error dynamics between the leader agent and follower ones are
described via a Takagi-Sugeno (TS) fuzzy model. If the obtained
TS fuzzy model is stable, then all of the nonlinear agents reach
consensus. The consensus problem is investigated based on the
parameterized or fuzzy Lyapunov function combined with a
technique of introducing slack matrices. The slack matrices cause
to decouple the Lyapunov matrices from systems ones and
therefore, sufficient consensus conditions are obtained in terms of
linear matrix inequalities (LMIs). The proposed slack matrices
add an extra degree-of-freedom to the LMI conditions and also
decrease the conservativeness of the LMI-based conditions.
Finally, in order to illustrate the effectiveness and merits of the
proposed method, a numerical example for the consensus problem
of nonlinear leader-follower MAS with thirteen followers is solved.

Index Terms—Nonlinear multi-agent systems, Consensus, Takagi-
Sugeno (T-S) fuzzy model, Parameterized Lyapunov function,
Linear Matrix Inequality (LMI).

|I. INTRODUCTION

Fuzzy model based (FMB) control provides a framework to

design a nonlinear control strategy for a general class of
nonlinear systems [1]. The physical phenomena are inherently
nonlinear. In order to overcome the complexity of the system
nonlinearity, Takagi and Sugeno (in 1985) presented a
systematic multi-modeling approach called Takagi-Sugeno
(TS) fuzzy model. The TS fuzzy model plays a critical role in
FMB control [1]. In TS fuzzy model which introduced via fuzzy
IF-THEN rules, the smooth nonlinear system is represented via
some local subsystems. Then, by fuzzy blending of the local
subsystems, the overall fuzzy model will be achieved in a
convex structure. The TS fuzzy model can be constructed via
the identification methods based on the input-output data or it
can be derived from the existence smooth nonlinear system
equations [2]. In order to control the nonlinear system based on
the TS fuzzy model, several fuzzy control methods have been
presented such as parallel distributed compensation (PDC) or
non-parallel ~ distributed compensation (non-PDC) [3].
Furthermore, sufficient stability conditions of the closed-loop
system will be obtained based on the Lyapunov direct method
in terms of LMIs [3].
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One of the common approaches to formulate stability
analysis of the TS fuzzy systems is Lyapunov direct method.
The sufficient stability conditions are converted to LMIs and
solved via convex optimization techniques [2]. In some
situations, may be the TS fuzzy system is stable but the common
quadratic Lyapunov function (QLF) does not exist [4]. Thus,
several kinds of LFs are presented in literature such as
parameterized or fuzzy LF (FLF) [5], Max-Min LF [6] and
piecewise LF [7]. The piecewise LF is achieved based on a
combination of some separate quadratic LFs where each of
these quadratic LFs is valid in a particular region. Thus, the
piecewise LF suffers from the problem of discontinuity in
boundary points of each region. The FLF is also known as basis-
dependent LF, and non-quadratic LF. The FLF is achieved
based on fuzzy aggregation of some quadratic LFs [4].

Multi-agent systems (MAS) are constructed by multiple
interconnecting of intelligent subsystems called agents. The
agents joint together to study the problems that are usually very
difficult or even impossible for each agent to solve [8].
Consensus of MASs has attracted lots of attentions as a new
field of research. The consensus problem is investigated in
various background of research such as: control, robotic,
biology and computer science backgrounds. Roughly speaking,
if the agents of MAS reach an agreement on a specific criterion,
then the consensus problem is feasible [9]. According to the
control engineering point of view, the consensus problem is
controlling of the agents such that the consensus conditions are
satisfied.

Consensus of MASs is a promising research topic during
recent years. Control theory plays an important role for solving
a consensus problem. Several kinds of conventional control
protocol are applied on MAS to solve the problem of consensus

such as: H.. control protocol [10], Pinning control [11] and
sampled-data control [12]. Designing control protocol for linear
discrete-time agents to solve the consensus problem is
considered in [13]. Moreover, the consensus problem is studied
for MASs that the dynamic behavior of the agents are linear [14,

15] and nonlinear [16]. Ref. [16] studies an H.. leader-
following consensus problem of nonlinear MASs’. The
consensus problem is o approachs the nonlinear follower agents

to the unforced leader agent. Thus, the nonlinear error
dynamics between the follower agents and unforced leader
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agent are achieved. Subsequently, the TS fuzzy model of
nonlinear error dynamics are calculated and the sufficient
stability conditions are derived in terms of LMlIs. As
aforementioned, Ref. [4] investigates the problem of stability
analysis of TS fuzzy systems based on FLF and introducing
some slack matrices. Slack matrices generate a degree of
freedom in LMI conditions and have a direct effect on
converting the stability conditions to the LMI ones [4].
Whereas, by increasing the number of agents, the dimension of
LMI conditions will be increased and subsequently the
feasibility of LMI conditions will be converted to a challenging
problem. According to the authors’ best knowledge, this paper
tries the first attempt to analyze the consensus problem of
nonlinear MASs with FLF and slack matrices.

In this paper, we seek to solve the consensus control problem
in more relax scheme by using the FLF and introducing slack
matrices. First, define the leader-following as the consensus
problem. Second, the nonlinear error dynamics between the
agents of nonlinear unforced leaders and the followers will be
achieved. Thus, the consensus problem will be converted to the
stability analysis one. Third, based on the nonlinear error
dynamics, the exact TS fuzzy model will be calculated via
sector nonlinear approach. Fourth, in order to analyze the
stability of the TS fuzzy model based closed-loop system, the
FLF and some new null terms will be defined and sufficient
stability conditions will be derived in terms of LMIs. The main
contributions of this paper can be classified as follows:

1. The FLF will be used to solve the consensus problem.

2. Some new null terms will be defined. Slack matrices in null
terms increase the degree of freedom and also converted the
stability conditions to the LMI ones.

3. The control protocol will be designed.

4. Compare to the recent published works [16, 18-20], the LMI-
based stability conditions are more relaxed.

Finally, the proposed approach is applied to the consensus
problem of nonlinear leader-follower MAS with thirteen
followers.

The remainder of this paper is organized as follows. Section
Il is divided into two parts. First part presents some basic
concepts of graph theory, and second part discusses about
problem formulation. The main results are given in Section IlI.
In section IV, simulations are carried out to illustrate the
effectiveness of the main results. Finally, conclusions are drawn
in section V.

In the current paper, the superscript T stands for matrix
transpose, R" denotes the n-dimensional Euclidean space and
d ag{ } stands for a block-diagonal matrix. In symmetric
block matrices, * is used to represent a term that is induced by

symmetry, Ly is an identity matrix of dimension N <N and ®
denotes the Kronecker product.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Basic Concepts on Graph theory
A MAS consisting N agents represented by an undirected

graph G consists of a vertex set V(G)=aVarm Vi } an

£ (@) (v v, )., v @)

edge set If

(viv;)eE(G)

information to the agent ] and vice versa. In other words, there

it means that, agent 1can send its

is a directed connection from node 1 to node !. Also,
A= [aij ] c RN xN

directed connection from node | to node J,

(Vi 0y )G E (G ) Furthermore, it is
8, =0(i =12...,N)

is defined such that for a
3 =0

adjacency matrix
supposed  that
. The neighbor set of node Vi is denoted
by N, :{vj eV (G):(vi,vj)eE(G)}

associated with G is defined as follows:

. The Laplacian matrix

N - -
- & )=
Ii,j = kz%#] ‘ 1)
a; j =i

A graph containing the leader and all followers is represented
by G
B. Problem Formulation

Consider a group of N follower agents and one leader. The
dynamic of each follower agent is given by

X (t)=f (x; (t))+u, i=1.,N &)
where *i (t)eR is the state of agent (node) 1 , f (X‘ (t)) is
a nonlinear continuously differentiable wvector function

representing the intrinsic nonlinear dynamics of the i-th agent,

and U (t) is the control protocol to be designed.
Itis assumed that the leader has the following nonlinear time-
varying dynamic

$0)=1 (s(0) ®

where s (t) is the states vector of the leader and should be
tracked by all the followers. It can be an equilibrium point, a
chaotic orbit or a periodic orbit [16].

Assuming that & (t) denotes the error between the states of
the followers and the states of the leader, i.e.,

& (t ) =X (t)—s (t) , the error dynamics can be represented as
€ (t)=f (x; (t))-f (s(t))+u, 4

i=1..,N
Consider a distributed consensus protocol as follows:
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jeN;

U, (t)=cT Y ay (x; () -, (t) ©)
yee N

+ed, D(s®)-x (1), =1

1

where N denotes the neighboring set of node I |, ¢ is the
coupling strength, ' € R™™" is the feedback gain matrix to be
designed, it also should be positive definite [16]. & represents
the coupling strength of the information flowing from node J

=3, >0 . jeN,

to node i , and % . If agent 1 has

access to the leader’s state information, d; >0 and otherwise,

d, =0
Based on the TS fuzzy model introduced in [16], we rewrite

(0 O)1 (60) o @) ©)+h(x, () 1))

X (t),e (t .
where g( : ( ) : ( )) can be approximated by a TS fuzzy
model with the chosen premise variables, meanwhile

h(x; ()& (t))

Ax (t
a product of bounded time-varying matrix ( '( )) and

cannot be approximated but can be restated as

& (t) . The fuzzy model of (4) is represented as the following
rules:

Rule p: If G‘vl(t) is M1 and G"Z(t) is Mo, and ...and
0. (t) is Mo , then
& (t)=A.e (t)+A(x, (t))e (t)+u,, (6)
p=1..r
[ T T "
where 8‘(t)_[e"l(t)’ei'z(t)""ei'k (t)] is the premise
variable vector, Mt for p:]”2""’rand I=12..k

represents the fuzzy sets, I is the number of if-then rules and

Ap is the constant matrix. The compact form of the fuzzy
model is as follows:

e, (1)=3n, (4 ()R 1)

+A (X (t))e; (t)+u,
where

()

0, (6,(0)=[TM (6, (1))

where 0 (6.() is the grade of the membership of 6. ()

in M P Then
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h, (6 (1)) =1 @

A (, ()R (x, (1) <0

positive definite matrix and can be written as

, Where Q is a
Q=R'R

Assumption 1:

3. THE MAIN RESULTS

In this section, based on the TS fuzzy modeling, the
consensus problem of nonlinear MAS is investigated.
The error dynamics of (6) can be written as follows:

e<t>=<§hpmp>e(t>+ﬁ<xi(t>>e<t>

i o)
+cL ®Te(t)

where
A =1y ®Ap

A(x, (1)) =1, ®A(x (t))

e(t)=[e] &5 ....e ]T
C =L —diag {d,,d,....d, |

To obtain new stability conditions for MAS, consider the
following null matrix identities that are obtained from (7) and

(8):

>h,=0=>>hh (e"Me)=0 (10)

p=1 p=lp=1

[Mg+Me] x

{e’—[ihpmp +§l+c[®rj -0 (11)
p=1

It is assumed that Mlhas a linear relation with M.

M, =aM . .
( ! 2) where & is an arbitrary known scalar number,

and Ms isa symmetric matrix with appropriate dimension.
Theorem 1: The follower agents as described in (2) can reach
consensus with the leader if G is connected or equivalently, at

least one agent in each connected component of G has access
to the state information of the leader and further, there exist

symmetric matrices P and M3, any matrix N positive

definite matrix ' and scalar € such that the following LMIs
hold for P =L-T

P, >0 (12)

M,+l, ®P, >0 (13)
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M +MSH
* H2

H, =1, ®P, =M/ (A, + 51, ®(,+R"R))
+cL ®S +aM,
H,=E,+aM] (I, ®(-1,~R"R))
+[—acL ®S —aM [ A, ++]

where

E¢=Z¢p(M3+IN®Pp)
p

M,=1, ®N

S=EN'T

Proof: The following parameterized Lyapunov function
candidate is chosen

(14)

r

V(t)= ZihpeiT P.e;

p=li=1

(15)

Vo(t

By differentiating ) , one has

V()=33 el pe, + 33, (67 Pye, +4)
q=1i=1 ot p=li=1

_y e
= ot

+pzz;[hpe'T (1, ®P,)e +*]

(IN ®FP, )e (16)

-~ o

By using the identities (10)-(11), one has
. r. oh

V(t)=) —e" (I, ®P,)e
( ) qzz; at ( N q)

+Zr:hp [e-'T (IN ®P, )e +*J
p=1

r . oh
+y —"Mge
q=1

= an

H[Mg+Me {e‘ —(ihpmp +§l+cl__®l“je

p=1
+%}

r r ah
:th(z(a_tqu (1, ®P,)e)

p=1 q=1
+[e‘T (1, ®P,)e +*]+qzr;%hquM3e s)
+{[M1e'+M2e]T [e‘—(QLp+Q_l+cI:®F)eJ+*}

Define

. (19)
E¢:Z¢p(M3+IN®Pp)

P

=1..r
- p=1

and

S i
% M, +1, ®P, =0

If ‘ then

VO <Sh ez e (20)

where
c=[e" & ]
i
Hy=1y ®P, M (A, +2A+cL ®T)+M,
H, =B, +[M] (-2, -A-cL®T)+x]

Z,<0 £#0 V(t)<0

If , then for any

M, 21, ®N

By using assumption 1, defining and

M, =aM

remembering the constraint 1, one has

M,+M] H, -0
% H6

Hs=1, ®P, M (2, +.51, ®(I,+R"R)
+CL®T) +aM,
He=E,+aM/ (I, ®(-1,-R"R))
+aM] (-2, —cC ®T)++]

(21)

To convert (21) into LMI, further manipulations are required to
T
do on the bilinear term M, -(cL®I) of (21) as follows
M -(cL®T) =, ®N")-(cL®T)=cL®N'T

. .. . S A NTF
Define the new decision variable © = , one has
M, -(cL®T)=cL®N'T =cL®S
Consequently, (21) is obtained as

M1+MlT H, ~0
* H2

H, =1, ®P, —-M] (A, +5l, ®(I,+R"R))
+cL ®S +aM,
H,=E,+aM] (I, ®(-1,-R"R))
+[-acL®S —aM ]2, ++]

(22)

Therefore, the errors converge to zero and the consensus is
achieved. The proof is completed. =

4. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is given to show the
effectiveness of the theoretical results.
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Example: Consider the multi-agent network in Fig. 1,
consisting of N identical systems [16]. The dynamics of each
node is described by the following chaotic equation

X, (t)=f (x; (t))+u, i=1.,N (23)
where
—oX;, (t)+0X%;,(t)
f(x (t)): X (B) =X, (1) =X (1) X5 (1) (24)

Xip ()X, (t)—bx 4 (t)

By choosing the values of (o1.7,,0) = (10,28, ~1.8/3) for

chaos to emerge, the system in (23) becomes the Lorenz system.
The error dynamics system, the difference between (23) and the

leader g(t):f (S (t)) can be derived as [17]:
¢ (t)=
—oe;,(t)+oe,(t)
nleil(t)_nzeiz(t)_xil t)ei3(t)+ei1(t)ei3(t)

—bx 5 (1) +X;, (t)e;, (t)—ei (t)e,(t)

0 00
+[—X;5(t) 0 Ole (t)+uy,
x,,(t) 00
(25)
e

1 3 5 7
2 4 6 8

Fig. 1. Connected network topology.

Here, we choose N =13 The TS fuzzy model (6) is used
for modeling the nonlinear MAS as following:

Rule Kk : ¢ Xin(t) g My; g € (t) i M pen
6 (t)=Aye (t)+A(x, (t))e (t)+u,,

j.k=12 20)
where
Xil(t)e[Mll Mlz] ' eil(t)E[Mel Mez] ’ M, =-20 ’
M,, =30 ,Mel =-50 and M,, =50
The augmented error system is as follows
4
e'i (t): ;ﬂp (Xi (t)’ei (t ))(Apei (t )) (27)

+A(x; (t))e; (t)+u,
where

34
-0 o 0
Av‘jk_ i 7, M Mu
0 M, -M, )
0 00
A(x; (t))=]—x;5(t) 0 0
X;,(t) 0 0

(Xi (t )) '&(Xi (t )) is bounded

Remembering assumption 1,
by @ =R'R which

0 -60 40
R=|{0 0 O
0 0 O

A% (U).8 (t .
p( () ( )) can be calculated according to (6), and the
membership functions are considered as in [2].

Here, it is supposed that 4 =1 and others 9% =0 for

k=213 that means, only agent one has access to the states
information of the leader.
Solving the LMIs (11-13), the gain matrix I is obtained as

follows:

8.3923  6.6976 9.8409
I'=|-0.0745 158.5477 -4.4160
-0.2948 -1.8867 155.6960

Fig. 2 shows the states of the agents using I' and randomly
chosen initial conditions. It is concluded from Fig. 2, that the
consensus take place quickly and the follower agents track the
leader’s states for the future.

5. CONCLUSIONS

This paper has considered a consensus control problem of
leader-following nonlinear MASs. Initially, the nonlinear error
dynamics between the leader agent and nonlinear follower
agents were calculated. Thus, the consensus problem of leader-
following system changed into the stability analysis of the error
dynamic system. Then, the exact TS fuzzy model of error
dynamic achieved via the concept of sector nonlinearity.
Sufficient asymptotically stability conditions obtained based on
the FLF in terms of LMIs. Moreover, based on the behavior of
the closed-loop system, some new null terms proposed. The
slack matrices, defined in null terms, had some advantages such
as: increasing the degree of freedom, converting the sufficient
stability conditions to the LMI ones, decoupling the system
matrices from the Lyapunov ones, and also, generate more relax
conditions. LMI conditions were achieved by utilizing the
Kronecker product. The simulation results were shown the
effectiveness of the proposed approach.
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Fig. 2. Consensus of multi-agent network and states evolutions of the
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