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 

Abstract—This paper studies the consensus problem of 

nonlinear leader-following multi-agent systems (MAS). To do this, 

the error dynamics between the leader agent and follower ones are 

described via a Takagi-Sugeno (TS) fuzzy model. If the obtained 

TS fuzzy model is stable, then all of the nonlinear agents reach 

consensus. The consensus problem is investigated based on the 

parameterized or fuzzy Lyapunov function combined with a 

technique of introducing slack matrices. The slack matrices cause 

to decouple the Lyapunov matrices from systems ones and 

therefore, sufficient consensus conditions are obtained in terms of 

linear matrix inequalities (LMIs). The proposed slack matrices 

add an extra degree-of-freedom to the LMI conditions and also 

decrease the conservativeness of the LMI-based conditions. 

Finally, in order to illustrate the effectiveness and merits of the 

proposed method, a numerical example for the consensus problem 

of nonlinear leader-follower MAS with thirteen followers is solved. 

 

Index Terms—Nonlinear multi-agent systems, Consensus, Takagi-

Sugeno (T-S) fuzzy model, Parameterized Lyapunov function, 

Linear Matrix Inequality (LMI). 

I. INTRODUCTION 

uzzy model based (FMB) control provides a framework to 

design a nonlinear control strategy for a general class of 

nonlinear systems [1]. The physical phenomena are inherently 

nonlinear. In order to overcome the complexity of the system 

nonlinearity, Takagi and Sugeno (in 1985) presented a 

systematic multi-modeling approach called Takagi-Sugeno 

(TS) fuzzy model. The TS fuzzy model plays a critical role in 

FMB control [1]. In TS fuzzy model which introduced via fuzzy 

IF-THEN rules, the smooth nonlinear system is represented via 

some local subsystems. Then, by fuzzy blending of the local 

subsystems, the overall fuzzy model will be achieved in a 

convex structure. The TS fuzzy model can be constructed via 

the identification methods based on the input-output data or it 

can be derived from the existence smooth nonlinear system 

equations [2]. In order to control the nonlinear system based on 

the TS fuzzy model, several fuzzy control methods have been 

presented such as parallel distributed compensation (PDC) or 

non-parallel distributed compensation (non-PDC) [3]. 

Furthermore, sufficient stability conditions of the closed-loop 

system will be obtained based on the Lyapunov direct method 

in terms of LMIs [3]. 
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One of the common approaches to formulate stability 

analysis of the TS fuzzy systems is Lyapunov direct method. 

The sufficient stability conditions are converted to LMIs and 

solved via convex optimization techniques [2]. In some 

situations, may be the TS fuzzy system is stable but the common 

quadratic Lyapunov function (QLF) does not exist [4]. Thus, 

several kinds of LFs are presented in literature such as 

parameterized or fuzzy LF (FLF) [5], Max-Min LF [6] and 

piecewise LF [7]. The piecewise LF is achieved based on a 

combination of some separate quadratic LFs where each of 

these quadratic LFs is valid in a particular region. Thus, the 

piecewise LF suffers from the problem of discontinuity in 

boundary points of each region. The FLF is also known as basis-

dependent LF, and non-quadratic LF. The FLF is achieved 

based on fuzzy aggregation of some quadratic LFs [4]. 

Multi-agent systems (MAS) are constructed by multiple 

interconnecting of intelligent subsystems called agents. The 

agents joint together to study the problems that are usually very 

difficult or even impossible for each agent to solve [8]. 

Consensus of MASs has attracted lots of attentions as a new 

field of research. The consensus problem is investigated in 

various background of research such as: control, robotic, 

biology and computer science backgrounds. Roughly speaking, 

if the agents of MAS reach an agreement on a specific criterion, 

then the consensus problem is feasible [9]. According to the 

control engineering point of view, the consensus problem is 

controlling of the agents such that the consensus conditions are 

satisfied. 

Consensus of MASs is a promising research topic during 

recent years. Control theory plays an important role for solving 

a consensus problem. Several kinds of conventional control 

protocol are applied on MAS to solve the problem of consensus 

such as: 
H   control protocol [10], Pinning control [11] and 

sampled-data control [12]. Designing control protocol for linear 

discrete-time agents to solve the consensus problem is 

considered in [13]. Moreover, the consensus problem is studied 

for MASs that the dynamic behavior of the agents are linear [14, 

15] and nonlinear [16]. Ref. [16] studies an 
H   leader-

following consensus problem of nonlinear MASs’. The 

consensus problem is o approachs the nonlinear follower agents 

to the unforced leader agent. Thus, the nonlinear error 

dynamics between the follower agents and unforced leader 
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agent are achieved. Subsequently, the TS fuzzy model of 

nonlinear error dynamics are calculated and the sufficient 

stability conditions are derived in terms of LMIs. As 

aforementioned, Ref. [4] investigates the problem of stability 

analysis of TS fuzzy systems based on FLF and introducing 

some slack matrices. Slack matrices generate a degree of 

freedom in LMI conditions and have a direct effect on 

converting the stability conditions to the LMI ones [4]. 

Whereas, by increasing the number of agents, the dimension of 

LMI conditions will be increased and subsequently the 

feasibility of LMI conditions will be converted to a challenging 

problem. According to the authors’ best knowledge, this paper 

tries the first attempt to analyze the consensus problem of 

nonlinear MASs with FLF and slack matrices. 

In this paper, we seek to solve the consensus control problem 

in more relax scheme by using the FLF and introducing slack 

matrices. First, define the leader-following as the consensus 

problem. Second, the nonlinear error dynamics between the 

agents of nonlinear unforced leaders and the followers will be 

achieved. Thus, the consensus problem will be converted to the 

stability analysis one. Third, based on the nonlinear error 

dynamics, the exact TS fuzzy model will be calculated via 

sector nonlinear approach. Fourth, in order to analyze the 

stability of the TS fuzzy model based closed-loop system, the 

FLF and some new null terms will be defined and sufficient 

stability conditions will be derived in terms of LMIs. The main 

contributions of this paper can be classified as follows: 

1. The FLF will be used to solve the consensus problem. 

2. Some new null terms will be defined. Slack matrices in null 

terms increase the degree of freedom and also converted the 

stability conditions to the LMI ones. 

3. The control protocol will be designed. 

4. Compare to the recent published works [16, 18-20], the LMI-

based stability conditions are more relaxed. 

Finally, the proposed approach is applied to the consensus 

problem of nonlinear leader-follower MAS with thirteen 

followers.  

The remainder of this paper is organized as follows. Section 

II is divided into two parts. First part presents some basic 

concepts of graph theory, and second part discusses about 

problem formulation. The main results are given in Section III. 

In section IV, simulations are carried out to illustrate the 

effectiveness of the main results. Finally, conclusions are drawn 

in section V. 

In the current paper, the superscript T stands for matrix 

transpose, 
n

 denotes the n-dimensional Euclidean space and 

 diag
 stands for a block-diagonal matrix. In symmetric 

block matrices,   is used to represent a term that is induced by 

symmetry, nI
 is an identity matrix of dimension n n  and   

denotes the Kronecker product. 

2. PRELIMINARIES AND PROBLEM DESCRIPTION 

A. Basic Concepts on Graph theory  

A MAS consisting N agents represented by an undirected 

graph G  consists of a vertex set 
   1 2, , , vNV G v v

, an 

edge set 
      , : ,i j i jE G v v v v V G 

. If 

   ,i jv v E G
 , it means that, agent i can send its 

information to the agent 
j

and vice versa. In other words, there 

is a directed connection from node i  to node 
j

. Also, 

adjacency matrix 

N N

ijA a      is defined such that for a 

directed connection from node i  to node 
j

, 
0ija

, if 

   ,i jv v E G
. Furthermore, it is supposed that 

 0 1,2,...,iia i N 
. The neighbor set of node iv

is denoted 

by 
      : ,i j i jN v V G v v E G  

. The Laplacian matrix 

associated with G  is defined as follows: 

1,,

N

ik

k k ji j

ij

a j i
l

a j i

 


 

 
 



 

(1) 

A graph containing the leader and all followers is represented 

by G . 

 

B. Problem Formulation 

Consider a group of N follower agents and one leader. The 

dynamic of each follower agent is given by 

 

     1,..., Ni i ix t f x t u i  
 

(2) 

where 
  n

ix t 
 is the state of agent (node) i , 

  if x t
 is 

a nonlinear continuously differentiable vector function 

representing the intrinsic nonlinear dynamics of the i-th agent, 

and 
 iu t

 is the control protocol to be designed.  

It is assumed that the leader has the following nonlinear time-

varying dynamic 

 

    s t f s t
 

      (3) 

where 
 s t

 is the states vector of the leader and should be 

tracked by all the followers. It can be an equilibrium point, a 

chaotic orbit or a periodic orbit [16]. 

Assuming that 
 ie t

 denotes the error between the states of 

the followers and the states of the leader, i.e., 

     i ie t x t s t 
, the error dynamics can be represented as 

 

        ,

1,...,

i i ie t f x t f s t u

i N

  

  

         (4) 
 

Consider a distributed consensus protocol as follows: 
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      

 (t) x (t) , 1,...,

i

i ij j i

j N

i i

u t c a x t x t

cd s i N



  

   



 

    (5) 

where iN
 denotes the neighboring set of node i  , c  is the 

coupling strength, 
n nR   is the feedback gain matrix to be 

designed, it also should be positive definite [16]. ija
 represents 

the coupling strength of the information flowing from node 
j

 

to node i  , and 
0ij jia a 

 when ij N
. If agent i  has 

access to the leader’s state information, 
0id 

 and otherwise, 

0id 
.  

Based on the TS fuzzy model introduced in [16], we rewrite

     if x t f s t
 as

         , ,i i i ig x t e t h x t e t
 , 

where 
    ,i ig x t e t

 can be approximated by a TS fuzzy 

model with the chosen premise variables, meanwhile 

    ,i ih x t e t
 cannot be approximated but can be restated as 

a product of bounded time-varying matrix 
  iA x t

 and 

 ie t
. The fuzzy model of (4) is represented as the following 

rules: 

Rule p: If 
 ,1i t

 is 1pM
 and 

 ,2i t
 is 2pM

 and …and 

 ,i k t
 is pkM

 , then 

 

         u ,

1,..., r

i p i i i ie t A e t A x t e t

p

  

  

(6) 

where 
       ,1 ,2 ,, ,...

T
T T T

i i i i kt t t t        is the premise 

variable vector, plM
for 

1,2,...,p r
and 1,2,...,l k  

represents the fuzzy sets, r  is the number of  if-then rules and 

pA
 is the constant matrix. The compact form of the fuzzy 

model is as follows: 

      

    

1

1,...,

r

i p i p i

p

i i i

e t h t A e t

A x t e t u i N






  



 

(7) 

where 

        

     

1

,

1

r

p i p i p i

p

k

p i pl i l

l

h t t t

t M t

    

  












 

 

where 
  ,pl i lM t

 is the grade of the membership of 
 ,i l t

 

in plM
 . Then 

  

  
1

0, 1,2,..., .

1

p i

r

p i

p

h t p r

h t






 


 

(8) 

Assumption 1: 
     T

i iA x t A x t Q
 , where Q  is a 

positive definite matrix and  can be written as 
TQ R R . 

3. THE MAIN RESULTS 

In this section, based on the TS fuzzy modeling, the 

consensus problem of nonlinear MAS is investigated. 

The error dynamics of (6) can be written as follows: 

        

 

1

( ) e
r

p p i

p

e t h t x t e t

cL e t



 

 

 A A

 

(9) 

where 

p N pI A A
 

     i N ix t I A x t A
 

  1 2, ,...,
T

T T T

Ne t e e e     

 1 2, ,..., NL L diag d d d 
  

To obtain new stability conditions for MAS, consider the 

following null matrix identities that are obtained from (7) and 

(8): 

 3

1 1 1

0 0
r r r

T

p

p

h h h e M e 
   

   
 

(10) 

 1 2

1

0

T

r

p p

p

M e M e

e h cL e


 

  
      

   
 A A

 

(11) 

It is assumed that 1M
has a linear relation with 2M

 1 2M M
 where   is an arbitrary known scalar number, 

and 3M
 is a symmetric matrix with appropriate dimension. 

Theorem 1: The follower agents as described in (2) can reach 

consensus with the leader if G  is connected or equivalently, at 

least one agent in each connected component of G has access 

to the state information of the leader and further, there exist 

symmetric matrices 
P  and 3M

, any matrix N , positive 

definite matrix  and scalar c such that  the following LMIs 

hold for 
1,...,p r

 

.   

0pP
 

(12) 

 

3 0NM I P 
 

(13) 
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 

1 1 1

2

1 1

1

2 1

1

0

.5 (I R R)

c

(I ( I R R))

c

T

T T

N p p N n

T T

N n

T

p

M M H

H

H I P M I

L S M

H E M

L S M







 

 
 

 

     

  

    

      

A

A
  

(14) 

where 

 3

1

r

NE M I P  





  
 

1 NM I N 
 

TS N   
Proof: The following parameterized Lyapunov function 

candidate is chosen 

 

 
1 1

r N
T

p i p i

p i

V t h e P e
 


 

(15) 

By differentiating  
 V t

, one has 

   

 

 

1 1 1 1

1

1

r N r N
q T T

i q i p i p i

q i p i

r
q T

N q

q

r
T

p N p

p

h
V t e P e h e P e

t

h
e I P e

t

h e I P e

   






  




 



   
 

 





 

(16) 

By using the identities (10)-(11), one has 

   

 

 

1

1

3

1

1 2

1

{

}

r
q T

N q

q

r
T

p N p

p

r
q T

q

r
T

p p

p

h
V t e I P e

t

h e I P e

h
e M e

t

M e M e e h cL e










 



   
 






  
       

   









 A A

 

(17) 

 

 

    

1 1

3

1

1 2

( ( )
r r

q T

p N q

p q

r
qT T

N p

q

T

p

h
h e I P e

t

h
e I P e e M e

t

M e M e e cL e

 




 




    
  

       
 

 



A A
 

 

   

(18) 

Define 

 

 

 3

1

r

NE M I P  





  
 

                      (19) 

If 

, 1,...,
h

r
t



 


 


 and 3 0NM I P 
then 

  

1

V(t)
r

T

p p

p

h Z 



 

                           (20) 

where  

T
T Te e      

 

 

 

1 1 3

4

3 1 2

4 2

T

p

T

N p p

T

p

M M H

H

H I P M cL M

H E M cL

 
   

 

      

       
 

A A

A A
 

 

If 
0p 

 , then for any
0 

, 
  0V t 

 

By using assumption 1, defining 1 NM I N
 and 

remembering the constraint 2 1M M
, one has 

1 1 5

6

5 1

1

6 1

1

0

( .5 (I R R)

cL )

(I ( I R R))

( )

T

T T

N p p N n

T T

N n

T

p

M M H

H

H I P M I

M

H E M

M cL









 
 

 

     

  

    

      

A

A
 

 

(21) 

To convert (21) into LMI, further manipulations are required to 

do on the bilinear term 1 ( )TM cL 
 of (21) as follows 

1 ( ) ( ) ( )T T T

NM cL I N cL cL N        
 

Define the new decision variable 
TS N  , one has  

1 ( )T TM cL cL N cL S      
 

Consequently, (21) is obtained as 

 

 

1 1 1

2

1 1

1

2 1

1

0

.5 (I R R)

c

(I ( I R R))

c

T

T T

N p p N n

T T

N n

T

p

M M H

H

H I P M I

L S M

H E M

L S M







 

 
 

 

     

  

    

      

A

A
 

 

(22) 

Therefore, the errors converge to zero and the consensus is 

achieved. The proof is completed.  ■ 

 

4. ILLUSTRATIVE EXAMPLE 

In this section, a numerical example is given to show the 

effectiveness of the theoretical results.  
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Example: Consider the multi-agent network in Fig. 1, 

consisting of N identical systems [16]. The dynamics of each 

node is described by the following chaotic equation 

     1,...,i i ix t f x t u i N  
 

(23) 

where 

  
   

       

     

1 2

1 1 2 2 1 3

1 2 3

i i

i i i i

i i i

x t x t

f x t x t x t x t x t

x t x t bx t

 

 

  
 

   
    

(24) 

By choosing the values of 
   1 2, , , 10,28, 1,8 / 3b    

 for 

chaos to emerge, the system in (23) becomes the Lorenz system. 

The error dynamics system, the difference between (23) and the 

leader 
    s t f s t

, can be derived as [17]: 
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(25) 

 

Fig. 1. Connected network topology. 

 

Here, we choose 13N  . The TS fuzzy model (6) is used 

for modeling the nonlinear MAS as following: 

:Rule jk
 if 

 1ix t
 is 1 jM

 and 
 1ie t

 is ekM
 , then 

         ,

, 1,2

i jk i i i ie t A e t A x t e t u

j k

  

  

(26) 

where  

   1 11 12ix t M M
 , 

   1 1 2i e ee t M M
 , 11 20M  

 ,

12 30M 
 , 1 50eM  

 , and 2 50eM 
  

The augmented error system is as follows 

         

    
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p

i i i

e t x t e t A e t
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(27) 

where 

1 11A A
 , 2 22A A

 , 3 12A A
 , 4 21A A
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 
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Remembering assumption 1, 
     

T

i iA x t A x t
 is bounded 

by 
TQ R R  which 

0 60 40

0 0 0

0 0 0

R

 
 


 
   . 

    ,p i ix t e t
 can be calculated according to (6), and the 

membership functions are considered as in [2]. 

Here, it is supposed that 1 1d 
 and others 

0kd 
 for 

2,...,13k   that means, only agent one has access to the states 

information of the leader. 

Solving the LMIs (11-13), the gain matrix   is obtained as 

follows: 

8.3923 6.6976 9.8409

-0.0745 158.5477 -4.4160

-0.2948 -1.8867 155.6960

 
 

 
 
    

Fig. 2 shows the states of the agents using   and randomly 

chosen initial conditions. It is concluded from Fig. 2, that the 

consensus take place quickly and the follower agents track the 

leader’s states for the future. 

5. CONCLUSIONS 

This paper has considered a consensus control problem of 

leader-following nonlinear MASs. Initially, the nonlinear error 

dynamics between the leader agent and nonlinear follower 

agents were calculated. Thus, the consensus problem of leader-

following system changed into the stability analysis of the error 

dynamic system. Then, the exact TS fuzzy model of error 

dynamic achieved via the concept of sector nonlinearity. 

Sufficient asymptotically stability conditions obtained based on 

the FLF in terms of LMIs. Moreover, based on the behavior of 

the closed-loop system, some new null terms proposed. The 

slack matrices, defined in null terms, had some advantages such 

as: increasing the degree of freedom, converting the sufficient 

stability conditions to the LMI ones, decoupling the system 

matrices from the Lyapunov ones, and also, generate more relax 

conditions. LMI conditions were achieved by utilizing the 

Kronecker product. The simulation results were shown the 

effectiveness of the proposed approach. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 2. Consensus of multi-agent network and states evolutions of the 

followers (
, 1,2,3ix i 

) and the leader (
, 1,2,3is i 

). 
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