MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 15, NO 2 SUMMER 2015 36
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Control
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Abstract—In most of the researches that have been done in
the position control of robot manipulator, the assumption is that
robot manipulator kinematic or robot Jacobian matrix turns out
from the joint-space to the task-space. Despite the fact that none
of the existing physical parameters in the equations of the robot
manipulator cannot be calculated with high precision. In addition,
when the robot manipulator picks up an object, uncertainties
occur in length, direction and contact point of the end-effector
with it. So, it follows that the robot manipulator kinematic is also
has the uncertainty and for the various operations that the robot
manipulator is responsible, its kinematics be changed too,
certainly. To overcome these uncertainties, in this paper, a simple
adaptive fuzzy sliding mode control has been presented for
tracking the position of the robot manipulator end-effector, in the
presence of uncertainties in dynamics, kinematics and Jacobian
matrix of robot manipulator. In the proposed control, bound of
existing uncertainties is set online using an adaptive fuzzy
approximator and in the end, controller performance happens in
a way that the tracking error of the robot manipulator will
converge to zero. In the proposed approximator design, unlike
conventional methods, single input-single output fuzzy rules have
been used. Thus, in the practical implementation of the proposed
control, the need for additional sensors is eliminated and
calculations volume of control input decreases too. Mathematical
proofs show that the proposed control, is global asymptotic
stability. To evaluate the performance of the proposed control, in
a few steps, simulations are implemented on a two-link elbow
robot manipulator. The simulation results show the favorable
performance of the proposed control.

Index Terms—adaptive fuzzy sliding mode, uncertain Jacobian
matrix, robot manipulator, task-space, chattering, uncertainties.

I. INTRODUCTION

M any current proposed robot manipulator controllers work
according to the information they get from the robot
manipulator joints. In these controllers, actual position of the
joint is contrasted with the desired values and the error is
defined. In position control to compensate for errors in the
joints, control laws are exerted to the actuators. In this way,
desired trajectory, control inputs and robot performance are
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determined in joint-space [1, 2]. But, the final objective is the
end-effector position control in the task-space in robot
manipulators.

In a rigid and very high quality robot manipulators which
have precise dynamic equations and operate within a specific
area of task-space, joint-space control method has a good
efficiency. However, workplace is unfamiliar in most robot
manipulator applications. On the other hand, lots of structured
and un-structured uncertainties exist in the dynamics and
kinematics of the robot manipulator that challenge the
controller's performance. This is why in [3] author believe that
control in joint-space won't lead to the favorable control of end-
effector position in the task-space in such applications.
Insomuch in the control method in task-space, information of
the end-effector position is used for control design. For this
reason, the position error is distinctive in the task-space and the
controller converges this error to zero.

Precise measurement of location and orientation of the end-
effector of robot manipulator is necessary in the controller
design in task-space. Although is not simple as the joint-space,
exact measurement of the variables of the task-space needs for
complex sensing techniques such as visual servoing [4-8], lazer
[9, 10] and ultrasonic [11]. The inverse kinematics moot point
is dislocated with the Jacobian matrix transpose moot point in
the control input when the control moot point is directly
designed in the task-space [12]. However, to calculate the
Jacobian matrix, there must be accessible an accurate
knowledge of the values of kinematic parameters of the robot
manipulator in these circumstances. In other words, the given
presuppositions of kinematics and Jacobian matrix should be
fixed to design the controller position in task-space. The
designer should also have adequate information of upper bound
of present structured and un-structured uncertainties [13].

Till now, different adaptive Jacobian controllers for
controlling the robot manipulator have been provided by
researchers in task-space [14, 15]. Assuming of being given
kinematics and Jacobian matrix has been resolved in these
methods. But, in designing these controllers, only parametric
uncertainties have been included. While being un-structured
uncertainties such as friction, disturbance and un-modeled
dynamics can make closed-loop system unstable. To overcome
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these problems, researchers have used nonlinear robust control
techniques to control the robot manipulator in task-space [16].
One of the basic problems in designing these types of
controllers is the necessary for proper and rational choice of the
range of uncertainties. Tracking error mounts and makes
closed-loop system unstable, if the values of control input
coefficients are selected smaller than the range of uncertainties.
And if the values of control input coefficients are selected
greater than the range of uncertainties, this causes an increase
in the control input amplitude, saturation of the actuators and
the occurrence of unpleasant chattering phenomenon in control
input signal.

Lately, the theory of variable structure control as a robust
control of the robot manipulator has been received a big
attention [17-20]. Sliding mode control is one of the most
widely used methods of variable structure control. This control
method has a lot of benefits such as simple design, robustness
against the uncertainties and the assurance of the closed-loop
system stability. But, out breaking chattering in control signal
is inevitable due to the use of switching in the control law. The
undesirable effects of the phenomenon of control input
chattering are stimulation of un-modeled dynamics, vibration
of mechanical parts and the difficulty of enforcement of control
law [21]. Smoothing methods of signal control such as
boundary layer methods, fuzzy and adaptive [22-26] have been
proposed to dominate control input chattering.

In late years, the adaptive fuzzy sliding mode control
(AFSMC) has been proposed for controlling robot manipulators
through combining sliding mode control, fuzzy logic theory and
adaptive control concepts [27]. The adaptation laws are
designed based on Lyapunov stability theory in AFSMC
algorithms. AFSMC controllers can be classified into two basic
types: indirect AFSMC controllers and direct AFSMC
controllers [28]. Indirect AFSMC controller is used to
approximate the parameters of the system’s dynamics. In [29] a
single input-single output (SISO) fuzzy system is suggested to
estimate the unknown functions of a nonlinear system.
According to the presented approach in [29], authors in [30]
designed an indirect AFSMC method accomplished for
controlling industrial robot manipulators. To estimate the
dynamic equations of the robot manipulator, the multi input-
multi output (MIMO) fuzzy systems are employed in [30]. In
the following, the number of fuzzy rules are reduced by
determining sliding surfaces as the inputs. In [29] a fuzzy
system is applied to replace for the discontinuous control term
in the proposed methods to avoid chattering phenomenon
effects in [30] and [31]. Indirect AFSMC control approaches
usually have some shortcomings. Dynamic equations of system
under control are used in design of indirect AFSMC controllers.
In this case, it is necessary that an approximation of system
parameters should be provided by adaptation laws to estimate
the upper bounds of uncertainties. Consequently,
computational volume of control input is mounted.
Furthermore, MIMO fuzzy rules are applied in design of fuzzy
approximators in lots of these approaches. Using MIMO fuzzy
rules creates an increase in fuzzy rules, consequently, makes
their practical implementation difficult. Because if any delay
happens in computation of control input, it is not possible to
insure the closed-loop system stability.Direct AFSMC

controller is employed to truly regulate the parameters of the
control law without estimating the system’s dynamics. In [32]
authors proposed a MIMO fuzzy system to offset for the
uncertainties of a robot model. But unfortunately, employing a
MIMO fuzzy system needs a great number of fuzzy rules which
causes a high computational load. In [33] authors proposed a
SISO fuzzy system to adjust the control gain in the control law
for a robot manipulator which both reduced the number of fuzzy
rules and attenuated chattering. Differ from proposed method
in [33], authors in [34] used a PI controller inside a boundary
layer to attenuate chattering and the parameters of this PI
controller are online adjusted via adaptation laws. In [35] an
AFSMC method having an integral-operation switching surface
is designed to offset the bound of the approximation error for
electrical servo drives. In [29] two schemes of adaptive SMC
methods are used so that the fuzzy logic systems approximate
the unknown system functions in designing the SMC of
nonlinear system. In [36] authors developed a stable AFSMC
controller for nonlinear multivariable systems with inaccessible
states. In the above mentioned papers, only the parameters of
sequel part of fuzzy rules are approximated for diminishing the
computational load of control input. However, the structure of
proposed approaches is so that for approximating uncertainties
bound accurately and diminishing tracking error, it is essential
that fuzzy rules be increased. Increase in fuzzy rules causes
increase in adaptation laws, in this case still the computational
load of control input rises. Based on the matters exposed to
discussion, it is essential that lots of sensors to be used in
practical implementation of such controllers are for their fuzzy
rules structure.

In [37], authors proposed a direct AFSMC method to online
tune for both the premise and sequel parts of fuzzy rules. In this
paper, a fuzzy controller and a compensation controller are used
to give a control law and the bound of the compensation
controller is adjusted by adaptation laws. Since given algorithm
in [37] designed only for induction servo motor systems, it is
not applicable for robot manipulators. In another study, the
authors in [38] suggested a direct AFSMC controller by mixing
a Pl control, sliding mode control and fuzzy logic. This
controller can adapt online the parameters of premise and
sequel parts of fuzzy rules. Although proposed control method
is applicable on robot manipulators, this controlling technique
has many adaptation laws which rises the computations' load.
In [39] also, a direct AFSMC controller was proposed for
controlling the robot manipulator position. In the proposed
control method, an adaptive fuzzy approximator is used to
approximate the upper bound of uncertainties. Multi-input and
single-output fuzzy rules have been applied in the design
process of inference engine of this approximator. Therefore,
interaction of joints does not affect the desirable performance
of controller in suggested method. That’s why, robot with
proposed control method has a precise tracking capability. But
this precise tracking is accompanied with an increase in a
number of rules in rule base of fuzzy approximator. So that, it
has 120 fuzzy rules in its fuzzy approximator rule base. In other
words, structure of proposed control is designed in a manner
that through increasing the number of robot joints, the fuzzy
rules are increased. Thus, the proposed control has a numerous
calculation load and this control method is not applicable in
most of industrial robot manipulators.
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Researchers have recently utilized the direct AFSMC
control to design type-2 AFSMC control [40]. In this method,
two adaptive type-2 fuzzy systems have been used to estimate
the unknown functions. Ultimate results of simulation show that
the proposed control approach has a desirable performance in
prevailing the existing uncertainties and it makes zero the
position tracking error converge. The reviews represents that
the type-2 fuzzy logic extremely increases the calculation’s
load of the control input although it is very flexible in prevailing
the uncertainties in a robot. Based on this description, there are
some disadvantages with the practical implementation of the
described controller.

It should be noted that most AFSMC methods that have
been so far presented for position control of robot manipulator,
were in the joint-space and assuming the accuracy of the
Jacobian matrix should be established in all of them. If the robot
manipulator to perform the duties is forced to carry a device,
being uncertainty in the Jacobian matrix will be inevitable. For
this reason, if these controllers are used, accuracy tracking of
the end-effector or in other words, carefully tracking in the task-
space cannot be guaranteed.

Based on the mentioned items, in this paper, a direct
AFSMC controller which has few fuzzy rules is proposed to
robust task-space feedback control of robot manipulator. For
the sake of reducing computational load of control input, only
parameters of sequel part of SISO fuzzy rules are updated in
adaptive fuzzy approximator. Hence, this will also lead to
decrease in adaptation laws. The proposed control is designed
so that in practical implementation of the industrial robot
manipulator shouldn't have increase in sensor numbers.

This paper is organized as follows: The joint-space dynamic
equations and task-space dynamic equations of a robot
manipulator are introduced in sections 2 and 3 respectively. In
section 4, in two subsections, the sliding mode controller is
designed for robot manipulator in task-space. In the beginning,
a sliding mode controller is designed using task-space dynamic
equations of the robot manipulator and inverse dynamic
approach. Mathematical proof shows that a closed-loop system
with this controller has global asymptotic stability. In section 5,
a first order TSK fuzzy approximator is designed to eliminate
the control input chattering. Despite of the ability that the fuzzy
sliding mode control has in restraining the control input
chattering, the proposed control has some problems such as
failure in approximating the bounds of uncertainties as well as
lack of stability proof of the closed-loop system. In section 6,
in two subsections, to overcome these problems, a direct robust
adaptive fuzzy sliding mode controller is designed. In section
7, a case study on a two-link elbow robot manipulator has been
simulated and implemented to demonstrate and compare the
efficiency of the proposed controllers in three steps. Finally,
section 8 presents the paper’s conclusions.

2. JOINT-SPACE DYNAMIC EQUATIONS OF AROBOT
MANIPULATOR

Joint-space dynamic equations of a robot manipulator is a
nonlinear, MIMO and second order differential equation which
is expressed as follows [41]:

M(@)G+V(q.q)q+G(@+Ty =u, 1)

In expressed relation, M(q) € R™" is the inertia matrix,
V(q,q) € R™™ represents a matrix including sections related to
Coriolis and centrifugal forces, G(q) € R" stands for the
gravitation vector, Ty € R™ is a vector including disturbances or
un-modeled dynamics, q(t) € R" is assigned as the vector of
joint positions, q(t) € R™ is designated as the vector of joint
velocities, §(t) € R™is the vector of joint accelerations, and u €
R™ represents the vector of robot manipulator input torque. To
simplify equation (1), the following equation is defined:

With substituting (2) in (1) we obtain:
M(q)i+H(g.¢) =u . ®)

Relation (1) has the following specifications:

Specifications 1: Inertia matrix M(q) is symmetric and
positive-definite.

3. TASK-SPACE DYNAMIC EQUATIONS OF AROBOT
MANIPULATOR

The task-space dynamic equations of a robot manipulator is
used to design robust controller in the task-space. For this
reason, relation (3) can be simplified as below:

Gg=M(q)(u—-H(qd), (4)

In order to achieve the end-effector velocity, the following
relation is handled [42]:

X=J@q, (5)

Wherein, J(q) € R™" is the Jacobian matrix, q(t) € R®
represents the vector of joint velocities, and X(t) € R" is the
velocity vector in the task-space. Differentiating of velocity
with respect to time in relation (5), we have:

X=]@i+Jj@q, (6)

Assumption 1: The desired trajectory must be chosen smooth
enough, because the being trajectory smooth enough is a
condition of existence j(q). Suppose that the task-space
trajectory is free from singularities, by substituting relation (4)
in (6), we have:

X=J @M ()(u-H@ ) +J@)q, @
Relation (7) is rewritten as:

M(Q)J N @X +H(g,q) — M(@)] (@) (q)q =

. ®)
J=(q) is an inverse Jacobian matrix.

Assumption 2: It is assumed that the robot is working in a
limited task-space such that the Jacobian matrix is full rank.

For transmission of torque-space to force-space, the following
relation can be utilized [42]:

u=J"(QF®, ©)
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In which JT(q) is Jacobian matrix transpose and F(t) € R"
is a force vector affecting on the robot end-effector. Relation
(9) in (8) is substituted and organized as:

I T @QM@Q) (@X +] " (@H(q,4) —

L 10
I @M@ @@ = F©), (e
Pursuant to the relations (2) and (10), the following relations
are described as follows:

M, (q) =] " (@M@ (@)
v.(q,9) =] (@ (v(g,9) — M@ @] (@q) , (11)
G (q) =] (q)G(q)

In expressed relations, similar to the joint-space quantities,
M, (q) € R™*" represents the Cartesian mass matrix, v,(q, q) €
R™™ js a vector of velocity terms in Cartesian space and
Gy(q) € R" stands for the vector of gravity terms in Cartesian
space. H,(q, q) is introduced as:

Hy(q,4) = Vi(q,9)q + Gx(q) + Tax , (12)

Pursuant to the relations (10) and (12), the task-space
dynamic equations of a robot manipulator can be expressed as
below:

My (DX + He(q,9) = F(1) . (13)

In relations (12) and (13), X(t) € R™ is a proper Cartesian
vector representing position and orientation of the robot end-
effector [43], X(t) € R is the velocity vector of end-effector
in Cartesian space, X(t) € R" represents the vector of end-
effector acceleration in Cartesian space and T,y € R" stands
for the vector including disturbances or un-modeled dynamics
in Cartesian space.

Definition 1: Sylvester's law of inertia: If A €R™" is a
symmetric square matrix and C € R™™" is non-singular matrix,
then the number of positive, negative and zero eigenvalues of
matrix A and matrix CTAC are the same, where CT is the
transpose of C [44].

Pursuant to the relation M,(q) =] T(q)D(q)] *(q) and
because of the non-singularity of ]7'(q) and under
consideration the specifications 1 defined in Section 2, utilizing
Sylvester's law of inertia, the specifications 2 can be inferred.

Specifications 2: Cartesian mass matrix M, (q) is a positive-
definite matrix.

I1. 4. DESIGN OF SLIDING MODE CONTROL

A. 4.1. DESIGN OF SLIDING MODE CONTROL (STEP 1)

In order to design sliding mode control, sliding surface vector
is expressed as below [45]:

S=(/ +0)" e, (14)

In relation (14), e = X — X, is the tracking error vector in
which X = [x; x, ... x,]7 represents the vector of end-effector
position and X, = [x14 X4 - Xnq]” stands for the vector of
desired trajectory in  Cartesian space and A=

diag[A4, Ay, ... ,A,] represents a diagonal matrix in which
A1, Ay, ..., A, are constant and positive coefficients.

In general, in order to design sliding mode controller, the
variable xﬁ”_l) is expressed as follows:

xI7D = x-D g

(15)

Because the industrial robot is introduced through the
second order differential equation, relation (15) with n = 2 is
defined as below:

X, =Xx—5, (16)
With differentiation the relation (16), we have:
X, =X%-5, a7)

Point 1: Because X, X, %X and S are n X 1 vectors, hence x, and
X, are n X 1 vectors.

For designing sliding mode controller, with considering the
relations (16) and (17), relation (13) is rewritten as:

M, (@)%, + My (q)$ + Hx(q,9) = F(D) , (18)

According to the expressed subjects, the control law is
suggested as follows:

F(t) = F(t) — Ksgn(s) , (19)

Wherein, K = diag[k,,k,, ... ,k,] represents a positive-
definite diagonal matrix and sgn(*) stands for the sign function.
E(t) is chosen as below:

F@®) = M (%, + He(q,9) (20)

In relation (20), M, (q) and H,(q,q) are estimated values of
M, (q) and H,.(q, q); respectively.

Point 2: M(q), V(q,q), G(q) and H(q,q) matrixes have a
kinematic and dynamic uncertainties. With regard to the
relations (11) and (12), it can be concluded that due to the use
of Jacobian matrix for calculating values of M, (q), V,(q, q),
G,(q) and H,(q, q) matrixes, these matrixes, in addition to the
kinematics and dynamics uncertainties, they also have the
uncertainties of Jacobian matrix. Therefore, an accurate
estimate of the values of M, (q), V,(q, q), G.(q) and H,(q, q)
matrixes cannot be provided .For this reason, the values of
M (@), %(q,4), G(q) and H,(q, q) are defined.

By substitution relations (19) and (20) in (18), we have:
M (@)% + M ()5 + He(q, §) = M (@)%, +

— ) 21
H,(q,4) — Ksgn(s) , )
Through simplification of relation (21), we obtain:
M (@)s = (M(q) = Mu(@)) %y + (Fi(q, ) —
(22)

Hy(q,)) = Ksgn(s) ,

Because of simplicity of the above relations, AM,(q) =
M,(q) — My (@), AHx(q, @) = Hx(q,q) — Hy(q,q) and Af =
AM, (q)%, + AH,(q,q) are determined and relation (22) is
simplified and can be rewritten as follows:
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Mx(Q)S = AMx(Q)jér + AHx(q' q) - ngn(s) =

Af — Ksgn(s) . (23)

Point 3: Af € R™ stands for a vector including all structured and
un-structured uncertainties.

In the following, to prove closed-loop system stability of
relation (22), according to dynamic characteristics of industrial
robot manipulator as noted in previous section, Lyapunov
function candidate is suggested as below:;

V(s) = 5s"My(q)s | (24)

The first derivative of relation (24) with respect to time is given
as:

V(s) = sTM,(@)$ + 55" My(q)s (25)

The first derivative of all entries of matrix M, (q) with
respect to time is calculated and M,(q) is determined as
follows:

. M11 h Mln
Mnl Mnn
According to relations (23) and (26), relation (25) is

redefined, and for better understanding of the mentioned
relation, the relations are shown in format of matrix:

Afy
V(s) = [s1 55 ... Sp] X l \

(26)

oo oq[59nG)

52 8]l

0 0 k, sgn(s,) (27)
. . Sl

1 o ][

;[5152--- Snl E RIS |
Mnl Mnn Sn

Subsequently, after the simplification of relation (27), in
four steps, the following relations can be inferred:

Afy kisgn(si)]

V() = [51 55 . 5] x| |M2] = |F2S9mCs2)| ) 4
Afa k,sgn(s,)]
. (28)
S2

Z‘L{l=1 SiMin]

1 . .
> [y siMyy TisiMiy ...

Sn

Afy — kysgn(sy)

V(s) =[5y 55 .. 5] X Af2 = kz:sgn(sz) +
Afn - knsgn(sn)
(29)
%(Z?:l $iS1Myy + Xiey $i5;Myp + -+ +
Z?=1 SiSnMin) ’
V(S) = 1‘1—1(5'(Afi — kisgn(s))) +
12 15151 ij » (30)
V(s) = XL (si(Af; — kisgn(sy)) +
(31)

(Zl 1512Mll + Z Z] i+1Si S](Ml] + ijz))

In relation (31), s; represents i entries of sliding surface
vector S, Af; demonstrates it" entries of vector Af, K; shows it
entries of the main diameter of matrix K; furthermore, M;;
represents entries in i rows and j™ columns of matrix M, (q).
In the following, to prove the closed-loop system stability,
relation (31) should be less than zero, this means that:

V(s) = Zii(si(Af; — kisgn(s))) +
(Zl 1Slell + Z Z] I.+1S S](Ml] + ijl)) <
0,

Given that during the process of controlling the robot
manipulator, s;2 is always a positive number, therefore, M;;
must be negative. On the other, the phrase s;s; can be a positive
or negative value, therefore, Mi]-+M]-i must be zero. According
to the above explanations to satisfy the relation (32) the
following three conditions must be met:

(32)

M; <0, (33)
K > Iafill - 35)

As it stands, only an adjustment and selection of the control
parameter K in the relation (35) attributed to the designer and
relations (33) and (34) make the control system uses very
limited. And the proposed control system is used only to control
robot manipulators so that the relations (33) and (34) be
established to the derivative of their entries of inertia matrix.
So, although with establishing the above relations and by
selecting the appropriate control parameter K, the proposed
control system is global asymptotic stability, due to constraints
created by the relations (33) and (34), the control system will
not be widely used. In the next sub-section, to overcome this
problem, the control system will be re-designed.
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B. 4.2. RE-DESIGN OF SLIDING MODE CONTROL(STEP 2)

Owning to the relation (18), the control law is redefined and can
be rewritten as follows:

F(t) = F(t) — Ksgn(s) — Bs , (36)

In relation (36), F(t) is considered according to relation
ﬁll ﬁln
(20)andalsop =| : ~ i |isapositive-definite matrix.
[ nn
Substituting relations (36) and (20) in (18), we obtain:

M, (%, + My (q)$ + Hy(q,q) = M (@)%, +

H,(q,q) — Ksgn(s) — Bs , @37

By simplifying relation (37), with respect to relations (22)
and (23), and point 3, the following relation can be concluded:

Mx(Q)S = AMx(q)jér + AHx(q' q) - KSng(S) =

Af — Bs — Ksgn(s) . (38)

To prove the closed-loop system stability of relation (38),
due to the relations (24) and (26), relation (25) is rewritten as:

Afy
V(s) = [s1 5 - sal x| |22] -
Afn
S1
B11 : 31nl s
ﬁnl : ﬁnn S;‘L
o o o01[59nGD) 9)
1
0 -, 0 Sgn:(sz) +
00 Enllsgnisn
. . 51
) My, My, s,
5[5152--- Sl E REEE o
Mnl Mnn Sp

After the simplification of relation (39), in three steps, the
following relations can be inferred:

Afy =1 5iPui
7 n ..
V(s) = [s1 5 ... sp] X Afz - Zl=1:51321 _
Afn i1 SiPni
kisgn(s1)
kzsg:n(sz) 4 )
knsgn(s,)
S1
n y n y S2
[Z‘ 1My Xl siMi Zi:lsiMin] ]
STl

V(s) =[5y 55 .. 5] X

Afy — Yiz1siPu
Afy — Xie1SiPai

Afn - ?:1Siﬂni -

— kysgn(sy)
— kysgn(s,) +

knsgn(s,) (41)
é(Z?ﬂ 5i51Mi1 + X SiszMiz +oeet
Z?:lsiSnMin) )
V(s) = i (si(Af; — kisgn(s))) —
(42)

12] 1Slsjﬁl]+ Z 12] 1SLS] ij »

In relation (42), B;; represents entries in i™ rows and j"

columns of matrix 8. To prove the stability of closed-loop
system, relation (42) should be less than zero, in the sense that:

V(s) = Xl (si(Af; — kisgn(s))) —
43
LN sis By + AT S sy <0, )
The relation (43) is satisfied only in the case that:
K; > Afill (44)
ML
g1l > |52 - (45)

Therefore by choosing appropriate K which satisfies
relation (44) and as well as by choosing appropriate § which
satisfies relation (45), the closed-loop system will possesses the
global asymptotic stability.

Though the closed-loop system with the sliding mode
control has a global asymptotic stability in the presence of the
all existing uncertainties, the incidence of the undesirable
chattering phenomenon in the control input is inevitable due to
the use of the sgn(*) function in the control input. Thus, the
practical implementation of this controller is difficult. That's
why in the next section of the paper, a fuzzy approximator using
fuzzy logic is designed to overcome the existing problems. This
fuzzy approximator smooths the control input signal and
prevents the occurrence of undesirable chattering phenomenon

I1l. 5. DESIGN OF FUZZY SLIDING MODE CONTROL

First-order fuzzy Takagi- Sugeno- Kang (TSK) system is
defined via fuzzy if-then rules which demonstrate the relations
between inputs and outputs. In general, first-order fuzzy
Takagi- Sugeno- Kang control system rules are expressed as
follows:

if X is. Al a'nd ..and le is AL then )

yi=ay+dix + -+ apx,

Wherein i =1,2,...,M and M represents the number of
fuzzy rules. y'’s are the output of these M fuzzy rules and

ab,al, ..., al are constant coefficients. In order to design sliding
mode controller, relation (36) could be defined as [12]:
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s<0

E, =F+K-— ,
{p tK=ps . 47)
s>0

E,=F—-K-ps
Owing to the relation (47), controller fuzzy rules could be
expressed as below:

(if sis A and F, is A} and F, is A} then

| y' =aj +als + ajF, + a}F,

, (48)
if sis Af and F, is A5 and F, is A3 then

y? = a§ + afs + a3F, + a3F,
In the abovementioned relation, a} = a3 = al = a% = a? =

al =0 and al = a3 =1 and membership functions will be
written as:

1 , §<-05
1-2(s+05)? , —05<s<0
Al = , (49
. 2(s — 0.5)2 , 0<s<05 (49)
0 , §=0.5
0 , s§s<-05
2(s + 0.5)? —05<s<0
A2 = ’ , (50
1 1-2(s—05)*, 0<s<0.5 (50)
1 , §s=05
Al=4%3=1 ;
2 2 (51)
lower bound of F < F, < upper bound of F ,
AL =A% = ;
3 3 (52)

lower bound of F < F, < upper bound of F ,

Point 4: Designers need to have access to the information of
dynamic equations of robot manipulator for designing the robot
manipulator  controller. Under these conditions, the
uncertainties bound of the dynamic equations of robot is
specified. Accordingly, because of the favorable performance
of robot manipulator, the bound of applied force to end-effector
is specified.

If we assume that x = [s, F,, F,]" be input vector of fuzzy
system, its output will be calculated according to the
combination of fuzzy rules (48) and is defined as below:

_ ey @40y
FL)+f2(x) ’

In the abovementioned relation, f1(x) and f2?(x) are the
firing strengths of the 1" and 2" rules; respectively, which is
gained based on the following relation:

{fl(x) = Hpt (x1) * Hal (x) * Ml (x3)
F200) = gz (00) * g (62 * pz ()

(53)

(54)

The mark of " = " is the indicative of a t-norm and HA;(Xi)

indicates the membership degree of the input x; in the
membership function A} from the it" rule (fori=1,2 and j =
1,2,3).

The suggested fuzzy system prevents the sudden changes in
the control input and as a result prevents chattering
phenomenon. Nevertheless, the presented fuzzy approximator
has the following disadvantages:

1. The fuzzy rules of presented approximator is three inputs-
one output, so more sensors should be used for practical
implementation of the proposed approximator. This
increases economic costs of the practical implementation of
the controller.

2. In proposed approximator, membership functions in the
fuzzy rules should be set based on trial and error to reduce
the approximation error. This approach, however, is possible
but it is very time consuming.

3. Structure of the proposed fuzzy approximator is in such a
way that it cannot approximate the bound of uncertainties.
So, the technique of increasing the available coefficient in
the control input must be used to overcome the existing
uncertainties. As a result, it causes increasing the amplitude
of control input and saturation of robot manipulator
actuators.

4. The proposed control lacks closed-loop system stability.

In the next section of the paper, an adaptive fuzzy approximator
is designed in a way that does not have the above problems.

IV. 6.DESIGN OF ADAPTIVE FUZZY SLIDING MODE
CONTROL

A. 6.1. DESIGN OF ADAPTIVE FUZZY SLIDING MODE
CONTROL (STEP 1)

Based on the relations (36) and (38), certainly this issue can be
inferred that the reason for the incidence of chattering
phenomenon in conventional classic sliding mode control
rooted in the existence of the constant coefficient K and the
Sign function. Nevertheless, suppose that the control gain
Ksgn(s) is replaced by a fuzzy gain p. Then, the new control
input could be defined as follows:

F(t)=F(t)—p—fs. (55)

An adaptive law is designed owning to the warranty that p
can compensating the disadvantages caused by system
uncertainty. It is obvious that via these analyses the value of p
can be specified by the value of the sliding surface s.
Nevertheless, the fuzzy system for p should be a SISO system,
with s as the input and p as the output variable. The rules in the
rule base are in the following determined model:

if sis AT then p is B[", (56)

Wherein A" and B{™ are fuzzy sets. In this paper, the same
type of membership functions, i.e. NB, NM, NS, ZE, PS, PM,
PB are chosen for both s and p where, N stands for negative, P
positive, B big, M medium, S small and ZE zero. With respect
to Fig.1, these are all Gaussian membership functions defined
by considering to the following relation:

uaxp) = expl- (322)’],

5 (57)
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0.8

p—
0.6t

0 0.2 0.4 0.‘(1 0.8 1
S(t)
Fig.1. The membership functions of the rule base of the fuzzy
inference engine.

Wherein, ‘““A’’ stands for one of the fuzzy sets NB, ... , PB
and x; indicates s or p. y represents the center of ““A’” and ¢ is
the width of ““A’’. Despite the fact that the membership
functions for s and p have the similar titles, proportionally, the
values of the center and the width of the membership function
with a similar title for s and p are different respectively. The
parameters of the membership functions of p are updated online
insomuch, those of s have predefined quantities. Hence, the
controller is an adaptive controller.

Based on the definitions of the input and output membership
functions and according to the expressed concepts, the rule base
could be defined as follows:

if sis NBthenpis NB
if sis NM thenpis NM
if sisNSthenpis NS
if sisZE thenpis ZE
if sis PSthenpisPS
if sis PM then p is PM
if sis PBthenpis PB

(58)

Furthermore, according to our consciousness of fuzzy
systems and owning to the relation (53), fuzzy gain p is defined
and can be rewritten as below:

A ON

= 59
M () (59)

n"w(s),

In whjch M is the amount of the rules. An‘d aswell as, n =
[771' tty nl’ I ’nM]quJ(S) = [lp(s)l! °tty l{l(s)l’ tty l'IJ(S)IVI]T
and W(s)! defined as:

q’(s)i = ?:1 “Aj (S)/Z{VLI H?:l ‘UA; (S) .

In relation (59) 7 is selected as a parameter to be updated
and that's why its name is parameter vector. In addition, ¥(s)
is defined as the function basis vector and can be considered as
the weight of the parameter vector. Eventually, to sum up the
main points of presented concepts, the suggested control input
is represented as:

F(t)=F(t)—p—Ps
ﬁ(t) = Mx(q)xr + ﬁx(q' Q) .
p=n"¥(s)

(60)

(61)

An approximator with single input-single output fuzzy rules
has been used in designing the proposed control. So, the need
for additional sensors is resolved in practical implementation of
the proposed control. On the other hand, the presented adaptive
fuzzy approximator, at the time of the process of robot
manipulator control approximates the bound of existing
uncertainties online and prevents an increase in the control
input amplitude. However, adjusting the membership functions
of this approximator must be continued based on trial and error
and the proposed control still lacks the closed-loop system
stability. In the next subsection of the paper, the posed problems
are solved by reviewing the method of designing the adaptive
fuzzy approximator.

B. 6.2. RE-DESIGN OF ADAPTIVE FUZZY SLIDING
MODE CONTROL (STEP 2)

In this sub-section, to overcome the problems that were
mentioned in sub-section 6.1, according to relations (36), (38)
and (55), the new control input could be rewritten as:

Ft)=F@t)—-T'—p—fs . (62)

In relation (62), T' represents a positive constant. The
following candidate Lyapunov function is suggested in order to
design the adaptive fuzzy controller:

V(s) = 55" Me(@)s, (63)

In relation (56), V(s) is introduced as an indicator of the
amount of energy of s. The stability of system is guaranteed via
choosing a control law in a way that V(s) < 0 and V(s) = 0
only when s = 0. A fuzzy gain p is used in the adaptive fuzzy
sliding mode control to avoid adverse effects of the system
uncertainty and reduction of the energy of s. The first derivative
of the relation (63) with respect to time is given as:

V(s) = sTM ()3 +355 M (q)s (64)
According to relations (37) to (42), relation (64) is rewritten as
below:

V(s) = ZiLi(si(Af; —pi — 1)) —

1 . (65)
i1 Xj=185i5iBy + S Xita Xj=1 SisiMy;

With respect to relation (65), it can be inferred that V(s) < 0
only in the case that:

Si<0

0 <Afi— T

bSarn | uSo (66)
Mi'

18511 > ”7]” - (67)

If ||s;|| is too small, a smaller value of p; can further
guarantee the stability of system. And as the same way, if ||s;||
is too large then, a larger value of p; can further guarantee the
stability of closed-loop system with adaptive fuzzy sliding
mode control. Eventually, if s; = 0 then, the value of p; could
be chosen to be equal to zero.

Based on the details, This theme is analogous to the concept
of utilizing the function Sat (). The difference is that the
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control gain is different along with the sliding surface all times.
Owning to the descriptions of the input and output membership
functions and base on the relations (56) and (57), the rule bases
could be defined as below:

if sis NBthen pis NB
if sis NSthenpis NS
if sis ZE thenp is ZE
if sis PSthenpisPS

if sis PBthenpis PB

Next, according to the relations (53), (59) and (60), define
n* s0 p = n*"W(s) is the optimal compensation for Af. Based
on the Wang’s theorem [46], there is @ > 0 which satisfies the
below mentioned inequality:

Af —p=Af —n"W(s)<a,

According to the noted inequality, « is approximation error
and it can be as small as possible. Afterwards, define 7j as a
parameter:

(68)

(69)

=n-n", (70)
Based on the relations (59) and (70) it is inferred that:
p=T"w()+n"W(s) . (71)

After analyzing all the details of the adaptive fuzzy
controller design, the candidate Lyapunov function is modified

and the relation (63) is redefined and can be rewritten as below:
V(s) = 55" My(q)s + 777, (72)

Wherein, & represents a constant parameter that is greater
than zero. The first derivative of the relation (72) with respect
to time is given as:

V(s) = sTM ()3 + 55" M(q)s + o= (777 +

'), 7
Due to the relation (65), relation (73) is simplified as follows:

V(s) = sT[Af —p— T +5"s(2— B) + 2777,
With substituting relation (71) in relation (74), we obtained:

V(s) = sT[Af —7T¥(s) —n*"W(s) — I'| +

(74)

7 75
STs(G— B) +5770, (79)
After that, with rearranging the relation (75), we have:
V(s) =sT[af —n*Tw(s) — I + sTs(% -B)+
(76)

" [51 - sTw ()]
The adaptive rule with respect to relation (76) could be chosen
as:

i =8sTW(s) ,

Due to the structure of the selected adaptive rule, relation (76)
is reorganized as below:

(77)

V) =sT[af =0T = 1] +5TsC =), (78)
Based on the relations (69) and (78), the following inequality
could be inferred:

V(s) <ls"l(a—1) + IISTIIIISII(%—IJ’). (79)

With respect to relation (67), relation (79) illustrates that via
properly selecting the coefficients I' and B, V(s) <0 is
satisfied. According to satisfying the relation (79), the closed-
loop system with adaptive fuzzy sliding mode control is
globally asymptotically stable in presence of all structured and
unstructured uncertainties. Eventually, to sum up the presented
concepts, the suggested control input is defined as:

Ft)=F(t)-T—p—ps
F(t) = M(@)%, + Hc(q,4)
| p=1"¥(s)
L7 = 6sTw(s).

(80)

V. 7. ACASESTUDY ON THE TWO-LINK ELBOW
ROBOT MANIPULATOR

In this section, the robust controllers which have been designed
and scrutinized in this paper are conducted on the two-link
elbow robot manipulator of Fig.2.

e

Fig.2. Two-link elbow robot manipulator.

The dynamic equations of this robot are presented as below
[41]:

M (@)X + V(. 9)q + G (@) + Tax = F(1) , (81)
In which:
M,(q) = [ml t gz O ] , (82)
m;
V. V

V.(q,0) = [ 11 12] ’ 83
2(q,q) Vor Vo (83)
Vip = —(myL(cosqy) + myLy)G, — 2myL, +

cosq . 84
m,L,(cosq,) + myL, (squz)z)qz , (84)
Vi = —=myL,q; , (85)


https://www.google.com/search?client=firefox-b&biw=1024&bih=503&q=rearranging+equations+worksheet&sa=X&ved=0ahUKEwjOsLLr2uPNAhXCvRQKHXZxBUQQ1QIIhwEoBQ
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Vo1 = myLi(singy)q, + myLi(singy;)q, , (86)
Vy, =0, (87)
cosq, , ,
o [mlg g sing)Ging)| o
m,g(cosq;)(cosqy)
T,
TdX = Td . (89)
y

Point 5: In each robot link, the mass distribution is intended as
point particle and the center of mass of each link is considered
to be determined at the end of the link.

In abovementioned relations, L, is the length of the first
link, L, represents the length of the second link, m, is the mass
of the first link, m, stands for the mass of the second link, g is
the gravity, Ty, represents the disturbance or un-modeled
dynamic and F is the force applied on the end-effector of robot.
The quantities for the robot which are applied in this simulation
have been shown in table 1.

Point 6: The quantities L,, M, L, and f, are the estimations
from the actual quantities of L,, m;, L, and m, which have been
used in calculation of F.

PARAMETERS OF TWO-LII:II— Q Elﬂgcl)w ROBOT MANIPULATOR
m, = 5kg m, = 4.5kg
Li=1m L,=11m
m, = 4kg m, = 3.5kg
L, = 0.8m L, =09kg
Ta, = Ta, = 5sin(t) g=98 m/52

The quantities of controlling parameters in controller (36)
which have been applied in this simulation are shown in table
2.

Point 7: The quantities k; and k, are calculated according to
relation (44) and also quantities B;1, B12, B.,and S, are
calculated with respect to relation (45).

TABLE 2
PARAMETERS OF CONTROLLER (36) IN TWO-LINK ELBOW ROBOT
MANIPULATOR

k,=170 k,=150

A,=35 1,=70
B11 =180 Bi2=0

B21=0 B22 =80

The Jacobian matrix of robot manipulator is determined as
follows:

L,sing, 0

Licosq, +L, L, (90)

J(q) =

To study the desirable performance of the suggested control,
the three-step simulations are carried out.

A. 7.1. STEP 1 OF SIMULATION

In step 1 of simulation, sliding mode control of relation (37) is
applied for two-link elbow robot manipulator. Fig.3 shows the
desired and actual trajectories in Cartesian space for end-
effector.

ACTUAL & DESIRED TRAJECTORY

03593 et

1.3593]

0.1379 4 0.1379_ 0.1379__0.579
EM ‘I‘
~ 0.3 (’)
2}
-
02
<
RON S :
-
0 P
0.1 .

.2 0.4

-0.2 0 0.
X-AXIS (m)
Fig.3. The desired and actual trajectories in Cartesian space for end-effector.

After execution the simulation, tracking errors of the end-

effector position in Cartesian space for X and Y axes are
illustrated in Fig.4.

x10* TRACKING ERRORS (SMC)

o 6
T'ime (sec)
Fig.4. Tracking error of the end-effector position.

According to Fig.3 and 4, it is obvious that the precise
tracking on X and Y axes have been occurred, so that the
maximum tracking error of the end-effector position is 513 x
1077 meters for X axis and 383 x 10™% meters for Y axis.
Exerted control input to the joints 1 and 2 are shown in Fig.5.

CONTROL INPUT 1

Torque 1 (NM)

10

A 6
I'ime (sec)

(@)
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CONTROL INPUT 2

fln
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(b)

Fig.5. Exerted control inputs to joints 1 and 2, in SMC control, (a) The exerted
control input to joint 1, and (b) The exerted control input to joint 2.

As can be seen in Fig.5, the chattering domain of exerted
control inputs to joints 1 and 2 are 1814 to 3406 Newton meters
and 6 to 1249 Newton meters, respectively. This chattering can
lead to the activation of the nonlinear dynamic modes of the
two-link elbow robot manipulator and finally causes instability
in the control system and damage to the physical structure of
the robot manipulator. In step 2 of simulation, to overcome the
adverse chattering phenomenon in control inputs, fuzzy sliding
mode control input is simulated for two-link elbow robot
manipulator.

B. 7.2. STEP 2 OF SIMULATION

After applying fuzzy sliding mode control input and execution
of simulation, the tracking error of the end-effector position on
X and Y axes have been demonstrated in Fig.6.

«10° TRACKING ERRORS (FSMC)

ex & ey (m)

T S T
Time (sec)

Fig.6. Tracking error of the end-effector position on X and Y axes, in FSMC
control.

By comparing Fig.4 and 6, it is obvious that a more precise
tracking in comparison with the previous step of simulation is
conducted on X and Y axes, such that the maximum tracking
error on X and Y axes are 14 x 107%meters and 43 X
107 meters, respectively. In Fig.7, the applied control inputs
to the joints 1 and 2 are displayed.

CONTROL INPUT 1

80
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=
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10 4 6 8 10
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(b)

Fig.7. Exerted control inputs to joints 1 and 2, in FSMC control, (a) The exerted
control input to joint 1, and (b) The exerted control input to joint 2.

According to Fig.7, it is observed that the control inputs
have no chattering. In addition, the maximum control inputs 1
and 2 are 97.87 Newton meters and 19.2 Newton meters,
respectively.

The simulation results confirm the desired performance of
the fuzzy sliding mode control in position control of robot
manipulator. But, as stated in section 5 of the paper, this
controller has flaws that increases the economic costs of its
practical implementation. On the other, the proposed method
lacks stability of closed-loop system and the presented fuzzy
approximator does not have the ability to approximate the
bound of existing uncertainties. For this reason, the next step of
simulation allocates to evaluate the performance of the
proposed controllers in section 6 of the paper.

C. 7.3.STEP 3 OF SIMULATION

In this step of simulation, according to the designed adaptive
fuzzy sliding mode controllers of section 6, the control inputs
of equations (61) and (80), are applied for two-link elbow robot
manipulator.

1) 7.3.1. STEP 3-1 OF SIMULATION

In this step, the control input of equation (61) is applied for two-
link elbow robot manipulator. After applying adaptive fuzzy
sliding mode control input and execution of simulation, the
tracking error of the end-effector position on X and Y axes have
been indicated in Fig.8.
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x 10° TRACKING ERRORS (AFSMC-equation(61))

0 2 8 10
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Fig.8. Tracking error of the end-effector position on X and Y axes, in AFSMC
control (equation (61)).

By comparing Fig.8 with Fig.4 and 6, the considerable
reduction of the tracking error in this step of the simulations is
remarkable. The maximum tracking error on X axis is 4.31 X
107% Rad and on Y axis, it is 8.03 x 107 Rad. Fig.9 shows
exerted control inputs in adaptive fuzzy sliding mode control
(equation (61)) compared with fuzzy sliding mode control for
joints 1 and 2.
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--------- AFSMC-equation(61)

100

920
80HA

&
70

60

Torque 1 (NM)

50

0 2 4 6 8 10
Time (sec)
(@)
55 CONTROL INPUT 2

— FSMC
--------- AFSMC-equation(61)
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Fig.9. Exerted control inputs to joints 1 and 2, in AFSMC control (equation
(61)) compared with FSMC control, (a) The exerted control input to joint 1, and
(b) The exerted control input to joint 2.

According to Fig.9, it is observed that the adaptive fuzzy
sliding mode control inputs 1 and 2 have no chattering and have
smaller amplitude compared with fuzzy sliding mode control,
in the most time of simulation. The diagram of the variations in
fuzzy gains p, and p,, versus time is shown in Fig.10.

FUZZY GAINS Rho X & Rho Y (in cquation(61))
20 :
Rho X

i8F — <+~ B .. |Seaptasasenes Rho Y

Rho X & Rho Y

4 6 8 10
Time (sec)

Fig.10. The fuzzy gains p, and p,, , in AFSMC control (equation (61)).

According to Fig.10, smooth approximation of the fuzzy

gains p, and p, is observable. This suitable approximation
shows that the adaptive fuzzy system functions satisfactorily
and has specified the bounds of the existing uncertainties.
The simulation results show the favorable performance of the
proposed control. By comparing the performance of the fuzzy
sliding mode controller and adaptive fuzzy sliding mode
controller (61), it follows that in the same working conditions,
precision tracking in adaptive fuzzy sliding mode controller is
more and control input amplitude of this controller is smaller.
In addition, adaptive fuzzy approximator has properly
approximated bound of existing uncertainties. However,
adaptive fuzzy sliding mode control (61) lacks closed-loop
system stability. That's why in the next step of the simulation,
the function of adaptive fuzzy control (80) will be examined
that in its designing any attempt has been made to resolve this
problem.

2) 7.3.2. STEP 3-2 OF SIMULATION

In this step, the control input of equation (80) is applied for two-
link elbow robot manipulator. In this step of the simulation, the
number of fuzzy rules of adaptive fuzzy approximator (80) was
reduced up to 5 numbers, to reduce calculations volume of
control input and the membership functions of the Fig.11 was
used for designing adaptive fuzzy approximator.

ZE - PS PB

Fig.11. The membership functions of the rule base of the fuzzy inference
engine.

After applying adaptive fuzzy sliding mode control input
and execution of simulation, the tracking error of the end-
effector position on X and Y axes have been indicated in Fig.12.
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x 10° TRACKING ERRORS (AFSMC-equation(80))
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Fig.12. Tracking error of the end-effector position on X and Y axes, in
AFSMC control (equation (80)).

By comparing Fig.12 with Fig.8, the negligible reduction of
the tracking error in this step of the simulations is visible. The
maximum tracking error on X axis is 3.92 x 10~ Rad and on
Y axis, it is 7.31 X 107° Rad. Fig.13 shows exerted control
inputs in adaptive fuzzy sliding mode control (equation (80))
compared with adaptive fuzzy sliding mode control (equation
(61)) for joints 1 and 2.

CONTROL INPUT 1

AFSMC - equation (61)

- AFSMC - equation (80)

Torque 1 (NM)

T;me (seﬁc)
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--------- AFSMC - equation (80)

Torque 2 (NM)

T;me (s:c)
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Fig.13. Exerted control inputs to joints 1 and 2, in AFSMC control (equation
(80)) compared with AFSMC control (equation (61)), (a) The exerted control
input to joint 1, and (b) The exerted control input to joint 2.

According to Fig.13, it is observed that the adaptive fuzzy
sliding mode control inputs 1 and 2 (equation (80)) have no
chattering and have smaller amplitude compared with adaptive
fuzzy sliding mode control (equation (61)), in the most time of

simulation. The diagram of the variations in fuzzy gains p,, and
py Versus time is shown in Fig.14.
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Fig.14. The fuzzy gains p, and p,, , in AFSMC control (equation (80)).

According to Fig.14, smooth approximation of the fuzzy
gains p, and p, is observable. This suitable approximation
shows that the adaptive fuzzy system functions satisfactorily
and has specified the bounds of the existing uncertainties.

3) 7.3.3. STEP 3-3 OF SIMULATION

The suggested AFSMC control in [38] has been considered in
recent years by robotic researchers. For performance evaluation
of the proposed controller, the mentioned referenced controller
is implemented on a two-link elbow robot manipulator and the
simulation results are compared with the previous step of
simulation. After using mentioned controller in [38] and
execution of simulation, the tracking error of the end-effector
position on X and Y axes have been shown in Fig.15.

ex & ey (m)
ELS S0 e o w

8 10
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Fig.15. Tracking error of the end-effector position on X and Y axes, in
AFSMC control (shahnazi algorithm).

By comparing Fig.15 with Fig.12, the modest increases of
the tracking error in this step of the simulations is visible, that’s
negligible. The maximum tracking error on X axis is 7.82 X
107® Rad and on Y axis, it is 8.39 x 107® Rad. Fig.16
displays exerted control inputs in proposed AFSMC compared
with AFSMC in [38], for joints 1 and 2.
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Fig.16. Exerted control inputs to joints 1 and 2, in AFSMC control (equation
(80)) compared with AFSMC control (shahnazi algorithm), (a) The exerted
control input to joint 1, and (b) The exerted control input to joint 2.

Based on the Fig.16, it is obvious that the shahnazi’s
AFSMC control inputs 1 and 2 have bigger amplitude compared
with proposed AFSMC, in the most time of simulation. Hence,
the proper functioning of the suggested controller can be
inferred. In total, Along with above mentioned simulation
results, by investigating the design approach of
abovementioned controllers the following remarks can be
pointed out:

1. In Shahnazi’s AFSMC control, the combination of PI
control, sliding mode control and adaptive fuzzy control
were utilized. In the suggested adaptive fuzzy approximator,
the parameters of premise and consequence parts of fuzzy
rules are updated online. Accordingly, the number of
adaptation laws for approximating control input coefficients
is increased enormously. As a result, the increase of
adaptation laws leads to the increase of computational load
of control input.

2. In multi-link robot manipulators, utilization of Shahnazi’s
AFSMC control will be encountered with high economic
cost because of using multiple adaptation laws.

3. In Shahnazi’s AFSMC control, to better approximation of
uncertainties bound and provide more precision in the
tracking of robot manipulator position, designer should
increase the fuzzy rules of adaptive fuzzy approximator. The
increase of fuzzy rules leads to the increase of adaptation
laws which makes the computations and the design process
more complex. In the other words, addition of one linguistic
variable to premise and consequence parts of fuzzy rules
cause the addition of 4 more adaptation laws, consequently.

VvI. 8. CONCLUSIONS

In this paper, adaptive fuzzy sliding mode control was
presented for position control of robot manipulator in task-
space and in the presence of dynamic, kinematic and Jacobian
matrix uncertainties. To do this, at first, sliding mode control
was designed for position control of robot manipulator in task-
space. Mathematical proof shows that closed-loop system in the
presence of existing uncertainties has the global asymptotic
stability. But because of chattering in the control input, practical
implementation of the proposed control is not possible. Then,
to resolve this problem, a fuzzy system was designed and added
to the controller. Although fuzzy sliding mode control input
lacks chattering, the proposed fuzzy approximator has flaws
that makes it difficult the possibility of practical
implementation. In the following, by changing the structure of
the designing fuzzy approximator, an adaptive fuzzy
approximator presented in such a way that approximates bound
of existing uncertainties and has very low calculations volume.
In the design of adaptive fuzzy approximator, tips were
considered that don't have fuzzy approximator's problems. But
due to lack of the closed-loop system stability, the structure of
adaptive fuzzy approximator was changed in such a way that
adaptive fuzzy sliding mode control, makes closed-loop system
in the presence of dynamic, kinematic and Jacobian matrix
uncertainties has global asymptotic stability. To demonstrate
the operation of proposed controller, simulations in several
steps were implemented on two-link elbow robot manipulator.
The simulation results confirm desired performance of the
proposed control and the adaptive fuzzy approximator.
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