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1 

Abstract—This paper presents a new load frequency control 

(LFC) design in a multi area power system by using local 

observers. Firstly, sliding mode observers with unknown inputs 

are designed for each area to estimate the state variables locally. 

In this stage interconnections and load variations are assumed as 

unknown inputs. Then, local state feedback and output integral 

are used to attenuate the effect of load variations in each area. 

Analysis and simulation results for a three-area interconnected 

power system show improvements on closed loop performance in 

comparisons with other existing methods. 

 

Index Terms—LFC; decentralized control; PI; Sliding mode observer 

with unknown inputs. 

I. INTRODUCTION 

Frequency unchanging against load variations is an 

important control problem in the dynamical operation of 

interconnected power systems. The LFC is to drives the 

frequency deviation and the inter-area power flow through tie-

lines to zero by manipulating the load reference setpoint [1]. 

Actually, this task can be theoretically described as a 

disturbances attenuation problem of large-scale systems with 

several interconnected subsystems or control areas. Each area 

has its own generator and it is responsible for its own load and 

scheduled power interchanges with neighboring areas [2].  

In [3], [4] two recent overviews of control strategies as well as 

of their current use in the field of LFC problems were provided. 

Based on these, decentralized LFC scheme is more practical 

than the centralized one because it only uses the local area state 

information to attenuate the frequency deviation [5]. But to 

design the decentralized controllers it is important to note that 

the large-scale controlled system becomes stable under local 

control. It has been neglected in many papers [6]. To overcome 

this problem, in this paper we use local state feedback. But 

using state feedback may require many measurements which is 

impossible or extensive. So we design local observer for each 

subsystems to estimate the state variables. But according to 

interconnection terms and load changes which are unknown or 

immeasurable in each control area, we design sliding mode 

observer with unknown inputs. Sliding mode observers are 
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robust, insensitive and very fast [7] so the estimation of the state 

vector could be used instead of the state vector itself.  

Also, PI controller is widely used as the local controller with 

different parameters tuning methods: adaptive PI [8], fuzzy PI 

[9], robust PI [10], PI with adaptation GA tuning algorithm 

[11], PI with PSO tuning algorithm [12], PI design based on 

internal model control [13], PI design with respect to coefficient 

diagram method [14], sliding mode PI control [15] and etc. This 

is because of the inherent PI character: eliminating the steady 

state error to step disturbances. In this paper we use integral 

control to decrease the load changes effects. So the local 

controller is constructed by the state estimation feedback and 

integrator. 

This paper is organized as follows. In Section 2, multi area 

power system is described and the LFC dynamic with problem 

statement is presented. The sliding mode observer design with 

unknown input is considered and the control idea of design the 

controller based on sliding mode in section 3 is discussed. In 

Section 4, for a three area power system, the simulation results 

are obtained and compared with other recent control 

approaches. Finally, concluding remarks are given in Section5. 
 

2. MULTI AREA POWER SYSTEM 

A large multi area power system consist of a number of control 

areas that are interconnected through some tie-lines. Each 

control area of a multi area interconnected power system has 

the structure shown in Fig.1: Foe each i and j )( ji , ith control 

area is interconnected to the jth control area through a tie line. 

The model for the ith area of a multi area power system with a 

generator unit in each area is described in [5].By considering 

power system parameters in table1, the overall generator-load 

dynamic relationship between the incremental mismatch power

i imech LP P   and the frequency deviation i can be 

expressed as 

 
,

1 1 1 1

i i
i m e ch L i i tie ia a a a

i i i i

P P D P
M M M M

                   (1) 

The dynamic of the turbine and the governer can be written as: 
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The relationship between areas i and j of the tie-line power 

flow is: 

,ij ij ji

tie ij i ij j tie tieP T T P P                                      (4) 

and the total tie-line power flow between multi area is defined 

by the following equation: 

,

1 1 1

M M M
ij

tie i tie ij i ij j

j j j
j i j i j i

P P T T 
  
  

                                         (5)  

The area control error ( )ACE can be defined by an 

appropriate combination of frequency deviation i  and tie-

line power variation itieP . for ith area. Therefore, if iB is a 

bias factor, then: 

.i i i tie iACE B P                                                    (6) 

With a set of state variables 
.[ , , , ]

i i

T

i i mech tie ix P P P    

, control input 
,i ref iu P  , disturbance input i Liw P   

and output iACE , the interconnected power system described 

by (1)-(4) can be represented as the following state space model 
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3. CONTROLLER STRUCTURE AND DESIGN 

  One of the most important problems of system (7) is instability 

which is happened because of the imported interference of one 

control area from other areas. To stabilize the system, we use 

the pole placement with state feedback as a controller. All state 

variables of the system should be available in all control areas, 

which is not possible, since data transfer density and 

measurements increases the cost. Also, it is not reasonable to 

eliminate interference.  

Here, we design a local observer for each area. The effect of 

power flow through the-tie lines (interconnections) assumed to 

be unknown input. So we propose local sliding mode observer 

with unknown input structure to estimate the state variables by 

eliminating interconnections effect. Then by applying local 

state estimation feedback, each control area is stabilized. 

Finally, integral controller is added to remove the step changes 

in load.  

 

3.1 Sliding mode observer with unknown input  

Consider the following linear observable system 

 

 where u  is known input, u  is unknown input bounded by 

( )t i.e  || ( ) || ( )u t t  , x is the state variables vector and 

y is the output. Matrices A, B, R and C are known with 

appropriate dimensions. The proposed sliding mode observer is  

  where the observer gain L and sliding based input v must be 

determined such that the error signal ˆe x x   goes to zero 

asymptotically. To do this, let us find the error dynamics as 

  Due to observability of the system (8), there always exists an 

observar gain L such that  A LC becomes Horwitz. So one 

can find symmetric positive definte matrices P and Q satisfying 

  Therefore, we have the following theorem 

Theorem 1. System (10) with Lyapanov equation (11),  

becomes exponentially stable if 

i) There exists matrix F such that FCPRT  ; 

ii) 

1

( ) 0

0 0

T T

y

y

y

y

P C F Fe
t Fe

Fev

Fe



 


 




 

  Proof: Consider the following Lyapunov function: 

(12) 0)(  PeeeV T  
  where P is obtained by (11). By differentiating V(e) along the 

error dynamic (10), we get:  

(8  ) 

x Ax Bu Ru

y Cx

  


 

(9) 
ˆ ˆ ˆ( )

ˆ ˆ

x Ax Bu L y y v

y Cx

    


     

(10) 
( )

y

e A LC e v Ru

e Ce

   


    

(11) ( ) ( )TA LC P P A LC Q      
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(13) 
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  By substituting the assumptions i and ii in (13) we have: 
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     

 
(14)    

  which implies that the error dynamic (10) is exponentially 

stable. This completes the proof. 

3.2 Controller design 

  Now we are ready to design the controller based on sliding 

mode observer discussed in previous subsection. To design 

local observer for each control area let us rewrite the local state 

space model (7) as follows 

( ) ( ) ( ) ( )

( )

i ii i ii i ii i

i ii i

x t A x t B u t R u t

y C x t

  


 (15) 

  where , ,ii ii iiA B C are the same as defined in (7) and 

1 11 1 1
, , , , , , ( ) , , , , ,

ii ii i ij iM i i j M

j i j i

T

R E F F F u t w x x x
 

 
   
      

  

  Clearly if all state variables become stable, then 
1 jx  will be 

bounded. Also, the load changes iw   is bounded which implies 

iu   is bounded or simply the norm of the unknown input iu  is 

finite. Hence we can design a sliding mode observer based on 

the method proposed subsection 3.1 as 

ˆ ˆ ˆ( ) ( ) ( ) ( )
i ii i ii i ii i i i

x t A x t B u t L y y v      (16) 

  where ,ii iL v  are obtained as in (9). The control input ( )iu t  

must contain a stabilizing such as state feedback or feedback of 

estimation of state variables. Also, it concludes an integral part 

to overcome the effect of step changes in load. So the control 

structure is selected as 

ˆ( )i pi i ii iu t K x k y     (17) 

  where piK  (feedback gain) and iik  (integrator gain) must be 

determined. The feedback gain piK  is chosen such 

ii ii piA B K  is Hurwitz which can be done by any pole 

placement method [7]. To determine the integrator gain, we 

rewrite the closed loop model (15) under the control input (17).  

0
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  So the integrator gain must be selected such that 
iiA be 

Hurwitz or simply the following matrix 

 
0

ii ii pi ii ii

i

A B K B k

C

  
 
 

 

becomes Hurwitz.  

 

4. SIMULATION RESULTS 

  Simulations have been carried out in order to 

validate the effectiveness of the proposed scheme. 
The Matlab software package has been used for this purpose. 

Here a three-area power system is considered which is 

described in [5]. The nominal parameters are listed in Table 2. 

The control parameters are obtained as 

1 2 3

0.0031 0.00006456 0.0021
, ,

0.0011 0.00001812 0.0006
F F F

 
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 
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2

0.0179 0.0406 0.3544 0.0113

0.0406 1.4555 27.0963 0.0064

0.3544 27.0963 650.4512 0.4169

0.0113 0.0064 0.4169 0.0107
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  In order to simulate the disturbance of the system, we consider 

two cases:  

Case 1. A large disturbance in load 0.1pu (10%) in area 1 at 

t=10s. 

  Case 2. Simultaneous 0.03pu (3%) load changing in area 2 and 

area 3 at t=5s.  
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  Fig. 2 shows the frequency deviations )3,2,1(  ii  in 

case 1. In Fig 3 )3,2,1(,  iP iref
are plotted. The generator 

output power deviation rate )3,2,1(,  iP imech
 are plotted in 

Fig 4.These results are comparable to those studied in [5]. It is 

noteworthy that with the controller (17) the system is more 

stable and fast (with settling time about 20s) as compared with 

Distributed Model Predictive Control was proposed in [5](with 

60s settling time). In Fig.5, the area control errors are plotted to 

show the effect of loads changing in area 2 and 3. 

Simultaneously, it indicates fast disturbance rejection in all 

areas with settling time 45s. In Fig.6 
,ref iP  are plotted which 

shows a 

suitable control effort, where ,
1,2,3

max 0.32ref i
i

P


   

 
Table1. Power systems parameters 
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Table2. Model parameters values for simulation 
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Fig. 1. Block diagram of interconnected power system  

 
Fig. 2. Power system responses to case 1 frequency deviation in all areas with 

respect to 10% load change in area 1. 

 

Fig. 3. Deviation of control input 
,ref iP  in case 1 : 

,| | 0.45ref iP   . 

 
Fig. 4. The generator output power deviation rate , ( 1,2,3)mech iP i   in case: 

,| | 0.0012mech iP  . 
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Fig. 5. The area control error ( 1,2,3)iACE i   in case 2. 

 

 
Fig. 6. The governors reference inputs  , ( 1,2,3)ref iP i   in case 2: 

,| | 0.32ref iP  . 

 

5. CONCLUSION 

  In this paper, we introduce a novel process Design and 

application of sliding mode observer has been used in multi area 

load frequency control in this paper. Local sliding mode 

observers with unknown inputs have been employed to estimate 

the local state variables.  The local load changes and tie-line 

effect was assumed as unknown bounded inputs. Then, state 

feedback and integrator were simultaneously designed. To 

investigate the effectiveness of the proposed controller, time-

based simulations were performed on the three-area power 

system. Simulation results reveal that the proposed approach 

provided satisfactory closed loop performance with low 

oscillation and settling time. The main reasons for the 

superiority and attribute of the proposed approach are: local 

design to control of multi input multi output system with 

reliable global stability, and fast disturbance rejection.  
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