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Decentralized Load Frequency Control Using
Local Sliding Mode Observers with Unknown
Inputs
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Abstract—This paper presents a new load frequency control
(LFC) design in a multi area power system by using local
observers. Firstly, sliding mode observers with unknown inputs
are designed for each area to estimate the state variables locally.
In this stage interconnections and load variations are assumed as
unknown inputs. Then, local state feedback and output integral
are used to attenuate the effect of load variations in each area.
Analysis and simulation results for a three-area interconnected
power system show improvements on closed loop performance in
comparisons with other existing methods.

Index Terms—LFC; decentralized control; PI; Sliding mode observer
with unknown inputs.

I. INTRODUCTION

Frequency unchanging against load variations is an

important control problem in the dynamical operation of
interconnected power systems. The LFC is to drives the
frequency deviation and the inter-area power flow through tie-
lines to zero by manipulating the load reference setpoint [1].
Actually, this task can be theoretically described as a
disturbances attenuation problem of large-scale systems with
several interconnected subsystems or control areas. Each area
has its own generator and it is responsible for its own load and
scheduled power interchanges with neighboring areas [2].
In [3], [4] two recent overviews of control strategies as well as
of their current use in the field of LFC problems were provided.
Based on these, decentralized LFC scheme is more practical
than the centralized one because it only uses the local area state
information to attenuate the frequency deviation [5]. But to
design the decentralized controllers it is important to note that
the large-scale controlled system becomes stable under local
control. It has been neglected in many papers [6]. To overcome
this problem, in this paper we use local state feedback. But
using state feedback may require many measurements which is
impossible or extensive. So we design local observer for each
subsystems to estimate the state variables. But according to
interconnection terms and load changes which are unknown or
immeasurable in each control area, we design sliding mode
observer with unknown inputs. Sliding mode observers are
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robust, insensitive and very fast [7] so the estimation of the state
vector could be used instead of the state vector itself.

Also, Pl controller is widely used as the local controller with
different parameters tuning methods: adaptive Pl [8], fuzzy PI
[9], robust PI [10], Pl with adaptation GA tuning algorithm
[11], PI with PSO tuning algorithm [12], PI design based on
internal model control [13], P1 design with respect to coefficient
diagram method [14], sliding mode PI control [15] and etc. This
is because of the inherent PI character: eliminating the steady
state error to step disturbances. In this paper we use integral
control to decrease the load changes effects. So the local
controller is constructed by the state estimation feedback and
integrator.

This paper is organized as follows. In Section 2, multi area
power system is described and the LFC dynamic with problem
statement is presented. The sliding mode observer design with
unknown input is considered and the control idea of design the
controller based on sliding mode in section 3 is discussed. In
Section 4, for a three area power system, the simulation results
are obtained and compared with other recent control
approaches. Finally, concluding remarks are given in Section5.

2. MULTI AREAPOWER SYSTEM

A large multi area power system consist of a number of control
areas that are interconnected through some tie-lines. Each
control area of a multi area interconnected power system has

the structure shown in Fig.1: Foe eachiand j (i#]) , ith control

area is interconnected to the jth control area through a tie line.
The model for the ith area of a multi area power system with a
generator unit in each area is described in [5].By considering
power system parameters in tablel, the overall generator-load
dynamic relationship between the incremental mismatch power

AP, —APLi and the frequency deviation A@, can be

mech;
expressed as
1 1 1
-——AR - —

Aw, =

i a mech;
M i

tie, i

1
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The dynamic of the turbine and the governer can be written as:
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. 1 1
APm = _APU __Apm (2)
echy -I-cHI ] -I-CHi echy
Apu, =i ref; _%Aall _LAPU, (3)
TG R, TGi TGi

The relationship between areas i and j of the tie-line power
flow is:

AP“'é :TijAa)l _Tijij’
and the total tie-line power flow between multi area is defined
by the following equation:

AR} =-AR} 4

tie tie

M M M
AR, = ZAPnIi = zTijAa)l _ZTijij 5)
=t =1 i=1
J#i IEdl J#i
The area control error (ACE ) can be defined by an
appropriate combination of frequency deviation A®; and tie-

line power variation AP,
bias factor, then:

ACE, =BAw, + AP, (6)

i fOr ith area. Therefore, if B, isa

With a set of state variables X, =[Aw,, AP,

mech;

APU, ' APtie.i ]T

, control input U, =AP, disturbance inputW ; = AP,

ref i ?
and output ACEi , the interconnected power system described
by (1)-(4) can be represented as the following state space model

% (1) = A (1) + By, (1) + Ew (1) + Z Fix,; (1)

j#i (7)
Yi :Ciixi (t)
with
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3. CONTROLLER STRUCTURE AND DESIGN

One of the most important problems of system (7) is instability
which is happened because of the imported interference of one
control area from other areas. To stabilize the system, we use
the pole placement with state feedback as a controller. All state

variables of the system should be available in all control areas,
which is not possible, since data transfer density and
measurements increases the cost. Also, it is not reasonable to
eliminate interference.

Here, we design a local observer for each area. The effect of
power flow through the-tie lines (interconnections) assumed to
be unknown input. So we propose local sliding mode observer
with unknown input structure to estimate the state variables by
eliminating interconnections effect. Then by applying local
state estimation feedback, each control area is stabilized.
Finally, integral controller is added to remove the step changes
in load.

3.1 Sliding mode observer with unknown input
Consider the following linear observable system

X = AX+Bu+RU

y:Cx (8)

where U is known input, U is unknown input bounded by

p(t)ie ||U@) ][ o(t) . x is the state variables vector and

y is the output. Matrices A, B, R and C are known with
appropriate dimensions. The proposed sliding mode observer is

%=AR+Bu—L(§-Yy)+V

Cx )

<
Il

where the observer gain L and sliding based input v must be
determined such that the error signal € = X—X goes to zero
asymptotically. To do this, let us find the error dynamics as

6=(A-LC)e+v—-RU
(10)
e, =Ce

Due to observability of the system (8), there always exists an
observar gain L such that A— LC becomes Horwitz. So one
can find symmetric positive definte matrices P and Q satisfying

(A-LC)'P+P(A-LC)=—Q (11)

Therefore, we have the following theorem
Theorem 1. System (10) with Lyapanov equation (11),
becomes exponentially stable if

)] There exists matrix F such that R'P = FC ;
~PCTFTFe,
i) - Wp(t) Fe, =0
0 Fe,=0

y
Proof: Consider the following Lyapunov function:

V(e)=e"Pe>0 (12)

where P is obtained by (11). By differentiating V(e) along the
error dynamic (10), we get:
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V(e)=e P((A-LC)e+v-RU)+((A-LC)e+v—RU) Pe »
(13)

= ¢ Qe+(ePv+y Pe)- (e PRU + TR Pe)

By substituting the assumptions i and ii in (13) we have:
¢ ' F ' F Ey TAT T -

Vie) = -e'Qe-2¢ p-2(e' C' F' T+TFCe)

[Fe]

VE)=-eQe-2|Fe | p()-20Fe, (14)

VE)<-eQe-2[Fe(p ) - Jul)<- e'Qe

which implies that the error dynamic (10) is exponentially
stable. This completes the proof.

3.2 Controller design

Now we are ready to design the controller based on sliding
mode observer discussed in previous subsection. To design
local observer for each control area let us rewrite the local state
space model (7) as follows

% (1) = A (1) + Byu; (1) + R (1)
Y =Cix (t)

where A, B,;, C,; are the same as defined in (7) and

T
Ru zl:Eu’El’”"Fu "”’F|M1|’ Ul(t)=|:W’X11"”’X1|".”’X1M:|

Clearly if all state variables become stable, then X will be

(15)

bounded. Also, the load changes W, is bounded which implies

U; is bounded or simply the norm of the unknown input U; is
finite. Hence we can design a sliding mode observer based on
the method proposed subsection 3.1 as

X(t)=AXO+BU®)-L( -y)+V

i (16)
where Ly, V; are obtained as in (9). The control input U, (t)

must contain a stabilizing such as state feedback or feedback of
estimation of state variables. Also, it concludes an integral part
to overcome the effect of step changes in load. So the control
structure is selected as

u; (t) :_Kpi)’zi _kii_[yi

where Kpi (feedback gain) and kii (integrator gain) must be

a7

determined. The feedback gain K is chosen such

pi
A; —B; K, is Hurwitz which can be done by any pole

placement method [7]. To determine the integrator gain, we
rewrite the closed loop model (15) under the control input (17).

X, X, R, 0
i jy‘ :Kﬂ jyv +| 0 E+ 0|v (18)
d
' e e -R, |
with
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Ai - Bii Kpi _Biikii _Bii Kpi
'Eii = Ci 0 0
0 0 Aii - LiiCii

So the integrator gain must be selected such that Ai be
Hurwitz or simply the following matrix

Ai_BiiKpi _Biikii
N

becomes Hurwitz.

4. SIMULATION RESULTS

Simulations have been carried out in order to

validate the effectiveness of the proposed scheme.
The Matlab software package has been used for this purpose.
Here a three-area power system is considered which is
described in [5]. The nominal parameters are listed in Table 2.
The control parameters are obtained as

|:0.0031:| |:0.00006456:| [0.0021}
F= o R= . Ro=
-0.0011 0.00001812 ~0.0006
0.0179 0.0406 0.3544  0.0113
|0.0406 1.4555 27.0963  0.0064
' 10.3544 27.0963 650.4512 —0.4169
0.0113 0.0064 -0.4169 0.0107
[0.0175 0.0398 0.0755 0.0113
B _ 0.0398 1.7154 6.7464  0.0033
2710.0755 6.7464 32.1555 -0.0982
10.0113 0.0033 -0.0982 0.0111
[0.0169 0.0431 0.2638  0.0113
P - 0.0431 1.7204 21.3461 0.0066
® 10.2638 21.3461 339.0396 -0.3197
10.0113 0.0066 -0.3197 0.0117
1.653 1.564 1.894
10.933 11.690 11.857
L = . L= . L=
264.9381 58.370 191.233
7.731 7.608 7.404

K, =[-34.985 50.26 0.375 -39.468]
K, =[-2.183 5977 0229 -4.616]

K, =[271.374 35.108 0.3 41.991],

In order to simulate the disturbance of the system, we consider
two cases:
Case 1. A large disturbance in load 0.1pu (10%) in area 1 at
t=10s.

Case 2. Simultaneous 0.03pu (3%) load changing in area 2 and
area 3 at t=5s.
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Fig. 2 shows the frequency deviations A, (i =1,2,3) in
case 1. In Fig 3 AP, (i =1,2,3)are plotted. The generator

output power deviation rate AP, . (i =1,2,3)are plotted in

Fig 4.These results are comparable to those studied in [5]. It is
noteworthy that with the controller (17) the system is more
stable and fast (with settling time about 20s) as compared with
Distributed Model Predictive Control was proposed in [5](with
60s settling time). In Fig.5, the area control errors are plotted to
show the effect of loads changing in area 2 and 3.
Simultaneously, it indicates fast disturbance rejection in all

areas with settling time 45s. In Fig.6 AP, are plotted which

ref i

shows a
suitable control effort, where max ‘APref i ‘ <0.32
=123 '

Tablel. Power systems parameters
@ Angular frequency of rotating mass
o Phase angle of rotating mass
D percent change in load
percent change in frequency
M a
Angular momentum
Pmech Mechanical power
PL Nonfrequency sensitive load
TCH Charging time constat (prime mover)
TG Governor time constant
R percent change in frequency
P percent change in unit output
! Steam valve position
Pref
T Load reference set point
“__ Tie — line (between areas i and j)stiffness coefficient
P
tie Tie — line power flow between areas i and j
P. .
tie,i Total tie —line power flow between areas —i and others
Table2. Model parameters values for simulation
D, =2 D, =2.75 D,=24
R' =0.03 R, =0.07 R; =0.05
M? =35 M2 =4.0 M2 =375
Tepy =50 Ty, =10 Tey, =30
T, =40 Te, =25 Te, =32
R =1 R,=1 R,=1
Bl =1 B ) = 1 83 =1
T, =Ty =754|T, =T, =754|T,=T,="754

Areal .
P B/
Area 2
"
Area i
Fig. 1. Block diagram of interconnected power system
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Fig. 2. Power system responses to case 1 frequency deviation in all areas with
respect to 10% load change in area 1.
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Fig. 3. Deviation of control input AP, ¢ . incase1: | AP, , [£0.45 .
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Fig. 4. The generator output power deviation rate AF’mech’i (i=1,2,3) in case:
|AP_. . ]<0.0012 .

mech,i
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Case 2
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Fig. 5. The area control error ACE; (i =1,2,3) in case 2.
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Fig. 6. The governors reference inputs AP, ; (i=1,2,3) in case 2:
|AR, <032

5. CONCLUSION

In this paper, we introduce a novel process Design and
application of sliding mode observer has been used in multi area
load frequency control in this paper. Local sliding mode
observers with unknown inputs have been employed to estimate
the local state variables. The local load changes and tie-line
effect was assumed as unknown bounded inputs. Then, state
feedback and integrator were simultaneously designed. To
investigate the effectiveness of the proposed controller, time-
based simulations were performed on the three-area power
system. Simulation results reveal that the proposed approach
provided satisfactory closed loop performance with low
oscillation and settling time. The main reasons for the
superiority and attribute of the proposed approach are: local
design to control of multi input multi output system with
reliable global stability, and fast disturbance rejection.
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