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Design of the Model Predictive Controller
Based on Orthonormal Basis Functions for
Automotive Air Conditioning System

Pegah Khavash, Amin Ramezani®, and Sadjaad Ozgoli

Abstract— Air conditioning system (A/C) of the car imposes an
additional load on the engine, increasing fuel consumption and
losses. Therefore, any improvement in its performance has a direct
impact on vehicle performance and fuel consumption. The
automotive A/C system is a Multi Input- Multi Output (MIMO)
plant and There are constraints on its variables So the method of
Model Predictive Control (MPC) as an effective method. So far the
MPC method is implemented largely for this system. In this paper
a predictive control method based on orthonormal functions is
provided for automotive air conditioning system. System's model
has been changed with an embedded integrator, inputs and
outputs changes are highly penalized in cost function and
Laguerre orthonormal basis functions are added in MPC's
structure and it will be shown that in the proposed control method
compared to the conventional MPC method, the automotive air
conditioning system performance has been improved and because
of reduced computational load the runtime of simulations
implementation has been reduced.

Index Terms—Automotive air conditioning system, Model
Predictive Controller, Orthonormal functions

. INTRODUCTION

N air conditioning (A/C) system is often identified as a

system operated on the VVapor Compression Cycle (VCC).
As illustrated in Fig. 1, this cycle consists of an evaporator, a
condenser, a compressor, an expansion valve and a fan. The
refrigerant enters the compressor as a slightly superheated
vapor at a low pressure. Afterwards it leaves the compressor
and enters the condenser as a vapor at an exalted pressure,
where the refrigerant is condensed as heat is transitioned to the
outside environment. The refrigerant then leaves the condenser
as a high-pressure liquid. The pressure of the liquid decreases
by going through the expansion valve. Consequently, some of
the liquid beams into cold vapor. The rest of the liquid, now at
a low pressure and temperature, is vaporized in the evaporator
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while heat is transferred from the refrigerated space. This vapor
then re-enters the compressor [1].
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Fig. 1. Schematic diagram of a refrigeration cycle [1].

In cabins or buildings among all energy consuming factors,
cooling by the A/C system plays an important role. Normally
the on/off operation of these systems are implemented to rich to
the desired environment which consumes significant power.
Recently, modern air conditioners have begun to consolidate
variable speed and variable-position actuators to improve
energy efficiency and cooling performance. Moreover, solar
air-conditioning systems emerge and begin to be utilized in
reality. Utilizing solar energy system is a promising mean of
both reducing consumption of fossil fuels and €O, emissions
into the atmosphere. Regardless of the kind of A/C system, a
crucial ingredient to accomplish good performance and
efficient energy consumption is a proper control strategy [2].

Various methods and control approaches are applied on air
conditioning system yet. For example, in reference number [3],
a decoupled proportional-integral (Pl) control with pre-
compensator is presented. However, according to the studies
carried on by Lin and Yeh, there are strong cross-couplings
among inputs and outputs. They have improved feedback
control algorithms which had been incorporated with a
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traditional Pl controller. The applied feedback controller is
multi-input and multi-output-based and owns a cascade
structure for dealing with the fast and slow dynamics in the
system [4]. In reference number [5], Zhang et al.
Recommended an application of sliding mode control to an
automotive A/C system aiming at regulating the superheat
temperature and cooling capacity. Recently, they have
demonstrated an energy-optimal control for ancillary load
reduction of this system [6]. One of the controllers which
widely uses in industry, is Model Predictive controller (MPC).
One of the significant aspects of MPC which makes the design
methodology applicable to both practitioners and academics is
the ability of the method in handling both ‘soft’ constraints and
hard constraints in a multivariable control framework. On the
other hand, MPC can execute on-line process optimization.
Another advantage of this method is the simplicity of the design
framework in dealing with all these complex issues [7]. As
mentioned earlier, the A/C system is a multivariable plant
which has strong cross-couplings among its inputs and outputs.
There are different constraints in the system such as input
saturation limits and state or output constraints. Therefore,
model predictive control is noted as a convenient approach to
control the system due to its features. Razi et al. in reference
number [8] proposed a neuro-predictive controller for
temperature control of automotive A/C system. For this
purpose, an adaptive neural predictive control is proposed in
[9]. Leducq et al. implemented MPC to control a VCC using a
first principle non-linear model of this cycle [10]. An MPC
method has been introduced to control the evaporator superheat
and condensing pressure in [11]. In [12] a predictive control
scheme is designed to control a transport refrigeration system
such as a delivery truck in which a VCC configured in parallel
to a thermal energy storage unit is included. Wallace et al. used
the data generated from a first principle model of a VCC to
identify a linear model, then they designed an offset-free model
predictive controller based on this model [13]. Recently, in [14]
another utilization of offset free MPC is implemented for an
energy efficient operation of the central chiller plant in a case
study hotel on a tropical island.

Asitis clear, MPC is a widely utilized means of A/C systems
and chilling plants, but here an advanced MPC is designed to
develop performance of the automotive A/C system. The model
of system is changed with an imbedded integrator, inputs and
outputs changes are highly penalized in cost function and
Laguerre orthonormal basis functions are added in MPC's
structure. It will be depicted that the energy saving and cooling
capacity of automotive A/C system are improved towards
regular MPC while decreasing computational load and
simulations runtime.

Il. AuToMOTIVE A/C SYSTEM MODEL

Most system oriented models of A/C systems are today based
on Moving Boundary Method (MBM), which is a parameter —
limited modeling technique that could be utilized in heat
exchangers to model dynamics related to fluid’s mass and heat
transportation regarding their (fluids) phase changes. The A/C
system models resulted from MBM are generally in the form of
high order nonlinear differential and algebraic equations [5]. In

reference number [5], Zhang et al. has proposed an MBM model
of automotive A/C system that is expressed in a matrix form as:

dx
Z(x)a =f(x,w)

)
y=9x)

The complete A/C system model is characterized by 15
states, which result from applying mass and energy balances to
the condenser and evaporator. This model is more difficult even
for local controller design. Hence, they presented a 6-states
linear model of the system through a model order reduction
approach and data driven method. Inputs are compressor
rotation speed in the unit of rpm and expansion valve opening
percentage, [N, a]T. The outputs are the superheat
temperature at the evaporator (SH) and the pressure difference
between the condenser and evaporator (Ap). Superheating
refrigerant beyond the evaporation temperature is important
since not superheating means that the refrigerant enters as in
two-phase into the compressor and increase the power
consumption and wear. It is also important to have as much two-
phase refrigerant in the evaporator as possible to increase the
heat transfer and consequently optimize the refrigeration
process. Therefore, a crucial variable which significantly
affects the efficiency of a cooling system is the superheat [15].
From another point of view, when a passenger requires lower
temperature in the section or a solar sensor detects sunshine
increase, the supervisory temperature controller either increases
blower fan speed or makes the refrigeration controller lower the
evaporation pressure in order to increase the amount of heat
exchange in the evaporator. In these situations, remaining
unchanged for the superheat can boost heat exchange efficiency
at the evaporator and can result in saving energy as well [3].

In this paper, the specified model is used to adjust superheat
temperature and cooling capacity of automotive A/C system.
Working point of the model is characterized by a compressor
speed of 3000rpm and an expansion valve opening of 23.3%.
Reciprocal nominal outputs are 50C superheat and 1090kPa
pressure difference.

1. MPC USING LAGUERRE FUNCTIONS

In this paper, conventional MPC is replaced with
orthonormal based MPC in order to improve the performance
of automotive A/C.

In mentioned method tuning is simpler compared to
conventional MPC due to more free parameters. Applying
orthonormal functions reduces number of parameters utilized
for description of future control trajectory, and computational
volume decreases as a result. Finally, penalizing input and
output changes provokes smoother responses in this method.

A. Augmented Model
Assume that a discrete time model comes as following:
Xm(k + 1) = Apx (k) + Bu(k)

(2)
y(k) = Copxm (k)
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Assume that the plant has p inputs, q outputs and nl states. We
need to change the model to be suitable for our design purpose
in which an integrator is embedded. The augmented model can
be expressed as follows according to [7]:

x(k+1) A x(k) B
T
[AJ;Tk(Tl)l T=lcon Iflnq] [A;C/?k(;( T Jauao
3)
(k) = [Om CIqu] [A’;'g,g‘)

Where I,., is the identity matrix with dimensions g x q,
which is the number of outputs; and 0,, is a ¢ X nl zero
matrix. In (3), 4,,, B, and C,, have dimensionnl X nl,nl X
m and q X nl, respectively. Where Au(k) = u(k) —
u(k — 1) and Ax,, (k) = x, (k) — x,,, (k — 1) denote the
difference of the control input and the state variable
respectively.

B. Introducing the Laguerre Functions
The z-transfer function of Leaguers function is given as [7]

L) =G % )

With I (2) =

and is picked by the user. Lettlng l, (k) to ly(k) denote the
inverse z-transforms of I (z) to Iy (z). This set of discrete-time
Laguerre functions are expressed in a vector form as:

Ly =1L() LK) In (1" )

Regarding (4), the set of discrete-time Laguerre functions in
vector (5) fits in the following equation:

L(k + 1) = A,L(k) )

In which matrix 4; is (N X N) and is a function of parameters
a and B = (1—a?), and the initial condition is represented by

VB[l —a (- ta] @)
C. Use of Laguerre Functions in MPC Design

In MIMO predictive control system setting, each input signal
is dedicated to have a Laguerre pole location independently. Let
Au = [Auy (k)  Au,(k) Au, (K)]T (8)

and the input matrix be partitioned to
B:Ble...Bp (9)

L(O)T =

We declare the ith control signal Au;(k) by choosing a scaling
factor a; and order N;, where a; and N; are picked for this
particular input, such that

Au;(k) = Z, RAGIHG) (10)
By considering 7 =[c c} cy,Jand  L;(k)T =
(1K), 15.(k), ..., Ly, (R,

Au; (k) = Li(k)™n; (11)

where n; and L;(K) are the Laguerre network description of the
ith control.

The state prediction has the following form:

x(k; + mlk;)
= Amx(k)

+ ZA’” IB L (DT ByL, (DT
j=0

= A™x (k) + p(m)"n

Where the parameter vector n and the data matrix @(m) T
include individual coefficient vectors given by

BnLln(D']  (12)

n=n ni .. np] (13)
pm)" =
YA B L (DT ByL ()T BnLn,(NT]  (14)

The cost function could be mentioned in the following quadratic
form

J=37
ZNp 1

The weighting matrices are R,, >0 and R,> 0. By substituting
(11) into the cost function (15) we obtain

(e + mlk )" x Ry x (x(k; + mlk;)) +

(AU (k; + m|k))T x R, x (AU (k; + m|k;)) (15)

J =000 + 20" x(ky) + TP, x(k)T (AT)"R,A"x(k;) (16)
where the matrices 2 and ¥ are
Np
0= $mQdE" +R,

m=1

17)

Np
p=0) Bmeam
m=1
Consequent to achieving the optimal parameter vector n in

existence of inputs and states constraints, the receding horizon
control law would be realized as

[Ll(O)T 07 . 0or ]
sy =| O ROT - On (18)
L of 0% m(O)TJ

Where 07, k = 1,2,...m demonstrates a zero block row
vector with identical dimension to L, (0)7.

D. Laguerre MPC in Presence of Constraints

Suppose that the limits on the control signals are u,,;,and
umax Noting that the increment of the control signal is u(k) =
Yk Au(i), then the inequality constraint for the future time
k, k = 1,2,...,isexpressed as :

Umin <
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D) < Umax (19)

IV. SIMULATION

In this paper, the used control strategies are discrete time
methods. The model of automotive A/C system that is
introduced in reference number [5] is a continuous time model.
Since this model will be the basis of controller design of present
paper, it must be discrete with proper sample time. The largest
aigen value of the model is 509.33 so the smallest time constant
is T, = (1/509.33) second. 20 percent of T is considered as
discretization time.

In present paper, three cases have been simulated. First and
second cases are implementation of regular MPC method, and
third case is the result of Laguerre MPC simulation. In the
regular MPC, there are parameters such as N,, and N, which the
designer can bring the system to appropriate behavior. So, tow
simulations have been done with the different prediction and
control horizons; [N,=170, N.=10] and [N,=200, N.=30] in
case 1 and case2, respectively.

As mentioned before, tuning is simple in MPC based on
orthonormal basis functions, because of more free parameters
such as: the poles of Laguerre network, = [@1  a2] , and the
number of terms making the Laguerre network, N = [N;  N,].
A scaling factor a; and order N; are selected for ith input. The
designer must choose proper N; for each a; such that system
represents desired treatment. In third simulation (case 3),
Laguerre MPC method is implemented with N = [20 20] and
a =1[0.4 0.4]. By the way, prediction and control horizones
are same with the values of Np and Nc in case 1. The tracking
of setpoints by the outputs, and control efforts of the
manipulated variables are illustrated in Fig. 2 and Fig. 3,
respectively.

In the whole simulations, constraints applied on manipulated
variables (Umin, Umax), the inputs and outputs weight matrices
(Ry, Ry) are set with the same values which are given in
TABLE . By the way, the results of both methods have been
done by a laptop with 4GB and core i5 processor, and runtime
for each of simulations are reported in TABLE .

TABLE |
THE VALUES OF CONSTRAINTS AND WEIGHT MATRICES
Umin [2230]
Umax [4230]
R, o001 0 |
0 0.0001
R 1 0
Y [0 1]
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Fig. 2. Outputs of the automotive A/C system via MPC (with two different
horizons) and Laguerre based MPC
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Fig. 3. Inputs of the automotive A/C system via MPC (with two different
horizons) and Laguerre based MPC

TABLE Il
RUNTIME OF SIMULATIONS

Simulation Runtime (ms)
Case 1 5070
Case 2 21758
Case 3 9942

As shown in Fig. 2 and Fig. 3, the comparison of case 1 and
case 2 illustrates that by the increase of prediction and control
horizons pressure difference between the condenser and
evaporator, better tracking of the reference signal is achieved.
Besides that, overshoot and undershoot of superheat
temperature is reduced. Also, this change in parameters in case
2 leads to lower control efforts of compressor and expansion
valve rather than case 1. However, computational load and
simulations runtime is increased according to TABLE . The
simulation results in case 3 are the same as case 2, while the
runtime is less because of using the Laguerre functions in the
proposed control structure. Thus Laguerre MPC has shown its
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superiority by showing better performance while its
computational load and runtime of simulations are less than
regular MPC.
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