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An Optimal State Estimation Observer for Fault
Detection of Gas Turbine Engine

Hamed Kazemi, and Alireza Yazdizadeh

Abstract— This paper presents a new scheme based on
state estimation to diagnosis an actuator or plant fault in a
class of nonlinear systems that represent the nonlinear
dynamic model of gas turbine engine. An optimal nonlinear
observer is designed for the nonlinear system. By utilizing
Lyapunov's direct method, the observer is proved to be
optimal with respect to a performance function, including
the magnitude of the observer gain and the convergence
time. The observer gain is obtained by using approximation
of Hamilton-Jacobi-Bellman (HJB) equation. The
approximation is determined via an online trained neural
network (NN). Using the proposed observer, the system
states and the fault signal can be estimated and diagnosed,
respectively. The proposed approach is implemented for
state estimation and fault detection of a gas turbine model
subject to compressor mass flow fault. The simulation
results illustrate that the proposed fault detection scheme is
a promising tool for the gas turbine diagnostics.

Index Terms— Fault Diagnosis; Optimal State Estimation; Gas
Turbine Engine; Nonlinear Observer Design, Neural Network.

. INTRODUCTION

OBSERVER design for nonlinear systems is a popular

problem in control theory that has been investigated in
many aspects. State estimation of nonlinear system is another
interesting and relevant topic in the modern control theory; see
[1], [2], and [3].In [1] considering multiobjective optimization
an observer for state estimation of a class of uncertain nonlinear
systems is designed. In [2] and [3] using linear methods state
estimation of nonlinear system is investigated. As an important
application area of observer design, model-based fault detection
and isolation (FDI) is a well-established technique in literature
[4]. So far, various observer-based FDI design approaches,
including FDI via Kalman filter [5] and high gain adaptive
observers [6], have been reported. Most of these techniques are
developed for linear systems. However, during the past two
decades, a number of observer-based FDI approaches for
nonlinear systems have been presented; see [7], [8] and [9]. A
review of nonlinear system model-based fault diagnosis has
been done in [7]. An inversion-based fault reconstruction filter
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has been proposed in [8]. This filter is innovative and it is
obtained by a geometric approach in which the filter design and
related coordinate transformation are partially complicated. In
[9] an observer-based fault estimation based on the nonsingular
coordinate transformation is studied. This method is
appropriate for a class of discrete Lipschitz nonlinear system.

The basic idea behind the use of the observer for fault
detection is to estimate the states of the system by using some
type of observers, and then construct a residual by a properly
weighted output error, see [4] and [10]. For nonlinear systems,
the theory of observer design is not nearly complete or
successful, as it is for the linear case [11], and nonlinear
observers related to FDI of nonlinear systems are restricted.
Most of them use sliding mode approach for detecting or
estimating the fault; see [12]. Designing and utilizing other
observers in this field could be worthwhile.

Nonlinear observers are limited to a class of nonlinear
systems and some of them use linearized model of the system
[2]. It is also noted that most of the observer gains are very high
or they depend on estimation error which is initially very high.
However, high value of observer gain increases the sensitivity
to noise. Also finite time convergence is an important feature
that should be considered in designing procedure. In [11]
according to a method presented in [13] for optimal control of
nonlinear system, an optimal nonlinear observer using
Hamilton-Jacobi-Bellman (HJB) equation based formulation is
proposed for state estimation of a class of affine nonlinear
system that is not subject to fault or unknown disturbance. Since
it is difficult to find solution of the HJB equation, neural
network (NN) has been used to approximate it. Here we want
to use this method and consider it for a system subject to fault
signal.

On the other hand, Fault diagnosis of aircraft gas turbine
engines as a complex nonlinear system has received
considerable interest in recent years due to the increasing
demand on reliable operation and maintainability requirements
of these safety critical systems [14]. Fault diagnosis methods
are primarily divided into two main categories, namely model-
base and data-driven techniques. Both of these techniques have
been extensively studied in the literature for health monitoring
of gas turbine engines [15], [16], [17] and [18]. The main
framework of research in gas turbine engine FDI is based on
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gas path analysis (GPA) in which by measurement and
estimation of lumped parameters of the system, such as
temperature and pressure at each stage, one attempts to isolate
and identify actuator, sensor, or component faults [19].
References to this approach first appeared in the literature by
one of the early investigators and pioneers, Urban and Smetana
[20]-[21]. Then it was developed mainly by Volponi and other
researchers [22].

As a generality, diagnostic systems rely on discernable
changes in observable parameters to detect physical faults.
Physical faults consist of a variety of problems or combinations
of problems such as foreign object damage, blade erosion and
corrosion, worn seals, plugged nozzles, excessive blade tip
clearances, etc. If severe enough, these physical faults will
induce a change in the thermodynamic performance of the
engine and its attendant components like efficiency and flow
capacities of compressor and turbine [23] .The underlying
precept behind GPA is that engine performance depends on the
state of these individual components and that furthermore, the
condition of these components can be mathematically
represented by a set of independent performance parameters.

This paper contributes to the field of state estimation and
fault detection of nonlinear systems. Firstly we propose an
optimal nonlinear observer for nonlinear systems subject to a
fault signal (actuator or plant fault) that in addition to estimating
states, it is able to detect the occurrence of the fault. By utilizing
Lyapunov's direct method, the observer is proved to be optimal
with respect to a performance function including magnitude of
observer gain and convergence time. Observer gain is obtained
by using approximation of HIB equation that is determined via
an online trained NN with time-varying weights. By utilizing
the proposed observer, the system states and the fault signal can
be estimated and diagnosed, respectively. Finally the proposed
method is applied on gas turbine engine subject to compressor
mass flow fault. In fact, the main innovation of the paper is
designing the optimal nonlinear observer and implementing it
for fault detection of gas turbine model.

In comparison to other methods related to the fault detection
of nonlinear system, the approach proposed in this paper is
effective for wide class of nonlinear system. For instance,
methods based on sliding mode approach are limited to a class
of nonlinear system in a standard form in which the nonlinear
term, that is a separate term, must satisfies Lipschitz function
assumptions. Also appearance chattering phenomenon in
sliding mode observer is another restriction that should be
avoided. These restrictions there are not in this work.
Furthermore, here by utilizing a performance function,
optimization of observer gain magnitude and finite-time state
estimation are guaranteed.

The rest of this paper is organized as follows: In section 2,
state estimation and fault detection scheme including observer
design and NN based HJB solution, is presented. The
implementation of the proposed approaches on gas turbine
engine and the simulation results are provided in section 3.
Finally, the conclusion remarks are given in section 4.

Il. STATE ESTIMATION AND FAULT DETECTION SCHEME

A. Nonlinear Observer Design
Consider a nonlinear system of the form

X =flxu)+gxu)3g
y=Cx

@

where x € R" is the state vector, u € R™u is the control input,
y € R4 is the measured output, £ € R is the fault signal, f(x, u)
and g(x,u) are smooth vector field and C € R¥™ is constant
matrix. Consider a state observer with Luenberger like structure
as follow

%= f&u) + Ly — C%)
e(t) = x(t) — 2(t) @

where % € R" is the estimated state vector, e(t) is estimation
error or residual, L is an observer gain matrix of appropriate
dimension. Elements of L are nonlinear function of estimation
error and they are bounded by a positive constant 2, i.e. Ly <
A € R. The estimation error dynamics may be computed as

é = f(x,u) — f(%, u) + g(x, u)§ — LCe. 3

The problem of state estimation and, consequently, residual
generation is to design an observer, modeled by equations of
the form (1), such that the residual e with dynamic equation (3)
asymptotically converges to zero in absence of fault & So
assuming g(x,u) # 0 the requirements of Fundamental
Problem of Residual Generation (FPRG), i.e. the residual eonly
is affected by fault &, is satisfied.

The main challenge of designing observer (1) is to determine
gain matrix L such that the convergence criterion of residual e
is satisfied. The amount of mentioned gain and finite-time
convergence are important attributes that should be considered.
In [13], a procedure for optimal designing of a controller is
presented. By utilizing that the method of optimal observer
design for fault detection, is addressed as follows:

For the system (3) find an observer gain L such that the
following finite-horizon performance function with its terminal
cost is minimized.

t
d(e,t) = f(eTQe +K(L))dt

to

4)

where

K(L) = 2 f; tanh™* (;) dv.
®)
Where A is a coefficient, v is an auxiliary variable and

fOL tanh™! G) dv = fOL“ tanh™! (‘%) dvy; +

fOL“ tanh™! (‘%) dvi, +-+ fOLd" tanh™! (V“Td) dvpg is a
non-quadratic term expressing cost related to constrained
observer  gain in  which foL” tanh™?! (%) dvy; =
2LyAtanh™ () + 22 In(1 - Ly2/A%) >0 and Ly is the
element of matrix L. The existence of estimation error e with
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positive definite matrix Q, observer gain L and final
convergence time t; in performance function (4), lead to the
convergence properties of estimation error present in optimal
observer design.

To solve the constrained optimal nonlinear observer design,
let

t
V(e to) = @(e(ty), tr) + mLinf f(eTQe + K(L))dt ©)
to

be the minimum cost of bringing the system (3) from initial
condition e, to equilibrium point 0.

Definition 1 (Admissible observer gain): An observer gain L
is defined to be admissible with respect to (6) on Q, denoted
by L € ¢ () with L continuous on Q, if it stabilizes (3) for
& =00nQ,andfor Ve, € Q,, V(ey,to) is finite.

Under regularity assumptions, i.e. V(e t) e Cl(Q),
considering (6) the HIB gives

mLin (eTQe + K(L) + Ve + VI (f(x,u) — fF(R,w) +
g(x,u)¢§ —LCe)) =0 (M

where V; =Z—Z and V, = Z—Z. This is a time-varying partial
differential equation (PDE) with V(e, t) that is the cost function
for any given L and it is solved backward in time from t = t;.
By setting t, = t; for (6) we have V(e(tp), tr) = ®(e(tp), te).

If L is the solution to the optimal observer design problem,
then according to Bellman’s optimally principle [24], the
optimal cost is given by

HIB(V(e, 1)) = €TQe + K(L) + V; + V. (f (x, w) —
f@&u)+ gx,u) —Lce) = 0. 8

Optimal observer gain matrix, L, can be derived by solving
d (H]B(V(e, t))) / @L = 0. Using (8) and (5), this equation can
be written as:

1
L= ?\tanh(ﬁ V.(Ce)D) )

where V(e, t) is the optimum value function. The time-varying
observer gain matrix (9) represents constrained dynamic
optimal observer for the nonlinear systems. The validity of an
optimal observer design is expressed in the next theorem.

Theorem .1: Consider the nonlinear system (3) and
performance function (6). Assume that there exists a function
V(e,t) as the solution of HIB equation (8). The observer (1)
acts as an optimal residual generator that estimate x if no fault
has occurred (§(t) = 0), addressing constraints with respect to
terminal time and the observer gain. If a fault has occurred
(§(t) # 0), the estimate of x is such that ||e|| > €, where e is a
positive constant.

Proof: Let us first study the case without fault; we show that
L is a solution to the optimal observer design problem, i.e. the
residual e in system (3) converges to zero globally
asymptotically, which can be proved by showing V(e,t), the
solution of HJB equation (8), is a Lyapunov function. Clearly,

V(e,t) >0 for ve#0 and t=0%and V(0) =0 also

considering (8) we have
Ue) =2t (2 & = —eqe - k)
e t) = ot EP e=—e' Qe

<—eTQe<0 (10)

consequently, there exists a neighborhood Z = {e: ||e|| < €} for
some € > 0 such that if e(t) enters Z, then tlim e(t) = 0. But

e(t) cannot remain forever outside Z. Otherwise ||e|| = €, for
all t > 0. Let a = inf(eTQe) > 0 such that ||e|| = e.Therefore,

V(e(®),t) — V(e(0),0) = [} V(e(t), D)dt < — [, adt =
—a fot dt = —at. Let t » oo, we have,

V(e(t),t) <V (e(0),0) —at - —co

which contradicts the fact that V(e,t) > 0 for Ve # 0.

Therefore tlim e(t) =0, no matter where the trajectory

begins. It concludes the optimal stability of the state estimation
when no fault has occurred.

Let us now discuss the case when a fault has occurred. From
(3) one can see that for g(x,u) # 0 the time derivative of the
estimation error is directly influenced by the fault. Since a fault
is detectable, its occurrence causes a change in nominal
behavior of system. So ||e|| > e.

Hence one can design a constrained optimal observer using
proposed formulation for nonlinear systems with finite time
horizon. An optimal observer can be designed by knowing
exact solution of HIB equation, which is a difficult problem. In
[11] utilizing a NN which is proposed in [13], the solution of
HJB equation is approximated for calculating an observer gain
related to an affine nonlinear system. In the next section,
according to that NN, the approximation of value-function V
which is the solution of HIB equation is obtained.

B. NN Based HJB Solution

In this section, for finding approximate solution of HIB
equation we use NN. In [25], it is shown that an online trained
NN with time-varying weights can be used to approximate
smooth time-varying functions on prescribed compact sets.
Actually the approximate solution is used to find observer gain.
Therefore assuming that V(e, t) is smooth and also uniformly
continuous on a compact set , one can use the following
equation to approximate V(e, t) for t € [t,, t¢] on Q.

N
V(e t) = Z w;(©)0;(e) = WT()E(e)
J=1

(11)
This is a NN with activation function o;(e) € C'(0) and
0;(0) = 0. We have
~ v ,_ T
V(e t) = 55 = (VE(e)) W () (12)

and
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v AW (t)

Tu(e,t) = 5 = E"(e) —,

(13)

where w;(t) denotes the NN weight and N is the number of
hidden layer neurons, Z(e) = [o,(e) o,(e) ... on(e)]T is the
vector of activation function selected such that V(0) = 0 and
V(e,t) >0 forve# 0 and t+ 0 and W = [w; w, ...wy]T is
the vector of NN weights. It is assumed that N is large enough
that there exist weight W(t;) that exactly satisfy the
approximation at t = t¢. Without loss of generality, the set Z(e)
is selected to be independent and orthonormal [13]. The
orthonormality of the set {c(e)}}° on Q € R™ imply that, for a
real-valued function O(e, t) € R,

0(e,t) = Z(o(e, £),0;(e))u0; (€)
J=1

where (f, g)y; = fU a.bTdx is an inner product, a and b are
continuous vector functions, and the series converge pointwise
[26],i.e. forany e > 0 and e € Q, one can choose N sufficiently
large to guarantee that |Xj2x.1(0(e, ), 0j(e))y0;(e)| < & for
all time t € [t, t¢].

Note that Z—‘t’ in (8) is required, so the NN weights are selected

to be time varying. Approximating V(e, t) by V(e,t) in the HIB
equation (8) results in

HJB (V(e, t)) =e"Qe + K(L) + 7, + VI (f(x,u) —

f®&u)+g®u)é—LCe)=E (14)

where E is the approximation error. If E is negligible, then
(14) is similar to (8).

Assuming the fault §(t) and coefficients |w;(t)| for all N are
uniformly bounded, the following lemma shows the existence
of NN based HJB solution for optimal observer design using
performance function (6).

Lemma 1: Given L € Y (0), let V(e, t) = XL, wj(t)o;(e)
satisfy (HJB (V(e, t)),E(e))U = 0 and (V(tf), Z(e))y = 0, and
let V(e,t) = ¥52, bj()o;(e) and B = [by (t) b, (1) ... by(D)]"
satisfy HJB(V(e,t)) = 0 and V(e(ty), tr) = d(e(ty), tp), then
|H]B (V(e, t))| — 0 uniformly on Q as N increases.

There is a theorem for the existence of NN based HJB solution
for the optimal control problem in [13]. The existence of NN
based HJB solution for optimal observer using modified
performance functional can be proved on similar lines. See [13].

Since Lemma 1 shows the existence of NN based HJB
solution, (14) can be written as

HJB (V(e, t)) =e"Qe+ K(L) + 7, + VI (f (x,u) —
f&u)+g®uwé—LCe)~0. (15)

In the next theorem we prove that the nonlinear observer (1)
is an optimum observer that estimates states in absence the fault
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and detects the fault when it occurs. It also proves the validity
of the NN-HJB based observer design.

Theorem 2: Consider the error dynamics (3) with the
performance function (6). Assume that there exists a function
V(e, t) as the solution of HIB equation (14). Using this solution,
if no fault has occurred observer gain matrix L = L ensures
global asymptotic stability of system (3), i.e., error e = x — R
asymptotically converges to zero. If a fault has occurred, ||e|| >
€, where € is a positive constant.

Proof: Using (12) and (15), we can find approximate
optimal observer gain matrix similarly as in (8) by following
equation:

L = Atanh (%Ve(Ce)T) = Atanh(% VET(e)W(t)(Ce)T). (16)

Vector Z(e) can be selected such that V(0) = 0 and V(e,t) > 0

for e = 0. Also V(e,t) < 0 for e # 0 can be proved similarly
as Theorem 1 by replacing V(e, t) with V(e, t). So replacing L
with L, the system (3) remains globally asymptotically stable.
Hence it can be proved that V(e, t), the solution of HIB equation
(15) is a Lyapunov function.

From the above theorem we can say that an optimal observer
with gain matrix (16) can be designed for a nonlinear system
using HIB formulation. For calculating gain matrix, set of the
NN weights is required. We describe this in the following

The NN weights are selected to minimize approximation
error in least square sense over a set of points sampled from a
compact set Q, inside the region of stability of the initial
stabilizing control [13]. To find the least squares solution, the
method of weighted residuals is used. This method was
explored in [27] for optimal control problem based on HIB
formulation. On similar lines, one can explore this method for
observer design problem. The weights W are determined by
projecting the residual error onto dE/dW and setting the result
to zero Ve € Q using the inner product, i.e.

dE By =0
(dW' )=
where (a,b) = fﬂ abdx is a Lebesgue integral. According to
this method, by using equations (11) - (14), we have

17

OE(e,t) _ (18)
W - ©
®
Then equation (18) can be written as
(eTQe,E(e))q + (K(L),E(e))q + (ET ()W (1), E(e))q
HWTOVEE(f(x,w) — f(&,w) + g(&,w)$), E(e)a
(19)

- (WT(t)VE(e)Atanh(%VET(e)WeTCT)Ce,E(e))ﬂ =0

Hence weight updating law can be obtained as
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W() = —(E(e), E(e))q'{
(VE(e)(f(x, w) — (&, u) + g(X, u)¥), E(e))oW(t)

—(eTQe, E(e))q — (K(L), E(e))q

20
— (WT(DVE(e)Atanh (% VET(e)WeTCT> Ce, E(e))ﬂ} (20)

The NN weights can be determined by integrating (20)
backwards in time using final condition W(t¢). Observer gain
(16) can be found using these weights.

I1l. SIMULATION RESULTS

A. Gas Turbine Dynamic Model

Based on the available literature on modeling of gas turbine
engines [28], [29], a SIMULINK model for acommercial single
spool gas turbine engine at normal operating conditions is
considered. A more detailed description of the model can be
found in Refs. [28]-[30]. The set of nonlinear equations
corresponding to a single spool gas turbine engine is given by

Tec = ay1Teme + ay,My — ay3Tecmy
- a14ch(mc + my — mT) + (a11T¢
— a14Tec)é

N = az1 iy (Tee — Tr) + azomc(Ty — Te) + aza(Ty — Te)é
B N

Pr = ag, Ty (hy — my) + Az, Tyt + asyTyé

. _ Pcc . Pcc .. .
Pee = ayq T Teme + ay, My — Qa3 Pecmy —
cc cC
(asaPcc — a45ch)(mc +my — mT) +

P
(a41 T_‘igTC — (agaPec — a45ch)>S(

—— = —asy1M + Asylsg (21)
dt
[« H
— — — — P __Ncctu
where a;q = a3 =ay; = a3 =——, a;y, = Ay =
11 13 41 43 CvaC, 12 CvaC, 14
1 A = NmechCp —__° Ans = Ay = R B
mec’ T2 T (/302" T22 T gm/3002 T B T vy 32 T vy 14
NccHy YR 1 G, .
Ay = Q4 =Cy , A4s = —, agq = - and ac, = —; in
42 cymce ’ 44 A2 ] 45 VCC, 51 T 52 T

which Tee, Te, Tr and Ty denote the combustion chamber,
compressor, turbine and mixer temperatures, respectively, Pcc,
Pc , and P; denote the combustion chamber, compressor and
turbine pressures, respectively, Vy, Vcc, denote the volume of
gas inside mixer and combustion chamber, respectively, N
denotes the rotational speed, m is the mass flow in different
components, Nmech  denotes the mechanical efficiencies, ]
denotes the inertia of the shaft, m.c denotes the mass of air
inside the combustion chamber, n¢c denotes the combustion
chamber efficiency, B denotes the bypass ratio, y denotes the
heat capacity ratio, R denotes the gas constant, c, denotes the
heat at constant volume, c,, denotes the specific heat at constant
pressure, and H, denotes the fuel specific heat. t is the time

constant, G is the gain, and u is the fuel demand that is
computed by using a feedback from the rotational speed as
described in [28].

The state variables and the output measurement in the gas
turbine engine are selected as x = [T, N, Pr, Pec, gl Tand y =
[N,Pr]T. A modular SIMULINK model is developed to
simulate the above-mentioned gas turbine engine nonlinear
dynamics. Fig. 1 shows the information flow process in our
SIMULINK model of the engine.

-  Govemnor [
T
oy
[ ¥
Combustion
[ =Poc= = ——— —  Chamber [=fF====== ':
| i
i Wiy
| I.(. ..... J--_tj ...... ---.* ]
1
I FE:P'C] Cf,:pu 2
{Tc.Pc} »
#  Compressor e— L — —N— — ] Turbine ‘1
— |
MsPd TP ¥ i
o L Intake L Nozzle » I
Rl

Fig. 1 Information flow diagram in a modular modeling of the gas
turbine engine dynamics [31]

32In this brief, a component anomaly is considered as
sources of fault. Component fault is modeled as changes in the
compressor mass flow with respect to the normal mode.
Referring to [28] one can find more details about this fault. This
fault is denoted by &. Paying attention to the presented method
of fault detection, the aim of this section is to detect the
occurrence of that utilizing the optimal state estimation.

B. Optimal State Observer

Now utilizing the presented observer we want to estimate
measured system states and diagnosis the fault. Regard system
(21) using (16), we can calculate L and an observer in the form
(1), residual error for this system is

_[€1] _ %2 X7
€= [92] - [x3] B [5@3]
We have to find a nonlinear observer gain L that minimizes

(6). Here we have selected
V(e t) = wy(t)ef +wy(t)eF +ws(t)ese,

+w,(ef +ws(e] + we(t)efe,

+w,(Defe; + wg(t)eei + wo(t)ed

+wyg(t)es + wyq(t)efe, + wip(tefes

22
+wyz(t)efes + wyy(t)efes + wys(t)ese; (22)

This is a NN with polynomial activation function. It is a power
series NN of 15 activation functions containing powers up to
6th order of the error variable of the system. An appreciable
change in the result is not observed if we use power series with
order of 7 or more. It is also observed that for the power series
up to 5th order, algorithm did not converge. So, design is carried



MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 1, SPRING 2016 40

out using the above mentioned. In the next part for simulation,
we have t; = 50 s and W(t;) is as follows

Wt)=[162511626115251]
Also |L| < 6.and Q = [1000 0; 0 1000]..

C. Simulation

For the system, it is assumed that the ambient conditions are

set to standard conditions. The parameters corresponding to the
model (21) are selected as follows: ] =8Kgm?, Vy =
0.45m3, Vec = 0.2m3 nge = 0.994 Nyeen = 0.995 H, =
48830]kg Bp=0.62, y=14 R=287]/KgK c, =717]/
KgK and c, =1004]/KgK. We consider a simulation
corresponding to the following scenario: the actuator is
supposed to provide constant value equal to u = 0.4. At time
t = 15 s an incipient fault (the component fault €) occurs. Fig.
2a - b, respectively present the observed variables N, Py of the
fault-free and faulty system. Also Fig. 2c shows the applied
fault. The simulation results of the optimal state estimation and
fault detection are shown in the next two figures.
As mentioned in section 2, the gain of the observer is obtained
by minimizing the performance function (4) contained the
estimation error, a function of observer gain and the
convergence time. In fact without this performance function,
convergence of the estimation error and thus proper operation
of estimator in absence of the fault signal is not guaranteed.
Furthermore, this function causes the observer gain to not
exceed a fixed value. The simulation results confirm these
expectations. Fig.3 demonstrates the actual and estimated
responses of the states N, Py in which estimation is result of an
observer in the form (1) related to the system (21). Also Fig. 4
presents residual error e of system (21) and observer gain L
corresponding to fault & It can be highlighted that the
estimation error e converges towards zero when the fault
doesn’t occur. When it appears at t = 15 s, the residual signal
shows an abnormal behavior of the system therefore the
occurrence of € is detectable.
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Fig. 2 Output of gas turbine model (fault free and faulty mode); and [(c)]:
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Fig. 3 Estimated states of gas turbine model
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Fig. 4 Residual error and observer gain

Considering Fig. 4b, variation of each element of observer
gain L during fault occurence is sensible. It is clear from these
figures that the observer is able to track the true state of the
system if no fault is occurred.

IV. CONCLUSION

In this paper we presented an approach for state estimation
and fault detection in nonlinear systems in basis of optimal
observer design. We brought out an optimal state estimator for
nonlinear systems subject to an actuator or plant fault. By
utilizing Lyapunov's direct method, the observer is proved to be
optimal with respect to a performance function including
magnitude of observer gain and convergence time. The
approach proposed in this paper is effective for wide class of
nonlinear system and the nonlinear term does not need to be a
separate term, also appearance chattering phenomena is
avoided. Finally, design procedure and performance of the
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avoided. Finally, design procedure and performance of the
proposed scheme were illustrated through implementation of an
observer for state estimation and fault detection of compressor
mass flow fault of gas turbine model. The simulation results.
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