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Abstract— This paper presents a new scheme based on 
state estimation to diagnosis an actuator or plant fault in a 
class of nonlinear systems that represent the nonlinear 
dynamic model of gas turbine engine. An optimal nonlinear 
observer is designed for the nonlinear system. By utilizing 
Lyapunov's direct method, the observer is proved to be 
optimal with respect to a performance function, including 
the magnitude of the observer gain and the convergence 
time. The observer gain is obtained by using approximation 
of Hamilton-Jacobi-Bellman (HJB) equation. The 
approximation is determined via an online trained neural 
network (NN). Using the proposed observer, the system 
states and the fault signal can be estimated and diagnosed, 
respectively. The proposed approach is implemented for 
state estimation and fault detection of a gas turbine model 
subject to compressor mass flow fault. The simulation 
results illustrate that the proposed fault detection scheme is 
a promising tool for the gas turbine diagnostics. 
 

Index Terms— Fault Diagnosis; Optimal State Estimation; Gas 
Turbine Engine; Nonlinear Observer Design, Neural  Network. 
 

I. INTRODUCTION 

BSERVER design for nonlinear systems is a popular 
problem in control theory that has been investigated in 

many aspects. State estimation of nonlinear system is another 
interesting and relevant topic in the modern control theory; see 
[1], [2], and [3].In [1] considering multiobjective optimization 
an observer for state estimation of a class of uncertain nonlinear 
systems is designed. In [2] and [3] using linear methods state 
estimation of nonlinear system is investigated. As an important 
application area of observer design, model-based fault detection 
and isolation (FDI) is a well-established technique in literature 
[4]. So far, various observer-based FDI design approaches, 
including FDI via Kalman filter [5] and high gain adaptive 
observers [6], have been reported. Most of these techniques are 
developed for linear systems. However, during the past two 
decades, a number of observer-based FDI approaches for 
nonlinear systems have been presented; see [7], [8] and [9]. A 
review of nonlinear system model-based fault diagnosis has 
been done in [7]. An inversion-based fault reconstruction filter 
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has been proposed in [8]. This filter is innovative and it is 
obtained by a geometric approach in which the filter design and 
related coordinate transformation are partially complicated. In 
[9] an observer-based fault estimation based on the nonsingular 
coordinate transformation is studied. This method is 
appropriate for a class of discrete Lipschitz nonlinear system.  

The basic idea behind the use of the observer for fault 
detection is to estimate the states of the system by using some 
type of observers, and then construct a residual by a properly 
weighted output error, see [4] and [10]. For nonlinear systems, 
the theory of observer design is not nearly complete or 
successful, as it is for the linear case [11], and nonlinear 
observers related to FDI of nonlinear systems are restricted. 
Most of them use sliding mode approach for detecting or 
estimating the fault; see [12]. Designing and utilizing other 
observers in this field could be worthwhile.  

Nonlinear observers are limited to a class of nonlinear 
systems and some of them use linearized model of the system 
[2]. It is also noted that most of the observer gains are very high 
or they depend on estimation error which is initially very high. 
However, high value of observer gain increases the sensitivity 
to noise. Also finite time convergence is an important feature 
that should be considered in designing procedure. In [11] 
according to a method presented in [13] for optimal control of 
nonlinear system, an optimal nonlinear observer using 
Hamilton-Jacobi-Bellman (HJB) equation based formulation is 
proposed for state estimation of a class of affine nonlinear 
system that is not subject to fault or unknown disturbance. Since 
it is difficult to find solution of the HJB equation, neural 
network (NN) has been used to approximate it. Here we want 
to use this method and consider it for a system subject to fault 
signal. 

On the other hand, Fault diagnosis of aircraft gas turbine 
engines as a complex nonlinear system has received 
considerable interest in recent years due to the increasing 
demand on reliable operation and maintainability requirements 
of these safety critical systems [14]. Fault diagnosis methods 
are primarily divided into two main categories, namely model-
base and data-driven techniques. Both of these techniques have 
been extensively studied in the literature for health monitoring 
of gas turbine engines [15], [16], [17] and [18]. The main 
framework of research in gas turbine engine FDI is based on 
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gas path analysis (GPA) in which by measurement and 
estimation of lumped parameters of the system, such as 
temperature and pressure at each stage, one attempts to isolate 
and identify actuator, sensor, or component faults [19]. 
References to this approach first appeared in the literature by 
one of the early investigators and pioneers, Urban and Smetana 
[20]-[21]. Then it was developed mainly by Volponi and other 
researchers [22]. 

As a generality, diagnostic systems rely on discernable 
changes in observable parameters to detect physical faults. 
Physical faults consist of a variety of problems or combinations 
of problems such as foreign object damage, blade erosion and 
corrosion, worn seals, plugged nozzles, excessive blade tip 
clearances, etc. If severe enough, these physical faults will 
induce a change in the thermodynamic performance of the 
engine and its attendant components like efficiency and flow 
capacities of compressor and turbine [23] .The underlying 
precept behind GPA is that engine performance depends on the 
state of these individual components and that furthermore, the 
condition of these components can be mathematically 
represented by a set of independent performance parameters. 

This paper contributes to the field of state estimation and 
fault detection of nonlinear systems. Firstly we propose an 
optimal nonlinear observer for nonlinear systems subject to a 
fault signal (actuator or plant fault) that in addition to estimating 
states, it is able to detect the occurrence of the fault. By utilizing 
Lyapunov's direct method, the observer is proved to be optimal 
with respect to a performance function including magnitude of 
observer gain and convergence time. Observer gain is obtained 
by using approximation of HJB equation that is determined via 
an online trained NN with time-varying weights. By utilizing 
the proposed observer, the system states and the fault signal can 
be estimated and diagnosed, respectively. Finally the proposed 
method is applied on gas turbine engine subject to compressor 
mass flow fault. In fact, the main innovation of the paper is 
designing the optimal nonlinear observer and implementing it 
for fault detection of gas turbine model.  

In comparison to other methods related to the fault detection 
of nonlinear system, the approach proposed in this paper is 
effective for wide class of nonlinear system. For instance, 
methods based on sliding mode approach are limited to a class 
of nonlinear system in a standard form in which the nonlinear 
term, that is a separate term, must satisfies Lipschitz function 
assumptions. Also appearance chattering phenomenon in 
sliding mode observer is another restriction that should be 
avoided. These restrictions there are not in this work. 
Furthermore, here by utilizing a performance function, 
optimization of observer gain magnitude and finite-time state 
estimation are guaranteed.    

The rest of this paper is organized as follows: In section 2, 
state estimation and fault detection scheme including observer 
design and NN based HJB solution, is presented. The 
implementation of the proposed approaches on gas turbine 
engine and the simulation results are provided in section 3. 
Finally, the conclusion remarks are given in section 4.  

II. STATE ESTIMATION AND FAULT DETECTION SCHEME 

A. Nonlinear Observer Design 

Consider a nonlinear system of the form 

𝑥̇ = 𝑓(𝑥, 𝑢) + 𝑔(𝑥, 𝑢)𝜉 

𝑦 = 𝐶𝑥 
(1) 

where x ∈ ℝn is the state vector, u ∈ ℝnu  is the control input, 
y ∈ ℝd is the measured output, ξ ∈ ℝ is the fault signal, f(x, u) 

and g(x, u) are smooth vector field and C ∈ ℝd×n is constant 
matrix. Consider a state observer with Luenberger like structure 
as follow  

𝑥̇̂ = 𝑓(𝑥̂, 𝑢) + L(y − C𝑥̂) 

e(t) = 𝑥(𝑡) − 𝑥̂(𝑡) (2) 

where x̂ ∈ ℝn is the estimated state vector, e(t) is estimation 
error or residual, L is an observer gain matrix of appropriate 
dimension. Elements of L are nonlinear function of estimation 
error and they are bounded by a positive constant λ, i.e. Lij ≤

λ ∈ ℝ. The estimation error dynamics may be computed as  

ė = f(x, u) − f(x̂, u) + g(x, u)ξ − LCe. (3) 

The problem of state estimation and, consequently, residual 
generation is to design an observer, modeled by equations of 
the form (1), such that the residual e with dynamic equation (3) 
asymptotically converges to zero in absence of fault ξ. So 
assuming g(x, u) ≠ 0 the requirements of Fundamental 
Problem of Residual Generation (FPRG), i.e. the residual eonly 
is affected by fault ξ, is satisfied. 

The main challenge of designing observer (1) is to determine 
gain matrix L such that the convergence criterion of residual e 
is satisfied. The amount of mentioned gain and finite-time 
convergence are important attributes that should be considered. 
In [13], a procedure for optimal designing of a controller is 
presented. By utilizing that the method of optimal observer 
design for fault detection, is addressed as follows: 

For the system (3) find an observer gain L such that the 
following finite-horizon performance function with its terminal 
cost is minimized.  

𝛷(𝑒, 𝑡) = ∫ (𝑒𝑇𝑄𝑒 + 𝐾(𝐿))𝑑𝑡
𝑡𝑓

𝑡0

 (4) 

where  

K(L) = 2 ∫ tanh−1 (
v

λ
) 𝑑𝑣

𝐿

0
. 

(5) 
Where λ is a coefficient, v is an auxiliary variable and 

∫ tanh−1 (
v

λ
) dv

L

0
≡ ∫ tanh−1 (

v11

λ
) dv11

L11

0
+

 ∫ tanh−1 (
v12

λ
) dv12 +

L12

0
⋯ + ∫ tanh−1 (

vnd

λ
) dvnd

Ldn

0
 is a 

non-quadratic term expressing cost related to constrained 

observer gain in which ∫ tanh−1 (
vij

λ
) dvij

Lij

0
=

2Lijλtanh−1 (
Lij

λ
) + λ2 ln(1 − Lij

2/λ2)  > 0 and Lij is the 

element of matrix L. The existence of estimation error e with 
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positive definite matrix Q, observer gain L and final 
convergence time tf in performance function (4), lead to the 
convergence properties of estimation error present in optimal 
observer design. 

To solve the constrained optimal nonlinear observer design, 
let  

V(e0, t0) = 𝛷(𝑒(𝑡𝑓), 𝑡𝑓) + min
𝐿

∫ (eTQe + K(L))dt
𝑡𝑓

𝑡0

 (6) 

be the minimum cost of bringing the system (3) from initial 
condition e0 to equilibrium point 0. 

Definition 1 (Admissible observer gain): An observer gain L 
is defined to be admissible with respect to (6) on Ω, denoted 
by L ∈ ψ(Ω) with L continuous on Ω, if it stabilizes (3) for 
ξ = 0 on Ω, and for ∀e0 ∈ Ω,, V(e0, t0) is finite. 

Under regularity assumptions, i.e. V(e, t) ϵ C1(Ω), 
considering (6) the HJB gives 

min 
𝐿

(eTQe + K(L) + Vt + 𝑉𝑒
𝑇(𝑓(𝑥, 𝑢) − 𝑓(𝑥̂, 𝑢) +

𝑔(𝑥, 𝑢)𝜉 − 𝐿𝐶𝑒)) = 0  (7) 

where Vt =
∂V

∂t
 and Ve =

∂V

∂e
. This is a time-varying partial 

differential equation (PDE) with V(e, t) that is the cost function 
for any given L and it is solved backward in time from t = tf. 
By setting t0 = tf for (6) we have V(e(tf), tf) = Φ(e(tf), tf).  

If L is the solution to the optimal observer design problem, 
then according to Bellman’s optimally principle [24], the 
optimal cost is given by 

HJB(V(e, t)) = eTQe + K(L) + Vt + Ve
𝑇(𝑓(𝑥, 𝑢) −

𝑓(𝑥̂, 𝑢) + 𝑔(𝑥, 𝑢)𝜉 − 𝐿𝑐𝑒) = 0.  (8) 

Optimal observer gain matrix, L, can be derived by solving 

∂ (HJB(V(e, t))) / ∂L = 0. Using (8) and (5), this equation can 

be written as: 

𝐿 = λ tanh (
1

2λ
Ve(Ce)T)  (9) 

where V(e, t) is the optimum value function. The time-varying 
observer gain matrix  (9) represents constrained dynamic 
optimal observer for the nonlinear systems. The validity of an 
optimal observer design is expressed in the next theorem. 

Theorem .1: Consider the nonlinear system (3) and 
performance function (6). Assume that there exists a function 
V(e, t) as the solution of HJB equation (8). The observer (1) 
acts as an optimal residual generator that estimate x if no fault 
has occurred (ξ(t) = 0), addressing constraints with respect to 
terminal time and the observer gain. If a fault has occurred 
(ξ(t) ≠ 0), the estimate of x is such that ‖e‖ > ϵ, where ϵ is a 
positive constant. 

Proof: Let us first study the case without fault; we show that 
L is a solution to the optimal observer design problem, i.e. the 
residual e in system (3) converges to zero globally 
asymptotically, which can be proved by showing V(e, t), the 
solution of HJB equation (8), is a Lyapunov function. Clearly, 

V(e, t) > 0 for ∀e ≠ 0 and  t ≠ 0$and V(0) = 0 also 
considering (8) we have 

V̇(e, t) =
∂V

∂t
+ (

∂V

∂e
)

𝑇

ė = −𝑒𝑇𝑄𝑒 − 𝐾(𝐿)

≤ −𝑒𝑇𝑄𝑒 ≤ 0 
(10)  

consequently, there exists a neighborhood Z = {e: ‖e‖ < ϵ} for 
some ϵ > 0 such that if e(t) enters Z, then lim

t→∞
e(t) = 0. But 

e(t) cannot remain forever outside Z. Otherwise ‖e‖ ≥ ϵ , for 
all t ≥ 0. Let α = inf(eTQe) > 0 such that ‖e‖ ≥ ϵ.Therefore, 

V(e(t), t) − V(e(0), 0) = ∫ V̇(e(τ), τ)dτ
t

0
≤ − ∫ αdτ

t

0
=

−α ∫ dτ
t

0
= −αt. Let t → ∞, we have, 

𝑉(𝑒(𝑡), 𝑡) ≤ 𝑉(𝑒(0), 0) − 𝛼𝑡 → −∞ 

which contradicts the fact that   V(e, t) > 0 for ∀e ≠ 0.  

Therefore lim
t→∞

e(t) = 0, no matter where the trajectory 

begins. It concludes the optimal stability of the state estimation 
when no fault has occurred. 

Let us now discuss the case when a fault has occurred. From 
(3) one can see that for g(x, u) ≠ 0 the time derivative of the 
estimation error is directly influenced by the fault. Since a fault 
is detectable, its occurrence causes a change in nominal 
behavior of system. So ‖e‖ > ϵ.      

Hence one can design a constrained optimal observer using 
proposed formulation for nonlinear systems with finite time 
horizon. An optimal observer can be designed by knowing 
exact solution of HJB equation, which is a difficult problem. In 
[11] utilizing a NN which is proposed in [13], the solution of 
HJB equation is approximated for calculating an observer gain 
related to an affine nonlinear system. In the next section, 
according to that NN, the approximation of value-function V 
which is the solution of HJB equation is obtained. 

B. NN Based HJB Solution 

In this section, for finding approximate solution of HJB 
equation we use NN. In [25], it is shown that an online trained 
NN with time-varying weights can be used to approximate 
smooth time-varying functions on prescribed compact sets. 
Actually the approximate solution is used to find observer gain. 
Therefore assuming that V(e, t) is smooth and also uniformly 
continuous on a compact set Ω, one can use the following 
equation to approximate V(e, t) for t ∈ [t0, tf] on Ω. 

V̂(e, t) = ∑ wj(t)σj(e)

N

J=1

= WT(t)Ξ(e) 
(11) 

This is a NN with activation function σj(e) ∈ C1(℧) and 
σj(0) = 0. We have 

𝑉̂𝑒(𝑒, 𝑡) =
𝜕𝑉̂

𝜕𝑒
= (∇Ξ(𝑒))

𝑇
𝑊(𝑡) (12) 

and 
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𝑉̂𝑡(𝑒, 𝑡) =
𝜕𝑉̂

𝜕𝑡
= Ξ𝑇(𝑒)

𝜕𝑊(𝑡)

𝜕𝑡
 

(13) 

where wj(t) denotes the NN weight and N is the number of 
hidden layer neurons, Ξ(e) = [σ1(e) σ2(e)  … σN(e)]T is the 
vector of activation function selected such that V̂(0) = 0 and 
V̂(e, t) > 0 for ∀e ≠ 0 and t ≠ 0 and W = [w1 w2 … wN]T is 
the vector of NN weights. It is assumed that N is large enough 
that there exist weight W(tf) that exactly satisfy the 
approximation at t = tf. Without loss of generality, the set Ξ(e) 
is selected to be independent and orthonormal [13]. The 
orthonormality of the set {σ(e)}1

∞ on Ω ⊆ Rn imply that, for a 
real-valued function Θ(e, t) ∈ R,, 

Θ(𝑒, 𝑡) = ∑〈Θ(𝑒, 𝑡), 𝜎𝑗(𝑒)〉℧𝜎𝑗(𝑒)

∞

𝐽=1

 

where 〈f, g〉℧ = ∫ a. bTdx
℧

 is an inner product, a and b are 
continuous vector functions, and the series converge pointwise 
[26], i.e. for any ε > 0 and e ∈ Ω, one can choose N sufficiently 
large to guarantee that |∑ 〈Θ(e, t), σj(e)〉℧σj(e)∞

J=N+1 | < ε for 
all time t ∈ [t0, tf]. 

Note that 
∂V

∂t
 in (8) is required, so the NN weights are selected 

to be time varying. Approximating V(e, t) by V̂(e, t) in the HJB 
equation (8) results in  

𝐻𝐽𝐵 (𝑉̂(𝑒, 𝑡)) = 𝑒𝑇𝑄𝑒 + 𝐾(𝐿̂) + 𝑉̂𝑡 + 𝑉𝑒
𝑇(𝑓(𝑥, 𝑢) −

𝑓(𝑥̂, 𝑢) + 𝑔(𝑥̂, 𝑢)𝜉 − 𝐿̂𝐶𝑒) = 𝐸  (14) 

where E is the approximation error. If E is negligible, then 
(14) is similar to (8).  

Assuming the fault ξ(t) and coefficients |wj(t)| for all N are 
uniformly bounded, the following lemma shows the existence 
of NN based HJB solution for optimal observer design using 
performance function (6). 

Lemma 1: Given L ∈ ψ (℧), let V̂(e, t) = ∑ wj(t)σj(e)N
J=1  

satisfy 〈HJB (V̂(e, t)) , Ξ(e)〉℧ = 0 and 〈V̂(tf), Ξ(e)〉℧ = 0, and 

let V(e, t) = ∑ bj(t)σj(e)∞
J=1  and B = [b1(t)  b2(t) … bN(t)]T 

satisfy HJB(V(e, t)) = 0 and V(e(tf), tf) = ϕ(e(tf), tf), then 

|HJB (V̂(e, t))| → 0 uniformly on Ω as N increases.  

There is a theorem for the existence of NN based HJB solution 
for the optimal control problem in [13]. The existence of NN 
based HJB solution for optimal observer using modified 
performance functional can be proved on similar lines. See [13].  

Since Lemma 1 shows the existence of NN based HJB 
solution, (14) can be written as  

𝐻𝐽𝐵 (𝑉̂(𝑒, 𝑡)) = 𝑒𝑇𝑄𝑒 + 𝐾(𝐿̂) + 𝑉̂𝑡 + 𝑉𝑒
𝑇(𝑓(𝑥, 𝑢) −

𝑓(𝑥̂, 𝑢) + 𝑔(𝑥̂, 𝑢)𝜉 − 𝐿̂𝐶𝑒) ≈ 0 . (15) 

In the next theorem we prove that the nonlinear observer (1) 
is an optimum observer that estimates states in absence the fault 

and detects the fault when it occurs. It also proves the validity 
of the NN-HJB based observer design. 

Theorem 2: Consider the error dynamics (3) with the 
performance function (6). Assume that there exists a function 
V̂(e, t)  as the solution of HJB equation (14). Using this solution, 
if no fault has occurred observer gain matrix L = L̂ ensures 
global asymptotic stability of system (3), i.e., error e = x − x̂ 
asymptotically converges to zero. If a fault has occurred, ‖e‖ >
ϵ, where ϵ is a positive constant. 

Proof: Using (12) and (15), we can find approximate 
optimal observer gain matrix similarly as in (8) by following 
equation: 

𝐿̂ = λ tanh (
1

2λ
Ve(Ce)T) = λtanh (

1

2λ 
∇ΞT(e)W(t)(Ce)T). (16) 

Vector Ξ(e) can be selected such that V̂(0) = 0 and V̂(e, t) > 0 

for e ≠ 0. Also V̇̂(e, t) < 0 for e ≠ 0 can be proved similarly 
as Theorem 1 by replacing V(e, t) with V̂(e, t). So replacing L 
with L̂, the system (3) remains globally asymptotically stable. 
Hence it can be proved that V̂(e, t), the solution of HJB equation 
(15) is a Lyapunov function.  

From the above theorem we can say that an optimal observer 
with gain matrix (16) can be designed for a nonlinear system 
using HJB formulation. For calculating gain matrix, set of the 
NN weights is required. We describe this in the following  

The NN weights are selected to minimize approximation 
error in least square sense over a set of points sampled from a 
compact set Ω0 inside the region of stability of the initial 
stabilizing control [13]. To find the least squares solution, the 
method of weighted residuals is used. This method was 
explored in [27] for optimal control problem based on HJB 
formulation. On similar lines, one can explore this method for 
observer design problem. The weights W are determined by 
projecting the residual error onto dE/dẆ and setting the result 
to zero ∀e ∈ Ω using the inner product, i.e. 

〈
dE

dẆ
, E〉 = 0 

(17) 

where 〈a, b〉 = ∫ abdx
 

Ω
 is a Lebesgue integral. According to 

this method, by using equations (11) - (14), we have 

∂E(e, t)

∂Ẇ(t)
= Ξ(e) 

(18) 

Then equation (18) can be written as 

〈𝑒𝑇𝑄𝑒, Ξ(𝑒)〉Ω + 〈𝐾(𝐿̂), Ξ(𝑒)〉Ω + 〈Ξ𝑇(𝑒)𝑊̇(𝑡), Ξ(𝑒)〉Ω 

+〈𝑊𝑇(𝑡)∇Ξ(𝑒)(𝑓(𝑥, 𝑢) − 𝑓(𝑥̂, 𝑢) + 𝑔(𝑥̂, 𝑢)𝜉), Ξ(𝑒)〉Ω 

− 〈𝑊𝑇(𝑡)∇Ξ(𝑒)𝜆tanh (
1

2𝜆
∇ΞT(𝑒)𝑊𝑒𝑇𝐶𝑇)𝐶𝑒, Ξ(𝑒)〉Ω = 0 

(19) 

Hence weight updating law can be obtained as 
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Ẇ(t) = −〈Ξ(e), Ξ(e)〉Ω
−1{  

〈∇Ξ(e)(f(x, u) − f(x̂, u) + g(x̂, u)ξ), Ξ(e)〉ΩW(t) 

−〈eTQe, Ξ(e)〉Ω − 〈K(L̂), Ξ(e)〉Ω 

− 〈WT(t)∇Ξ(e)λ tanh (
1

2λ
∇ΞT(e)WeTCT) Ce, Ξ(e)〉Ω} 

(20) 

The NN weights can be determined by integrating (20) 
backwards in time using final condition W(tf). Observer gain 
(16) can be found using these weights. 

III. SIMULATION RESULTS 

A. Gas Turbine Dynamic Model 

Based on the available literature on modeling of gas turbine 
engines [28], [29], a SIMULINK model for a commercial single 
spool gas turbine engine at normal operating conditions is 
considered. A more detailed description of the model can be 
found in Refs. [28]-[30]. The set of nonlinear equations 
corresponding to a single spool gas turbine engine is given by 

 
𝑇̇𝐶𝐶 = 𝑎11𝑇𝐶𝑚̇𝐶 + 𝑎12𝑚̇𝑓 − 𝑎13𝑇𝐶𝐶𝑚̇𝑇

− 𝑎14𝑇𝐶𝐶 (𝑚̇𝐶 + 𝑚̇𝑓 − 𝑚̇𝑇) + (𝑎11𝑇𝐶

− 𝑎14𝑇𝐶𝐶 )𝜉 

𝑁̇ =
𝑎21𝑚̇𝑇(𝑇𝐶𝐶 − 𝑇𝑇) + 𝑎22𝑚̇𝐶(𝑇𝑑 − 𝑇𝐶) + 𝑎22(𝑇𝑑 − 𝑇𝐶)𝜉

𝑁
 

𝑃̇𝑇 = 𝑎31𝑇𝑀(𝑚̇𝑇 − 𝑚̇𝑛) + 𝑎32𝑇𝑀𝑚̇𝐶 + 𝑎32𝑇𝑀𝜉 

𝑃̇𝐶𝐶 = 𝑎41
𝑃𝐶𝐶

𝑇𝐶𝐶
𝑇𝐶𝑚̇𝐶 + 𝑎42

𝑃𝐶𝐶

𝑇𝐶𝐶
𝑚̇𝑓 − 𝑎43𝑃𝐶𝐶𝑚̇𝑇 −

(𝑎44𝑃𝐶𝐶 − 𝑎45𝑇𝐶𝐶 )(𝑚̇𝐶 + 𝑚̇𝑓 − 𝑚̇𝑇) +

(𝑎41
𝑃𝐶𝐶

𝑇𝐶𝐶
𝑇𝐶 − (𝑎44𝑃𝐶𝐶 − 𝑎45𝑇𝐶𝐶)) 𝜉  

𝑑𝑚̇𝑓

𝑑𝑡
= −𝑎51𝑚̇𝑓 + 𝑎52𝑢𝑓𝑑 (21) 

where a11 = a13 = a41 = a43 =
cp

cvmCC
, a12 =

ηCCHu

cvmCC
, a14 =

1

mCC
, a21 =

ηmechcp

J(π 30⁄ )2, a22 =
cp

J(π 30⁄ )2 , a31 =
R

VM
 , a32 =

R

VM

β

1+β
 , 

a42 =
ηCCHu

cvmCC
 , a44 = cv , a45 =

γR

VCC
, a51 =

1

τ
 and a52 =

G

τ
; in 

which TCC, TC, TT and TM denote the combustion chamber, 
compressor, turbine and mixer temperatures, respectively, PCC, 
PC  , and PT denote the combustion chamber, compressor and 
turbine pressures, respectively, VM, VCC, denote the volume of 
gas inside mixer and combustion chamber, respectively, N 
denotes the rotational speed, ṁ is the mass flow in different 
components, ηmech denotes the mechanical efficiencies, J 
denotes the inertia of the shaft, mCC denotes the mass of air 
inside the combustion chamber, ηCC denotes the combustion 
chamber efficiency, β denotes the bypass ratio, γ denotes the 
heat capacity ratio, R denotes the gas constant, cv denotes the 
heat at constant volume, cp denotes the specific heat at constant 
pressure, and Hu denotes the fuel specific heat. τ is the time 

constant, G is the gain, and u is the fuel demand that is 
computed by using a feedback from the rotational speed as 
described in [28]. 

The state variables and the output measurement in the gas 
turbine engine are selected as x = [TCC, N, PT, PCC, ṁf]

T and y =
[N, PT]T. A modular SIMULINK model is developed to 
simulate the above-mentioned gas turbine engine nonlinear 
dynamics. Fig. 1 shows the information flow process in our 
SIMULINK model of the engine. 

 
Fig. 1 Information flow diagram in a modular modeling of the gas 
turbine engine dynamics [31] 

32In this brief, a component anomaly is considered as 
sources of fault. Component fault is modeled as changes in the 
compressor mass flow with respect to the normal mode. 
Referring to [28] one can find more details about this fault. This 
fault is denoted by ξ. Paying attention to the presented method 
of fault detection, the aim of this section is to detect the 
occurrence of that utilizing the optimal state estimation. 

B. Optimal State Observer 

Now utilizing the presented observer we want to estimate 
measured system states and diagnosis the fault. Regard system 
(21) using (16), we can calculate L and an observer in the form 
(1), residual error for this system is 

𝑒 = [
𝑒1

𝑒2
] = [

𝑥2

𝑥3
] − [

𝑥2

𝑥3
] 

We have to find a nonlinear observer gain L that minimizes 
(6). Here we have selected 
𝑉(e, t) = w1(𝑡)𝑒1

2 + w2(𝑡)𝑒2
2 + w3(𝑡)𝑒1𝑒2 

+w4(𝑡)𝑒1
4 + w5(𝑡)𝑒2

4 + w6(𝑡)𝑒1
3𝑒2  

+w7(𝑡)𝑒1
2𝑒2

2 + w8(𝑡)𝑒1𝑒2
3 + w9(𝑡)𝑒1

6 
+w10(𝑡)𝑒2

6 + w11(𝑡)𝑒1
5𝑒2 + w12(𝑡)𝑒1

4𝑒2
2 

+w13(𝑡)𝑒1
3𝑒2

3 + w14(𝑡)𝑒1
2𝑒2

4 + w15(𝑡)𝑒1𝑒2
5 (22) 

This is a NN with polynomial activation function. It is a power 
series NN of 15 activation functions containing powers up to 
6th order of the error variable of the system. An appreciable 
change in the result is not observed if we use power series with 
order of 7 or more. It is also observed that for the power series 
up to 5th order, algorithm did not converge. So, design is carried 
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out using the above mentioned. In the next part for simulation, 
we have tf = 50 s and W(tf) is as follows 

𝑊(tf) = [1  6  2  5  1  1  6  2  6  1  1  5  2  5 1] 
Also |L| ≤ 6 and Q = [1000  0; 0 1000]..  

C. Simulation 

For the system, it is assumed that the ambient conditions are 
set to standard conditions. The parameters corresponding to the 
model (21) are selected as follows: J = 8 Kg m2, VM =
0.45 m3, VCC = 0.2 m3 ηCC = 0.994 ηmech = 0.995 Hu =
48830 J kg  β = 0.62, γ = 1.4  R = 287J/KgK cv = 717 J/
Kg K  and cv = 1004 J/KgK. We consider a simulation 
corresponding to the following scenario: the actuator is 
supposed to provide constant value equal to u = 0.4. At time 
t = 15 s an incipient fault (the component fault ξ) occurs. Fig. 
2a - b, respectively present the observed variables N, PT of the 
fault-free and faulty system. Also Fig. 2c shows the applied 
fault. The simulation results of the optimal state estimation and 
fault detection are shown in the next two figures.  
As mentioned in section 2, the gain of the observer is obtained 
by minimizing the performance function (4) contained the 
estimation error, a function of observer gain and the 
convergence time. In fact without this performance function, 
convergence of the estimation error and thus proper operation 
of estimator in absence of the fault signal is not guaranteed. 
Furthermore, this function causes the observer gain to not 
exceed a fixed value. The simulation results confirm these 
expectations. Fig.3 demonstrates the actual and estimated 
responses of the states N, PT in which estimation is result of an 
observer in the form (1) related to the system (21). Also Fig. 4 
presents residual error e of system (21) and observer gain L 
corresponding to fault ξ. It can be highlighted that the 
estimation error e converges towards zero when the fault ξ 
doesn’t occur. When it appears at t = 15 s, the residual signal 
shows an abnormal behavior of the system therefore the 
occurrence of ξ is detectable. 

 
Fig. 2 Output of gas turbine model (fault free and faulty mode); and [(c)]: 
applied fault ξ 
 

 
Fig. 3  Estimated states of gas turbine model  

 
Fig. 4 Residual error and observer gain 
 
 

Considering Fig. 4b, variation of each element of observer 
gain L during fault occurence is sensible. It is clear from these 
figures that the observer is able to track the true state of the 
system if no fault is occurred. 

IV. CONCLUSION 

In this paper we presented an approach for state estimation 
and fault detection in nonlinear systems in basis of optimal 
observer design. We brought out an optimal state estimator for 
nonlinear systems subject to an actuator or plant fault. By 
utilizing Lyapunov's direct method, the observer is proved to be 
optimal with respect to a performance function including 
magnitude of observer gain and convergence time. The 
approach proposed in this paper is effective for wide class of 
nonlinear system and the nonlinear term does not need to be a 
separate term, also appearance chattering phenomena is 
avoided. Finally, design procedure and performance of the 
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avoided. Finally, design procedure and performance of the 
proposed scheme were illustrated through implementation of an 
observer for state estimation and fault detection of compressor 
mass flow fault of gas turbine model. The simulation results. 
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