
 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 14

Abstract—Secure outsourcing is essential to growth of cloud

usage. There are some protocols allowing any functionality to be

outsourced. However, specific constructions are necessary in

order to do so in an efficient way. In this paper, we consider the

problem of secure outsourced pattern matching. Our solution is

based on Bit-Parallel Shift-ADD algorithm. The properties of this

insecure algorithm allow our construction to search in an

outsourced text, without revealing any non-trivial information to

the computing server. We achieve a round optimal protocol that

allows us to search for patterns with wildcards and handles the

Hamming distance computation. Since the protocol has no

leakage to the server, it cannot be optimal considering

communication complexity; however, we suggest efficient

techniques to achieve communication optimality through

outsourcing of decryption as well. The security of our protocol is

proved in the semi-honest setting. Then, in order to retain the

efficiency of the protocol, we omit the correctness property in the

malicious setting and prove that the scheme remains private in

the presence of malicious adversaries.

Index Terms— Bit-Parallel Shift-ADD, Outsourcing, Secure

pattern matching, Two-party computation.

I. INTRODUCTION

n the simplest form, the pattern matching problem consists

in finding all the positions in a text T of length n that

matches a pattern P of length m, both from a finite alphabet .

Due to vast applicability of this problem it has been studied

for decades. Recently, with the trending attention into secure

multi-party computation there is growing interest in the secure

pattern matching problem. In a typical secure two-party

setting, the pattern owner wants to search for her private

pattern in the private text of the text owner, while the pattern

owner learns nothing about the text more than the matching

positions and the text owner learns nothing about the pattern.

Du and Attalah [1] were the first to formalize the secure

pattern matching problem. They categorized this problem into

four distinct scenarios; in the first two scenarios, Client wants

to search for her private pattern either in the private or public

text of Server. In the third scenario, Client wants to search for

her private pattern in her private text (in an encrypted form)

Manuscript received August 6, 2016; accepted January 24, 2017.

(Corresponding Author) Mohammad Hasan Samadani is a PhD candidate at

the Department of Electrical and Computer Engineering, Isfahan University of

Technology, Isfahan, Iran (e-mail:mohammad.samadani@gmail.com).
Mehdi Brenjkoob is with the Department of Electrical and Computer

Engineering, Isfahan University of Technology, Isfahan, Iran (e-mail:

brnjkb@cc.iut.ac.ir).

outsourced to Server, which we refer to as outsourced pattern

matching. In the last scenario, Client is going to delegate her

search capabilities on her outsourced private text to Carl who

has a private pattern, which we refer to as delegated pattern

matching. The first scenario received much attention in the

literature [2-7] while the others are rarely considered [8, 9].

The focus of this paper is on the outsourced pattern

matching. To be precise, Client has a private text that she

stores in an encrypted form with Server. She later issues

queries in the form of private search patterns, which Server

evaluates on the outsourced text. As part of this functionality,

Server should not learn anything about Client’s data (either the

text or the patterns) besides the publicly available information

such as the text and pattern lengths.

Our protocol is intuitively based on an insecure pattern

matching algorithm called the Bit-Parallel Shift-ADD

algorithm [10], which is a non-comparison based algorithm

[11]. Then we design a specific construction for secure pattern

matching outsourcing by exploiting the functional structure of

this algorithm.

This protocol supports wildcards in the pattern and works

for any finite alphabet. Also, its required storage space,

communication and computation complexity are independent

of the alphabet size which makes it suitable for very large

alphabets, e.g. UTF-8 [12]. Moreover, our protocol can be

used when the outsourced text is a database of keywords

(keyword search), a stream of characters (text search), and a

live stream of characters (live text search). The text is

outsourced to a single server, besides it can be deleted from

the outsourcer side since it can be fetched and decrypted later.

It also take  O n  space to store a text of size n, where 

is the security parameter. It is also very easy to update or

delete the whole or any portions of the outsourced text as well

as adding any new characters or keywords to any desired

position in the text.

The most notable property of this protocol is that there is no

need to predict, designate, or fix the patterns to be queried

later while preprocessing the text for outsourcing, despite all

other known protocols. This enables the outsourcer to query

for any new or unpredicted pattern with arbitrary length after

outsourcing.

The proposed protocol is round-optimal; only one round

(one-way) for outsourcing the text and two rounds (one-way)

for searching. In the pattern matching problem, the optimal

communication complexity during query phase for the

receiver is linear in the number of matches. Since the worst

Secure Outsourced Pattern Matching based on

Bit-Parallelism

Mohammad Hasan Samadani1and Mehdi Berenjkoub

I

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016

15

case output size is proportional to the length of the text and a

circuit that tolerates this worst case is needed, it is not clear

how to achieve optimal communication complexity during

query phase in two rounds even using Fully Homomorphic

Encryption [13]. On the other hand, there is no way to achieve

the optimal communication complexity unless giving the

possibly corrupted server some leakages about the pattern,

text, or matched positions. Intuitively, one can think of this

case as if Server is able to send sublinear information to Client

in the query phase without sacrificing any matched position,

he has been able to know which parts of the text did not match

the pattern and which parts possibly did. This at least means

that Server has some information about the pattern, text, or

matched positions. In the literature, researchers [8, 9] allowed

some leakages in order to avoid linear communication

complexity. We emphasize that our protocol is able to avoid

this leakage at the price of this complexity. However, one can

choose to outsource the result extraction phase in order to

avoid the communication complexity.

The paper is organized as follow: the rest of this section

consists of problem statement, related work, and our

contributions. We covered some basic concepts that are used

through the paper in Section 2. Then, in Section 3, we

proposed our secure protocol for pattern matching

outsourcing. The security and performance of the protocol are

discussed in Sections 4 and 5 respectively. Finally, Section 6

points some future works and Section 7 concludes the paper.

A. Related work

With the recent growth in cloud computing services, the

problem of secure outsourcing of computations gained more

attention. There are some works in the area of outsourcing and

delegatable computation which enable clients to outsource any

functionality to an untrusted server [14-16]. These general

constructions often have poor efficiency and high computation

overhead due to the use of fully homomorphic encryption [8].

The previous experience in the literature of two/multi-party

computation proved that to move towards more practical

schemes one may use the special properties of each

functionality to design specific constructions rather than using

such general solutions [17].

The problem of secure pattern matching has received a great

attention in the literature of two-party computation motivated

by its critical and broad applicability in computer science. Du

and Atallah [1] were the first to formalize the secure pattern

matching problem and defined four scenarios of secure pattern

matching. They proposed a basic secure protocol for

computing the inner product to vectors with the help of an

untrusted third party. Then, they used this basic protocol to

design secure solutions for each of those scenarios. However,

almost all of these protocols are just feasibility results and

impractical. Also, they suffer from major limitations; the help

of an untrusted third party is needed, text must be stored in the

form of equal-length keywords, and only the same length

patterns can be evaluated.

Their work is followed up with other researches in various

directions. The first scenario, where Client has a private

pattern and Server has a private text, has gained much more

attention [2-7]. Also, various kinds of pattern, from a simple

string of characters to the complex form of regular expression

[14], are considered. On the other hand, the third scenario

(outsourcing) which is the focus of this paper, is rarely

considered in the literature.

The most significant work in this regard is the work of

Faust, Hazay, and Venturi [8], which covers the forth scenario

(delegation) as well. Their work considers a trapdoor for each

pattern of length m in the form of an easy to solve instance of

the subset sum problem [18]. Namely, Client outsources her

text in the form of a random vector in which all positions that

match a specific pattern equals an instance of the subset sum

problem, where giving a trapdoor for that pattern is easy to

solve. Any party that is able to generate such a trapdoor is able

to search for that pattern. This makes this scheme applicable in

the case that Client wants delegate her search power to other

parties; this delegation is done through a secure protocol in

which the other party privately learns the trapdoor.

They proved this protocol using simulation-based security

[17], in the presence of semi-honest and malicious adversaries.

Also, during the query phase the overall communication and

computation complexity done by Client is linear in the number

of matches, however, it allows some leakages to Server. More

precisely, Server learns the matched positions and more

importantly the repetitions in the text; Server is not able to

learn the context of these positions, however, this enables him

to run statistical analysis on the text and learn even more

information about it. Moreover, pattern’s length m must be

known and fixed prior preprocessing a text for outsourcing

and the pattern must be in the simplest form, i.e. a simple

string of characters and no wildcard.

Another work by Wei and Reiter considered more complex

patterns in the form of Deterministic Finite Automata (DFA)

[19]. This work is an interactive protocol with round

complexity linear in the size of the text.

We are also aware of the context of Searchable Encryption

(SE) [20]. In a SE scheme a server is allowed to search in an

encrypted data on behalf of a client without learning

information about the data. There are two high level

approaches to achieve a SE scheme; some schemes implement

this via a ciphertext that allows searching [21], while in most

others the client generates a list of encrypted (possibly non-

decryptable, e.g. using a hash function) predefined keywords.

A main problem with the first type is that the queried pattern

is revealed to the server if matched. Also, the problem with the

second type is that the patterns to be queried must be known

and fixed at the time of outsourcing; if a pattern is present in

the text but is not considered as a keyword to be search later

when outsourcing, it cannot be found during the search.

The main problem with SE is that searchable encryption

usually does not ensure the privacy of the searched pattern

[20]. While this issue is addressed in some schemes, it arises a

more severe problem in which all the plaintext in the specific

positions should be associated with the pattern (keyword)

ahead of time. Since the simulator does not know the text, it is

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 16

not possible to produce a consistent preprocessed text in the

simulation. It is actually unclear how to generate such an

indistinguishable view even in the random oracle model [8].

B. Our contribution

We propose an efficient secure protocol for outsourcing the

pattern matching problem. This protocol supports wildcards,

text and keyword search, and is able to handle the Hamming

distance. The protocol is round optimal; only one round (one-

way) for outsourcing the text and two rounds (one-way) for

searching and there is no need for any more interactions.

Also, we proved that no nontrivial information is leaked to

the computing server. We also proposed a technique to

outsource the fetching and decryption phase of the protocol,

which enables us to achieve optimal communication and

computation complexity while preserving the round optimality

for the client and the computing server.

II. BASIC CONCEPTS

In this section, we give a high level overview on the basic

concepts and preliminaries required throughout the paper.

Also, we provide the security definitions and the ideal

functionality.

A. Bit-Parallel Shift-ADD Algorithm

Our central tool for providing an outsourced pattern

matching protocol is Bit-Parallelism [10,11], a powerful

family of insecure pattern matching algorithms to represent all

possible states of the search at each step, so as to update all of

them simultaneously with a few logical and arithmetic

operations when observing the next character of the text (next

step). All members of this family have the Shift operation is

common, though based on the second operation they are

instantiated as the Shift-AND, Shift-OR, or Shift-ADD

algorithms. In this paper, we used the logic behind the Shift-

ADD algorithm. We describe here what is essential to know

about the Shift-ADD protocol in this paper with some minor

modifications to better fit our requirements; we refer the

readers to [11] for more details about Bit-Parallel pattern

matching.

Recall that T is a text of length n and P is a pattern of length

m, both from a finite alphabet . The Shift-ADD algorithm

considers m parallel search states and updates all of them

simultaneously based on the seen character of the text [10].

Each of these states is the current distance between a pair of

corresponding (sub-pattern, sub-string).

Let define the distance between each pair of characters as

either zero or non-zero, standing for match or mismatch. Until

precise definition of distance matrix D, let
1 2(,)d   be a

distance function that takes two characters 1 2(,)  and

outputs their defined distance. Further, the distance between

two equal length strings is defined as the sum of distances

between the pairs of characters at the same positions. This

implies that these strings are matched if their distance is zero.

Consider a matrix S of size m×n, initialized with zero. Each

entry Sj[i] in row i of column j, stores the distance between

sub-pattern
1, , ip p and sub-string 1, ,j i jt t   . Therefore,

the last entry of each column, []jS m , is the distance between

the pattern and sub-string 1,...,j j m jT t t  of length m .

In a recursive manner, the value of column jS can be

computed solely based on the previous column 1jS  and the

distance between the seen character at position j of the text

and each character of the pattern. More precisely we have the

following, while initializing all undefined cells    0 , 0jS i S

with zero.

     
miandnj

ptdiSiS ijjj

,,1 ,,1

 ,,11



  (1)

In other words, after seeing character jt , the values in jS

are updated by shifting down (assumed as a column) the

previous values, while entering a zero from the top, and

adding the distance between jt and each character
ip of the

pattern.

In the following, we redefine the Shift-ADD algorithm in

three phases. This description is useful in the next sections,

where a secure outsourcing protocol is presented.

Phase 1. Pattern preprocessing

In this phase, pattern P is represented in the form of a

distance matrix (denoted by matrix D) of size | |m   , i.e. a

row for each symbol of P and a column for symbol of  .

Each entry of D is set to zero if the corresponding symbol of P

and  are equal (match), and non-zero otherwise (mismatch).

This matrix is an instantiation of distance function d that we

used above. We denote by []D  a column of D indexed by

character σ.

Phase 2. Text evaluation

We can consider two cases for a text; a stream of characters

or a set of keywords. In the first case, we assume the text as an

unstructured sequence of characters. While in the keyword

case, we assume the text is constructed as a set of keywords.

In this section, for the sake of generality, we consider text T as

a stream of characters. Later, we show how our protocol can

be used in the case of keywords.

A matrix of size m n , denoted by R, is used to evaluate

the preprocessed pattern over T. In each step of the evaluation,

in order to realize Equation 1, read character jt of T and

compute the jth column jR of R as:

1. Initialize column jR by cloning the shifted elements

of 1jR  while entering 0 from the top.

2. Add
jD t   to jR element-wise.

Phase 3. Result extraction

Any [] 0jR m  ([,] 0R m j ) indicates a match. This is

due to the fact that in the computed matrix R, the cell [,]R k j

indicates the distance between the sub-string 1,...,j k jt t  and

SAMADANI et al SECURE OUTSOURCED PATTERN MATCHING BASED ON BIT-PARALLELISM

17

Fig. 1. ideal functionality for secure outsourced pattern matching.

the prefix
1() ,..., kp k p p of P; the last row ([,]R m j)

indicates the distance between each substring and the pattern.

B. Security Model and Definition

In this section we proceed with describing the security

definitions used in this paper as well as the necessary

cryptographic background.

Additively Homomorphic Semantically Secure Encryption.

Throughout this paper, we use a public-key encryption scheme

 : , ,E Gen Enc Dec with an additive homomorphism and

semantic security property. The key generation algorithm Gen

outputs a public-private key pair (pk,sk), taking a security

parameter 1 . The encryption algorithm Enc outputs a

ciphertext c, based on inputs pk and a plaintext message M.

The decryption algorithm Dec takes a ciphertext c and private

key sk and outputs a decrypted message M (or an error).

The additive homomorphism property of this scheme allows

addition of the corresponding plaintexts of two ciphertexts by

applying an efficient operation, without the need of the sk and

decryption. This operation is denoted by Encpk(X+Y)=

Encpk(X)+hEncpk(Y) for plaintexts X and Y. This also implies

that the corresponding plaintext X of a ciphertext c can be

multiplied by a known integer, which we denote by Encpk(v ·

X) = v ·h Encpk(X) for a known integer v. In practice, +h and .h

respectively correspond to multiplication and exponentiation;

we use this notation in the rest of this paper

We also define the encryption of an array to be an

elementwise encryption of it. We can then define the addition

of two encrypted arrays of the same dimensions by

homomorphically adding their corresponding elements.

Moreover, the semantic security of the scheme implies that

the adversary is not able to distinguish one message from

another once they are encrypted with more probability that

random guessing.

Security Definitions. We follow the ideal/real world

paradigm in order to prove the security of our protocol. We

use two different definitions of security to preserve efficiency

of our protocol in the presence of semi-honest and malicious

adversaries. Both definitions follow the simulation of the real

world in the ideal world. Roughly speaking, according to

simulation paradigm, security is guaranteed if any real world

adversary is not able to harm more in comparison to an ideal

world adversary. In the ideal world the parties privately send

their input to an ideal functionality, where he does the

computation and privately returns to each party its defined

output. The security in the ideal world is guaranteed by

definition. In the real world the parties engage in a protocol to

obtain their output. We say that this protocol is secure if for

any adversary in the real world there is a simulator in the ideal

world that a distinguisher is not able to distinguish between

the generated transcripts, i.e. views, of two worlds [17]. For

inputs (x,y), we denote the ideal world transcript by IDEAL

and the real world transcript by REAL. Note that in the

literature this definition is equivalent to the definition of

indistinguishability of views, for semi-honest adversaries [17].

Definition 1 formalizes this security definition.

Definition 1. We say that a two-party protocol π securely

realizes functionality F if for any PPT adversary adv in the

real world there exists a PPT simulator Sim in the ideal world

such that for any tuple of inputs (x,y) and auxiliary input z,

, () ,adv()(,) (,)
c

F Sim z zIDEAL x y REAL x y

Where
c

 denotes computational indistinguishability.

The second definition of security is helpful when one party

has no input and no output in the protocol, the same as our

case. In this setting, we relieve the security definition, for the

sake of efficiency. Here, the definition requires that the party

with no input and output is unable to distinguish between any

two inputs of the other party. Note that this definition does not

provide correctness of output. This is formulated via

indistinguishability of two views of the adversary in the real

world for any two inputs, denoted by
, (), (x,)adv

adv z BVIEW  and

, (), (x ,)adv

adv z BVIEW
  , respectively.

Definition 2. Let F be a functionality run between parties A

and B where party B has no input and output. We say that a

two-party protocol π provides privacy of the input/output of

party A, according to functionality F, if for any input x and

auxiliary input z the following holds:

, (), , (),(x,) (x ,)
c

adv adv

adv z B adv z BVIEW VIEW 
   .

Ideal Functionality. The inputs of our pattern matching

outsourcing problem are a text T of length n and a pattern P of

size m; Client outsources the text once and may query for

Functionality FOPM

Functionality FOPM runs between Client and Server as follows:

– Upon receiving a message (text, T, tid) from Client, stores T under ID tid and sends (outsource, tid, |T|) to Server.

– Upon receiving a message (query, P, tid, qid) from Client, checks whether it has a text stored under tid and sends

(tid,qid,|P|) to Server. It then retrieves T stored under tid, computes Matched = {j|P matches Tj} by searching for

pattern P at each location in T, and stores Matched under index

(tid,qid).

– Upon receiving a message (approve, tid, qid) from Server, retrieves Matched stored under (tid,qid) and sends (result,

tid, qid, Matched) to Client. Otherwise, it sends ⊥.

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 18

several patterns later. The goal is to find all positions in text in

which the pattern matches the sub-string of the same length

ending at those positions. This problem is formalized via an

ideal functionality in the ideal world, shown in Figure 1.

III. PROTOCOL SPECIFICATION

Recall that Client has a private text that she stores in an

encrypted form with Server. Client later requests Server to

search for some private patterns (queries) in Client’s text.

Besides the trivial information such as the text and the pattern

length, the functionality implies that Server should not learn

anything about Client’s data, i.e. the text or the patterns. We

proceed to present a secure protocol that realizes this

functionality, which is intrinsically based on the bit-parallel

shift-add algorithm.

Roughly speaking, in this protocol, Server stores an

encrypted representation of the text which is preprocessed and

outsourced by Client. Client later sends a query in the form of

encrypted pattern and Server evaluates the query by

obliviously computing the difference between the

corresponding characters of the pattern and each sub-string of

the text, which is solely efficient computing on encrypted data.

Let a mapping Ψ map each character of the alphabet to a

distinct integer, i.e. each character of the alphabet is

represented using a numerical value denoted by Ψ(σ) for

character σ. We define the distance between two characters as

the difference of their numeric values; the distance function is

defined as d[σ1,σ2] =Ψ(σ1)−Ψ(σ2), where σ1 and σ2 are

characters. More precisely, we realize this definition by

adding a NULL symbol ∅ to the alphabet (typically Ψ(∅)=0)

and assign an index to each symbol of the alphabet which is

treated as its distance from the ∅ character. Now, the distance

of each pair of characters can be computed as the difference of

their distances from the ∅ character:

1 2 1 2

1 2

[] [] [], , ,

 () ()

d d d   

 

   

 
 (2)

An instant implication of such definition is that the distance

between two same length strings can be the sum of distances

of their corresponding characters (Equation 3); two strings are

matching if their distance is zero.

1 2 1 2

1 1 22

[... ,]

[,] [,] ... [,]

... nn

n n

d

d d d

     

     

  

  
 (3)

Note that the solution we are describing here is applicable

only to the case when two characters/strings are considered

either a match or mismatch for the purposes of the search (i.e.,

the distance matrices are binary) and simple patterns

consisting of only alphabet characters. Later, we will

demonstrate how to modify this solution to support wildcards

as well.

We emphasize that in this approach, by definition, distances

between any two given characters can be negative, positive, or

zero. Since the algorithm adds the distances between a

character of the text and a character of the pattern, it may

produce false positives, i.e. total zero distance while some

partial distance are non-zero, where positive distances are

compensated by negative distances. As a simple example,

strings GT and TG is considered as matched since

[] [, , 0]d G T d T G  .

We see three options to mitigate this shortcoming: The first

option is to ignore it by definition, since in some contexts this

kind of match may be useful. The second option is to compute

squared distances between two characters prior to adding them

together. Implementing this option will necessitate the use of

pairing operations [22]. The third option is to randomize non-

zero distances over a large space prior to adding them with

new ones. More precisely, Server randomizes each entry of the

previous column by homomorphically multiplying them by a

fresh randomness. This will randomize the non-zero values

while making the zero ones unchanged. Since by construction

zero indicates a match and any mismatch can be represented

by a random value, this will preserve the properties of the

solution while making the probability of false positives

negligible.

Since the third option can be realized more efficiently than

the second one, we use it in our construction.

We proceed with protocol specifications. In order to

outsource a text, Client opts a private arbitrary mapping Ψ to

index all symbols of the alphabet and the NULL character, e.g.

{∅ = 0, A = 1,C = 2,T = 3,G = 4}. The mapping function can

be even a Pseudo Random Function (PRF) [23]. Then, using a

semantically secure non-deterministic additively

homomorphic encryption scheme, she substitute each

character of the text with an encryption of its corresponding

index, resulting in vector 𝐶. Client stores this encrypted

representation of the text with Server, while keeping the key

and the mapping locally.

Note that the text is not needed anymore to be kept locally

since it can be restored by downloading it from Server and

decrypting.

After outsourcing the text to Server, whenever Client wants

to search for a private pattern P in her text, she simply creates

a vector of size m and set each of its elements to

() ()ip   , for each character pi of P. Then she encrypts

this vector element-wise and sends resulted vector D∅ to

Server.

Server is now able to evaluate the pattern, in form of vector

D∅, on encrypted text 𝐶 inspired by the fact that

   hC j D i is the distance between jth character of the

text and ith character of pattern P, in an encrypted form. In

other words, Server is able to obliviously compute the

randomized sum of the distances of each character of the text

with the corresponding characters of P, which can be used to

compute the distance of each sub-string with the pattern.

SAMADANI et al SECURE OUTSOURCED PATTERN MATCHING BASED ON BIT-PARALLELISM

19

More precisely, Server creates matrix R of size 𝑚 × 𝑛,

initialized with zero. In each step j of the evaluation, Server

needs to compute the distance of each sub-string of the text

ending at position j and each prefix of the pattern. To this end,

Server reads next encrypted character 𝑐𝑗 of the encrypted text,

homomorphically adds it to each element of vector D
,

randomizes the resulted vector, shifts down Rj-1, while

entering an encryption of zero from the top, and finally adds

the randomized vector with Rj-1 to obtain vector Rj. Note that

Server is able to compute an encryption of zero since he has

the public key of Client, however he is not able to distinguish

any encrypted value from another since the encryption scheme

is semantically secure.

As discussed earlier, the last row of matrix Result at

position j, indicates the randomized sum of the pattern with

the sub-string of the same length ending at position j. This row

should be sent back to Client, where she can decrypt and find

if there is any matched position.

IV. SECURITY EVALUATION

The detail of the construction are given in Figure 2. In this

construction, all necessary operation performed by Server is

done without allowing him to obtain any information about the

outsourced text, pattern, or the distances. Thus, we obtain the

following:

Theorem 1. Given an additively homomorphic semantically

secure encryption scheme (Gen,Enc,Dec), protocol πOPM in

Figure 2 securely realizes the functionality FOPM in Figure 1 in

the presence of semi-honest adversaries.

Proof. We show both correctness and privacy.

Correctness. We need every single pattern P queried by

Client is correctly being answered, with overwhelming

probability, with respect to the outsourced text T. Our protocol

achieves correctness if and only if any time Tj = P it returns

the position j as a match. We next show that the algorithm in

Figure 2 returns all indices j when Tj = P.

The server computes resultj for each index j of T. As shown

in Equation 4 below, resultj is the randomized sum of the

distances of each character of Tj with the relevant characters of

P. The distances will add to 0 if all of them are actually 0,

which indicates a match. With a negligible probability, resultj

may be add to 0, while jT P , which is a false positive.

1

1

1

m 2 1 1

2

· 1

0 · 1 ···

· 1

 (.((t) (p)) ...

((t) (p)))

0

[]

([]) []

() (

[])

([]) ([])

()

)

(

j j

h j h j h

h h j m h h

h j h h j

j

j m

j h

j j m

j m

j

result State m

State m c D m

Enc c D

c D m c D m

Enc r

Enc if T P

Enc rand

r

r

om

r







 

 



  

 



 

  

  



 





   

  




 jif T P



 

 (4)

This concludes the correctness part of the proof.

Privacy. In order to show the security of the protocol, we

construct two simulators SimS, SimC for adversarial Server and

Client, respectively. Without loss of generality we assume that

the alphabet is public.

Case 1: Adversarial Client Since Server has no input in this

protocol, the output of Client is solely dependent on her own

input. SimC for adversarial Client is naïve; SimC executes the

same instructions as Server does in the real world.

Protocol πOPM

This protocol runs between Client and Server. Client outsources a text T ∈ Σn and later may query patterns P ∈ Σm for a

finite alphabet Σ. The distances between the alphabet character and pattern characters are considered to be binary.

Setup phase.

– Setup(1κ): Client chooses a semantically secure additively homomorphic encryption scheme E = (Gen,Enc,Dec) and

runs the Gen(1κ) to produce a key pair (sk,pk). She publishes pk. Client also creates a mappingΨ : Σ ∪∅ → Z

(typicallyΨ(∅) = 0).

– GenText(pk,T): Client substitute each character tj of T with cj = Enc(Ψ(tj)−Ψ(∅)) and stores C = {cj|j = 1,...,n} with

Server.

Query phase.

– GenPattern(pk,P): Client creates an empty vector D∅ of size m = |P| and fills the ith element D∅[i] with

Encpk(Ψ(∅)−Ψ(pi)), where pi is the ith symbol of pattern P. Client then sends D∅ to Server.

– Eval(C,D∅,pk): For each encrypted character cj, Server maintains a vector Rj of size m = |P|.

For each j, Server randomly samples rj from the plaintext space of Enc and computes:

Rj[1] = cj +h D∅[1]

Rj[k] = rj ·h (Rj−1[k−1]) +h cj +h D∅[k] for 2 ≤ k ≤ m

resultj = Rj[m]

Extract phase.

– Extract(Res,sk): Server sends Res = {resultj|j = 1,...,n} to Client. Client parses Res as {resultj|j = 1,...,n} and decrypts

each resultj. Client returns all indices j as matching locations where Decsk(resultj) = 0.

Fig. 2. Secure protocol for outsourced pattern matching in the semi-honest model.

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 20

Case 2: Adversarial Server Since the adversary controlling

Server learns no information about the pattern and the text and

observes only encrypted values, the simulation is

straightforward:

– SimS initially runs (sk0, pk0) ← KeyGen(1κ) and sends pk0

to B.

– Upon receiving a message (outsource, tid, n) from the

trusted party (i.e., Client wants to outsource text T of

length n), SimS generates an arbitrary text T’ of length n

from alphabet ∑ and stores it under ID tid. SimS runs C’←

GenText(pk,T) and sends C’ to Server.

– Upon receiving a message (tid, qid, M) from the trusted

party, SimS generates an arbitrary pattern P’ of length m

from Σ. SimS then runs
pD 

 ← GenPattern(pk’, P’) for

this pattern and sends vector
pD 

 to Server.

To show that the two views are indistinguishable, consider

that it is possible to distinguish between them, namely, (C,

pD 
) and (C’,

pD 

). It is obvious that all of these elements are

ciphertexts of a semantically secure encryption scheme. Thus,

any non-negligible advantage in distinguishing the views can

be used to build a distinguisher for breaking security of the

encryption with a non-negligible probability. This contradicts

semantic security of the encryption scheme. This concludes

the proof.

Before we conclude this section, we comment on the

security of this protocol in the presence of malicious

adversaries. The protocol of Figure 2 in its current description

is not able to provide correctness against an adversarial server.

Correctness is achievable using the known techniques in the

literature but will burden the communication and

computational complexity of the protocol.

On the other hand, since the adversarial server has no input

to the protocol and receives no output as well, it is rather

simple to define and prove the privacy of the protocol against

a malicious server. We obtain the following:

Theorem 2. Given an additively homomorphic semantically

secure encryption scheme (Gen,Enc,Dec), protocol πopm in

Figure 2 preserves the privacy of the pattern, outsourced text,

and matching results, according to functionality FOPM in

Figure 1 in the presence of a malicious server.

Proof. Our proof for privacy against a malicious server is

based on the indistinguishability of two inputs based on

Definition 2. More precisely, based on this definition, if the

adversary is not able to distinguish between two different

inputs, he gains no non-trivial information about the input and

output. Intuitively, the indistinguishability of the views for

two different sets of inputs (pattern/text) is evident, since the

encryption scheme is semantically secure; formally, we show

that if the adversary is able to distinguish between two inputs,

we can use him to build a distinguisher that distinguishes

between two plaintexts once they are encrypted using a

semantically secure encryption scheme.

We use three views in our proof; ((P,T),)V VIEW  is

the view for pattern P and text T,
2V VIEW ((P,T),)  is

the view for the same pattern and text with different

randomness, and
1 ((P ,T),)V VIEW    is the view for

pattern P and text T of the same lengths:

[m]}],...,1[[m],],...,1[,c,...,c{

n}.mmn,...,1|V{:)T),((P,

[m]},],...,1[[m],],...,1[,c,...,c{

n}.mmn,...,1|V{:)),T,P((

[m]},],...,1[[m],],...,1[,c,...,{c

n}.mmn,...,1|{V:)T),((P,

11

2

11

1

11

nn

l

nn

l

nn

l

RRDD

lWVIEV

RRDD

lWVIEV

RRDD

lVIEWV



















Server sees V in a protocol run. Then, Client engages in

another run with Server using either (P, T) or (P ,T ) as input

and Server will see view Vb. Server is able to distinguish

between two views if he can guess b with more probability

than random guessing. Consider that Server is able to

distinguish between these views, which means that Sever is

able to learn if V=V2 or V≠V1, where notation = means that

the decrypted value of each element of these sets at the same

position is equal and ≠ means that they differ in at least one

position.

We have two cases: in the first case, if Server is able to

learn that V=V2, he is able to learn that for every position

1,...,n m m.nl    , ll VV  . This is in contradiction with

semantic security of the encryption scheme; however the

inputs for these two views are identical, Client used a fresh

randomness for each of them and the values Vl
 and Vl

 are

uniformly distributed in the range of the encryption scheme.

In the second case, Server is able to learn that there exist at

least one position α where V V 
 . This is also in

contradiction with the semantic security of the encryption

scheme. This concludes the proof of Theorem 2.

A. Variants

Before we conclude this section, we comment on the

applicability of this construction to some different variants of

pattern matching; the Hamming distance computation,

wildcards, and the keyword search.

An important result of pattern matching that one may seek

is the Hamming distance [19]. In this case, the evaluator is to

know how many positions of a pattern and a sub-string of the

same length differ. Binary or non-binary Hamming distance is

referred to the cases that the alphabet is binary or non-binary,

respectively.

Using the proposed protocol, computing the Hamming

distance (in both cases) is not straightforward since Client uses

virtual distances instead of actual ones. However, the client is

able to learn the Hamming in some cases by using well-

defined indices. Also, in this regard, Client can send to Server

a power of ten that is greater than the maximum distance in

vector D∅. Server exponentiates the previous distance (shifted

element of matrix R) with it, prior adding the currently

computed distance. Also, the randomization step is eliminated.

Using this modification, Client is able to compute the

Hamming distance simply after decrypting the returned result;

SAMADANI et al SECURE OUTSOURCED PATTERN MATCHING BASED ON BIT-PARALLELISM

21

zeros indicates a match, while non-zero values can repeatedly

divide on that power of ten, while any non-zero factor means a

character mismatch in the corresponding position.

Another important variant of pattern matching is the case of

wildcards (don’t care). A wildcard character in a pattern

matches any character of the alphabet. For the sake of

efficiency, we consider two cases. In the first case, Server

learns from Client the positions of wildcards in the pattern.

This leakage should be reflected in the ideal functionality. In

each step of the search, after computing the distance of

characters, Server simply substitutes those positions with an

encryption of zero and continues the evaluation like before.

This substitution compensates the distance of those positions

to zero.

In the second case, Client considers the wildcard positions

as private. Client may use a masking mechanism to void the

effect of those positions on the search by compensating their

distance to zero. This mechanism leaves the ideal functionality

unchanged, but comes at the price of pairing operation. This

mask is a vector of length m set with encryptions of zero in

wildcard positions and with encryptions of one elsewhere. In

each step of the search, Server multiplies this mask vector to

the computed vector of distances, using a pairing operation,

prior adding that vector to the shifted previous distances.

The other variant that we would like to emphasize is the

case of keyword search. In the protocol, we assumed the text

as a stream of characters of size n, where we refer to it as the

text search. In keyword search case, we assume Client stores

with Server a set of 𝜔 keywords of different lengths (a simpler

variant is when the lengths are equal). The ideal functionality

can simply be modified to reflect this case. In the protocol,

Client outsources each keyword as she outsources a text.

Server evaluates each keyword as he evaluates a text in the

protocol. In this case, those keywords which are shorter that

the pattern are eliminated from the evaluation. For each

keyword 𝑤𝑙 , 𝑙 = 1, … , 𝜔 of length |𝑤𝑙 | ≥ 𝑚 Server evaluates

the keyword; this means that in this case one can search for a

pattern inside the longer keywords. Moreover, it is only

necessary to compute the last |𝑤𝑙 | − 𝑚 elements of matrix R

and send them to Client, which reduces the computational and

communication complexity of the search in practice.

B. Outsourcing of Decryption

An important topic that we would like to bring up is

fetching and extracting the results by the client. We discussed

two cases of text search and keyword search. In both cases,

Server learns no information about the text/keywords, pattern,

and matched position/keywords; however, this privacy is

obtained with a price.

In the text search case, Server evaluates the result as an

encrypted vector of size𝑂(𝑛), which requires 𝑂(𝑛. 𝜅)

communication and 𝑂(𝑛) decryptions from Client in order to

learn the matched positions. This seems to be inefficient

especially when m is small; however, the word “inefficient” is

fairly misleading. In theory, as we mentioned in Section 1, it is

not possible to achieve sublinear communication complexity

without any leakage about the pattern or the text to the server.

So, the minimum theoretical bound in this case is 𝑂(𝑛. 𝜅). On

the other hand, this complexity is as large as the following

trivial solution:

 Outsourcing: Client stores the encrypted text (using a

symmetric or an asymmetric scheme) with Server.

 Query: Client downloads the text (as a whole or part by

part), decrypts it, and searches for the private pattern. (Note

that in this solution, Client must search for the pattern herself

which implies the search complexity for Client)

Therefore, one may argue that the secure outsourcing of

pattern matching without any leakages is absurd, due to the

same communication complexity as this trivial solution;

however, the communication complexity of our protocol can

be mitigated using the following well-known technique (Note

that this technique is not applicable to the trivial solution and

necessitates a multi-party searching protocol).

In order to mitigate this problem, Client could also

outsource the result extraction phase (fetching and decryption)

to a set of servers. We suggest the following modifications:

Client uses a (k,k)-threshold cryptosystem and shares the

private key between k servers. Also, Client chooses a fresh

key pair (pk2,sk2) and sends pk2 to Server. Server encrypts

each index j using public key pk2, creates set ER of pairs

Mj=(Enc(j), resultj), j=1,…,n, and sends it to decryption

servers. These k servers re-randomize the encryptions and

randomly permute the set members in a distributed way.

Finally they jointly decrypt the resultj of each member and

send the Enc (j) part to Client whenever Dec (resultj)=0.

Client can simply decrypt Enc (j) and find the matched

positions. In this case, we achieve optimal communication

complexity for Client which is linear in the number of

matches.

Note that we have been able to merge this decryption

protocol with protocol πOPM, but intentionally avoided it;

because, it can be used as a black-box, its security properties is

different from πOPM, someone may want to change it without

effecting the whole protocol, and this step is not necessary in

keyword search case.

In the keyword case, communication complexity is

𝑂(𝜔𝑚. 𝜅) where 𝜔𝑚 is the number of keywords with length

equal to or longer than the pattern (considering that all

differences of their lengths with the pattern’s length are

limited to a constant). In other words, for each keyword with

the same length as the pattern only one encrypted element

should be transferred and decrypted. Therefore, this protocol

could be considered as an efficient protocol in the keyword

search case in practice. Also, one may decide to outsource the

decryptions as well.

V. PERFORMANCE ANALYSIS

Table 1 shows the communication and computational

complexity of our protocol. As shown, the communication

complexity of the protocol can be optimized to the order of

number of matches, if Client chooses to outsource the

decryption as well. Also, the round complexity of the protocol

is one round (one-way) for outsourcing and two rounds (one-

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 22

way) for the rest of the protocol.

Before continuing with the implementation result of our

scheme, we like to compare the security and performance of

our protocol with one of the most recent works [8] which

claims to be the first work considering the outsourced pattern

matching problem. The main advantage of [8] over our work

is that it can be used directly to delegate the search capability

to other parties, while we did not consider this setting in this

paper. On the other hand, our protocol outstands [8] in several

properties. Table 2 summarizes some of these properties.

On the other hand, computational complexity of [8] during

query phase is 𝑂(𝑛. 𝑚2) modular multiplications and 𝑂(𝑛. m)

modular exponentiations. The communication complexity of

[8] is reduced to be linear in the number of matches since it

allows the server to learn the matching positions, as otherwise

there is no way to be achieved.

Table 3 and Table 4 show performance results of the

implementation of the proposed protocol in the text search and

keyword search respectively. These experiments were

performed on two Intel Core i7 (3770K) 3.5GHz machines

with 4GB of memory running Ubuntu 14.04. These machines

were connected via Ethernet (100Mbps). Implementation was

done as a single-threaded program in C++ utilizing libpaillier

library [24] for Paillier Cryptosystem [25] using 1024-bit key.

We used random patterns and texts, and tested alphabets of

sizes 100 (printable) and 2 (binary). The protocol’s

computational complexity does not depend on the alphabet

size, as shown in the tables.

A. Practical Optimizations

Note that the outsource phase is run once, it can be executed

offline, and can benefit from precomputation techniques, e.g.

we can precompute random numbers and their exponentiations

required in the Paillier cryptosystem. Also, since the

characters of each alphabet are known, exponentiation of each

character can be computed once and reused in every position

of the text that this character appears (randomness is different

in every repetition).

Also, almost all steps of the protocol can be parallelized.

Bit-Parallel Shift-ADD algorithm can benefit from parallelism

in the instruction level. This is due to the fact that in each step

of the search all new states are independent of each other and

can be computed simultaneously. The proposed protocol

inherits this property in the thread-level and can be

parallelized to run on multiple cores simultaneously; each new

state can be computed independently and simultaneously on a

separate thread running on a separate CPU core. Parallelism is

also applicable on different portions of the text at the same

time. This implies that the computation can be parallelized by

a factor of number of cores.

Another optimization is related to the memory consumption

of the protocol. We mentioned that Server creates a matrix of

size m×n, in order to compute the states of the search in the

query phase. As another inherited property of Shift-ADD

algorithm, the new states in each step of the search are merely

TABLEII

COMPARISON BETWEEN SOME FUNCTIONAL PROPERTIES OF [8] AND OUR

PROTOCOL

[8] Our protocol

Alphabet is binary
Alphabet is arbitrary with

negligible effect on the

performance

Text must be fully known
before outsourcing

Text can be change or grow even
during the query phase

Patterns must be predicted

before outsourcing

No information is needed about

the pattern before query phase

Only keyword search Text search and keyword search

Maximum size of the pattern
must be predicted before

outsourcing

No limitation for pattern size

Small patterns cannot be used
due to vulnerability to brute

force attack

Security does not depend on the
pattern size; any size can be

queried.

Simple predicted patterns can

be queried

More complex patterns, e.g.

wildcard, can be queried

Security depends on several

conflicting parameters (there is

a trade-of between them)

Security depends on the security

parameter of the encryption

scheme

Several kinds of information

leakage, e.g. some repetitions

and matching positions can be
learnt, some un-queried

patterns can be queried.

No information leakage regarding

the Ideal Functionality.

TABLE I

 COMPLEXITY OF PROTOCOL ΠOPM IN THE TEXT AND KEYWORD SEARCH

SETTING. µ IS THE NUMBER OF MATCHED POSITIONS.

 Client Server

 Enc. Dec. Exp. Mult. Bandwidth

Out.

phase
O(n) - - - O (n.𝜅)

Query

phase
O(m) -

O(m.n)

O(m.𝜔)

O(m.n)

O(m.𝜔)
O (m.𝜅)

Dec.

Phase
-

O(n)

O(𝜔)
- -

O (n.𝜅)

O (𝜔. 𝜅)

Dec.

Phase

(outsourced)

- O(µ)

O (n) or O(𝜔) partial

decryption for each

decryption server.

O (n.𝜅) or

O (𝜔. 𝜅) for

decryption

servers.

O(µ) for Client

TABLE III

 PERFORMANCE RESULTS OF ΠOPM FOR DIFFERENT SETTING OF

ALPHABET, PATTERN, AND TEXT. ALL THE TIMES ARE WALL-CLOCK

TIME ROUNDED AND SHOWN IN SECONDS.

|∑| |P| |T|
Out.
(sec)

Query
(sec)

Dec.
(sec)

B.W.
(bit)

100 1K 100K 1070 750 1000 200M

100 1K 10K 105 60 100 18M

100 1K 1K 11 0.007 10 2K

100 100 100K 1070 60 1000 200M

100 100 10K 105 7.5 100 18M

100 100 1K 11 0.75 10 1.7M

100 100 100 1 0.000 1 2K

100 10 100K 1070 7.5 1000 200M

100 10 10K 105 0.75 100 19M

100 10 1K 11 0.075 10 1.8M

100 10 100 1 0.0075 1 180K

2 1K 100K 1070 750 1000 200M

2 100 100K 1070 60 1000 200M

2 10 100K 1070 7.5 1000 200M

SAMADANI et al SECURE OUTSOURCED PATTERN MATCHING BASED ON BIT-PARALLELISM

23

dependent on the states of the previous step and the current

character of the text. This property can be utilized in order to

reduce the required dynamic memory from a matrix of size

m×n into two vectors of size m, without any negative effect on

the computation performance.

VI. FUTURE WORKS

Before concluding the paper, we would like to bring up

some further directions to follow our work. First, extending

this work in order to support secure delegation of searching is

very interesting. More precisely, this work considered the case

that they only person who wants to search in the outsourced

text is the outsourcer; however, she may want to delegate her

search ability to other parties. This extension requires, at least,

a protocol between the outsourcer and a third party in order to

create a search token without revealing the third party’s

pattern to the outsourcer.

Another interesting direction, that we may follow, is to pack

vector D∅ into a single encrypted value. More precisely, in this

paper we used a vector of encrypted values, while we can pack

them together and use a single encrypted value representing

that vector. This would liken the Shift-ADD algorithm and our

protocol even more, reducing the server-side computation

complexity from O(m.n) into O(n), which is very interesting.

VII. CONCLUSION

In this work, we studied the problem of secure outsource

pattern matching. To this end, we present a two round (one-

way) protocol that enables a client to outsource her text or set

of keywords to an untrusted server and search for her patterns

in the outsource database later. Our construction does not

force the outsourcer to specify her pattern when preprocessing

the text or set of keywords, then she is able to search for any

unpredicted pattern later. The scheme is secure against any

semi-honest adversaries and retains the privacy of the pattern,

text, and matched positions even in the presence of malicious

adversaries. Unlike other relevant schemes, ours does not

reveal any statistical information about the text, e.g.

repetitions in the text. Also, this is the first scheme to allow

wildcard search.

REFERENCES

[1] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy

preserving error resilient DNA searching through oblivious automata,”

in the 14th ACM Conference on Computer and Communications

Security. ACM, 2007, pp. 519–528.

[2] M. Sipser, Introduction to the Theory ofComputation. Thomson Course
Technology Boston, 2006, vol. 2.

[3] R. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”

Communications of the ACM, vol. 35, no. 10, pp. 74–82, 1992.
[4] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and

pattern matching with security against malicious and covert

adversaries,” Journal of Cryptology, vol. 23, no. 3, pp. 422–456, 2010.
[5] C. Gentry, A fully homomorphic encryption scheme. Stanford

University, 2009.

[6] W. Du and M. J. Atallah, “Protocols for secure remote database access
with approximate matching,” in E-Commerce Security and Privacy.

Springer, 2001, pp. 87–111.

[7] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private sequence
comparisons,” in the 2003 ACM workshop on Privacy in the Electronic

Society. ACM, 2003, pp. 39–44.

[8] J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky, and E. Tressler,
“5PM: Secure pattern matching,” Journal ofComputer Security, vol. 21,

no. 5, pp. 601–625, 2013.

[9] R. Gennaro, C. Hazay, and J. S. Sorensen, “Automata evaluation and
text search protocols with simulation-based security,” Journal

ofCryptology, pp. 1–40, 2010.

[10] C. Hazay and T. Toft, “Computationally secure pattern matching in the
presence of malicious adversaries,” Journal of Cryptology, vol. 27, no.

2, pp. 358–395, 2014.

[11] S. Faust, C. Hazay, and D. Venturi, “Outsourced pattern matching,” in
International Colloquium on Automata, Languages, and Programming.

Springer, 2013, pp. 545–556.

[12] L. Wei and M. K. Reiter, “Third-party private DFA evaluation on
encrypted files in the cloud.” in ESORICS, vol. 7459. Springer 2012, pp.

523–540.

[13] S. Faro and T. Lecroq, “Twenty years of bit-parallelism in string
matching,” Festschrift for Borivoj Melichar, pp. 72–101, 2012.

[14] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” 2003. 15.

B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to
soundness: Efficient verification via secure computation,” Automata,

languages and Programming, pp. 152–163, 2010.

[15] B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to
soundness: Efficient verification via secure computation,” Automata,

languages and Programming, pp. 152–163, 2010.

[16] K.-M. Chung, Y. T. Kalai, and S. P. Vadhan, “Improved delegation of
computation using fully homomorphic encryption.” in CRYPTO, vol.

6223. Springer, 2010, pp. 483–501.

[17] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” Advances

in Cryptology–CRYPTO 2010, pp. 465–482, 2010.

[18] C. Hazay and Y. Lindell, Efficient secure two-party protocols:
Techniques and constructions. Springer Science & Business Media,

2010.
[19] J. C. Lagarias and A. M. Odlyzko, “Solving low-density subset sum

problems,” Journal of the ACM (JACM), vol. 32, no. 1, pp. 229–246,

1985.
[20] C. B¨osch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably

secure searchable encryption,” ACM Computing Surveys (CSUR), vol.

47, no. 2, p. 18, 2015.

[21] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for

searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.

Proceedings. 2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.
[22] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for

cryptographers,” Discrete Applied Mathematics, vol. 156, no. 16, pp.

3113–3121, 2008.
[23] J. H˚astad, R. Impagliazzo, L. A. Levin, and M. Luby, “A

pseudorandom generator from any one-way function,” SIAM Journal on

Computing, vol. 28, no. 4, pp. 1364–1396, 1999.
[24] J. Bethencourt, “Pallier library,” 2010. [Online]. Available:

http://acsc.cs.utexas.edu/libpaillier

[25] P. Paillier, “Public-key cryptosystems based on composite

degree residuosity classes,” in Advances in Cryptology-

EUROCRYPT99. Springer, 1999, pp. 223–238.

TABLE IV

 PERFORMANCE RESULTS OF ΠOPM FOR DIFFERENT PATTERN SIZES AND

DIFFERENT NUMBER OF KEYWORDS. ALL THE TIMES ARE ROUNDED WALL-

CLOCK TIME SHOWN IN SECONDS. WE ASSUMED 𝜔 KEYWORDS WITH THE

SAME LENGTH OF THE PATTERN. ALSO, WE FIXED THE ALPHABET SIZE TO

100 CHARACTERS.

|P| 𝜔
Out.

(sec)

Query

(sec)

Dec.

(sec)

B.W.

(bit)

100 10K 10000 7500 100 20M

100 1K 1000 750 10 2M

100 100 100 75 1 200K

100 10 10 7.5 0.1 20K

10 10K 1000 750 100 20M

10 1K 100 75 10 2M

10 100 10 7.5 1 200K

10 10 1 0.7 0.1 20K

