
 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016                                       14 

 

 

Abstract—Secure outsourcing is essential to growth of cloud 

usage. There are some protocols allowing any functionality to be 

outsourced. However, specific constructions are necessary in 

order to do so in an efficient way. In this paper, we consider the 

problem of secure outsourced pattern matching. Our solution is 

based on Bit-Parallel Shift-ADD algorithm. The properties of this 

insecure algorithm allow our construction to search in an 

outsourced text, without revealing any non-trivial information to 

the computing server. We achieve a round optimal protocol that 

allows us to search for patterns with wildcards and handles the 

Hamming distance computation. Since the protocol has no 

leakage to the server, it cannot be optimal considering 

communication complexity; however, we suggest efficient 

techniques to achieve communication optimality through 

outsourcing of decryption as well. The security of our protocol is 

proved in the semi-honest setting. Then, in order to retain the 

efficiency of the protocol, we omit the correctness property in the 

malicious setting and prove that the scheme remains private in 

the presence of malicious adversaries. 

 
Index Terms— Bit-Parallel Shift-ADD, Outsourcing, Secure 

pattern matching, Two-party computation. 

 

I. INTRODUCTION 

n the simplest form, the pattern matching problem consists 

in finding all the positions in a text T of length n that 

matches a pattern P of length m, both from a finite alphabet . 

Due to vast applicability of this problem it has been studied 

for decades. Recently, with the trending attention into secure 

multi-party computation there is growing interest in the secure 

pattern matching problem. In a typical secure two-party 

setting, the pattern owner wants to search for her private 

pattern in the private text of the text owner, while the pattern 

owner learns nothing about the text more than the matching 

positions and the text owner learns nothing about the pattern. 

Du and Attalah [1] were the first to formalize the secure 

pattern matching problem. They categorized this problem into 

four distinct scenarios; in the first two scenarios, Client wants 

to search for her private pattern either in the private or public 

text of Server. In the third scenario, Client wants to search for 

her private pattern in her private text (in an encrypted form) 
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outsourced to Server, which we refer to as outsourced pattern 

matching. In the last scenario, Client is going to delegate her 

search capabilities on her outsourced private text to Carl who 

has a private pattern, which we refer to as delegated pattern 

matching. The first scenario received much attention in the 

literature [2-7] while the others are rarely considered [8, 9].  

The focus of this paper is on the outsourced pattern 

matching. To be precise, Client has a private text that she 

stores in an encrypted form with Server. She later issues 

queries in the form of private search patterns, which Server 

evaluates on the outsourced text. As part of this functionality, 

Server should not learn anything about Client’s data (either the 

text or the patterns) besides the publicly available information 

such as the text and pattern lengths. 

Our protocol is intuitively based on an insecure pattern 

matching algorithm called the Bit-Parallel Shift-ADD 

algorithm [10], which is a non-comparison based algorithm 

[11]. Then we design a specific construction for secure pattern 

matching outsourcing by exploiting the functional structure of 

this algorithm.  

This protocol supports wildcards in the pattern and works 

for any finite alphabet. Also, its required storage space, 

communication and computation complexity are independent 

of the alphabet size which makes it suitable for very large 

alphabets, e.g. UTF-8 [12]. Moreover, our protocol can be 

used when the outsourced text is a database of keywords 

(keyword search), a stream of characters (text search), and a 

live stream of characters (live text search). The text is 

outsourced to a single server, besides it can be deleted from 

the outsourcer side since it can be fetched and decrypted later. 

It also take  O n   space to store a text of size n, where   

is the security parameter. It is also very easy to update or 

delete the whole or any portions of the outsourced text as well 

as adding any new characters or keywords to any desired 

position in the text. 

The most notable property of this protocol is that there is no 

need to predict, designate, or fix the patterns to be queried 

later while preprocessing the text for outsourcing, despite all 

other known protocols. This enables the outsourcer to query 

for any new or unpredicted pattern with arbitrary length after 

outsourcing. 

The proposed protocol is round-optimal; only one round 

(one-way) for outsourcing the text and two rounds (one-way) 

for searching. In the pattern matching problem, the optimal 

communication complexity during query phase for the 

receiver is linear in the number of matches. Since the worst 

Secure Outsourced Pattern Matching based on 

Bit-Parallelism 

Mohammad Hasan Samadani1and Mehdi Berenjkoub 

I  



 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 

 

15 

case output size is proportional to the length of the text and a 

circuit that tolerates this worst case is needed, it is not clear 

how to achieve optimal communication complexity during 

query phase in two rounds even using Fully Homomorphic 

Encryption [13]. On the other hand, there is no way to achieve 

the optimal communication complexity unless giving the 

possibly corrupted server some leakages about the pattern, 

text, or matched positions. Intuitively, one can think of this 

case as if Server is able to send sublinear information to Client 

in the query phase without sacrificing any matched position, 

he has been able to know which parts of the text did not match 

the pattern and which parts possibly did. This at least means 

that Server has some information about the pattern, text, or 

matched positions. In the literature, researchers [8, 9] allowed 

some leakages in order to avoid linear communication 

complexity. We emphasize that our protocol is able to avoid 

this leakage at the price of this complexity. However, one can 

choose to outsource the result extraction phase in order to 

avoid the communication complexity. 

The paper is organized as follow: the rest of this section 

consists of problem statement, related work, and our 

contributions. We covered some basic concepts that are used 

through the paper in Section 2. Then, in Section 3, we 

proposed our secure protocol for pattern matching 

outsourcing. The security and performance of the protocol are 

discussed in Sections 4 and 5 respectively. Finally, Section 6 

points some future works and Section 7 concludes the paper. 

A. Related work 

With the recent growth in cloud computing services, the 

problem of secure outsourcing of computations gained more 

attention. There are some works in the area of outsourcing and 

delegatable computation which enable clients to outsource any 

functionality to an untrusted server [14-16]. These general 

constructions often have poor efficiency and high computation 

overhead due to the use of fully homomorphic encryption [8]. 

The previous experience in the literature of two/multi-party 

computation proved that to move towards more practical 

schemes one may use the special properties of each 

functionality to design specific constructions rather than using 

such general solutions [17]. 

The problem of secure pattern matching has received a great 

attention in the literature of two-party computation motivated 

by its critical and broad applicability in computer science. Du 

and Atallah [1] were the first to formalize the secure pattern 

matching problem and defined four scenarios of secure pattern 

matching. They proposed a basic secure protocol for 

computing the inner product to vectors with the help of an 

untrusted third party. Then, they used this basic protocol to 

design secure solutions for each of those scenarios.  However, 

almost all of these protocols are just feasibility results and 

impractical. Also, they suffer from major limitations; the help 

of an untrusted third party is needed, text must be stored in the 

form of equal-length keywords, and only the same length 

patterns can be evaluated. 

Their work is followed up with other researches in various 

directions. The first scenario, where Client has a private 

pattern and Server has a private text, has gained much more 

attention [2-7]. Also, various kinds of pattern, from a simple 

string of characters to the complex form of regular expression 

[14], are considered. On the other hand, the third scenario 

(outsourcing) which is the focus of this paper, is rarely 

considered in the literature.  

The most significant work in this regard is the work of 

Faust, Hazay, and Venturi [8], which covers the forth scenario 

(delegation) as well. Their work considers a trapdoor for each 

pattern of length m in the form of an easy to solve instance of 

the subset sum problem [18]. Namely, Client outsources her 

text in the form of a random vector in which all positions that 

match a specific pattern equals an instance of the subset sum 

problem, where giving a trapdoor for that pattern is easy to 

solve. Any party that is able to generate such a trapdoor is able 

to search for that pattern. This makes this scheme applicable in 

the case that Client wants delegate her search power to other 

parties; this delegation is done through a secure protocol in 

which the other party privately learns the trapdoor.  

They proved this protocol using simulation-based security 

[17], in the presence of semi-honest and malicious adversaries. 

Also, during the query phase the overall communication and 

computation complexity done by Client is linear in the number 

of matches, however, it allows some leakages to Server. More 

precisely, Server learns the matched positions and more 

importantly the repetitions in the text; Server is not able to 

learn the context of these positions, however, this enables him 

to run statistical analysis on the text and learn even more 

information about it. Moreover, pattern’s length m must be 

known and fixed prior preprocessing a text for outsourcing 

and the pattern must be in the simplest form, i.e. a simple 

string of characters and no wildcard. 

Another work by Wei and Reiter considered more complex 

patterns in the form of Deterministic Finite Automata (DFA) 

[19]. This work is an interactive protocol with round 

complexity linear in the size of the text.  

We are also aware of the context of Searchable Encryption 

(SE) [20]. In a SE scheme a server is allowed to search in an 

encrypted data on behalf of a client without learning 

information about the data. There are two high level 

approaches to achieve a SE scheme; some schemes implement 

this via a ciphertext that allows searching [21], while in most 

others the client generates a list of encrypted (possibly non-

decryptable, e.g. using a hash function) predefined keywords. 

A main problem with the first type is that the queried pattern 

is revealed to the server if matched. Also, the problem with the 

second type is that the patterns to be queried must be known 

and fixed at the time of outsourcing; if a pattern is present in 

the text but is not considered as a keyword to be search later 

when outsourcing, it cannot be found during the search. 

The main problem with SE is that searchable encryption 

usually does not ensure the privacy of the searched pattern 

[20]. While this issue is addressed in some schemes, it arises a 

more severe problem in which all the plaintext in the specific 

positions should be associated with the pattern (keyword) 

ahead of time. Since the simulator does not know the text, it is 
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not possible to produce a consistent preprocessed text in the 

simulation. It is actually unclear how to generate such an 

indistinguishable view even in the random oracle model [8].  

B. Our contribution 

We propose an efficient secure protocol for outsourcing the 

pattern matching problem. This protocol supports wildcards, 

text and keyword search, and is able to handle the Hamming 

distance. The protocol is round optimal; only one round (one-

way) for outsourcing the text and two rounds (one-way) for 

searching and there is no need for any more interactions.  

Also, we proved that no nontrivial information is leaked to 

the computing server. We also proposed a technique to 

outsource the fetching and decryption phase of the protocol, 

which enables us to achieve optimal communication and 

computation complexity while preserving the round optimality 

for the client and the computing server. 

II. BASIC CONCEPTS 

In this section, we give a high level overview on the basic 

concepts and preliminaries required throughout the paper. 

Also, we provide the security definitions and the ideal 

functionality. 

A. Bit-Parallel Shift-ADD Algorithm 

Our central tool for providing an outsourced pattern 

matching protocol is Bit-Parallelism [10,11], a powerful 

family of insecure pattern matching algorithms to represent all 

possible states of the search at each step, so as to update all of 

them simultaneously with a few logical and arithmetic 

operations when observing the next character of the text (next 

step). All members of this family have the Shift operation is 

common, though based on the second operation they are 

instantiated as the Shift-AND, Shift-OR, or Shift-ADD 

algorithms. In this paper, we used the logic behind the Shift-

ADD algorithm. We describe here what is essential to know 

about the Shift-ADD protocol in this paper with some minor 

modifications to better fit our requirements; we refer the 

readers to [11] for more details about Bit-Parallel pattern 

matching. 

Recall that T is a text of length n and P is a pattern of length 

m, both from a finite alphabet . The Shift-ADD algorithm 

considers m parallel search states and updates all of them 

simultaneously based on the seen character of the text [10]. 

Each of these states is the current distance between a pair of 

corresponding (sub-pattern, sub-string).  

Let define the distance between each pair of characters as 

either zero or non-zero, standing for match or mismatch. Until 

precise definition of distance matrix D, let 
1 2( , )d    be a 

distance function that takes two characters 1 2( , )   and 

outputs their defined distance. Further, the distance between 

two equal length strings is defined as the sum of distances 

between the pairs of characters at the same positions. This 

implies that these strings are matched if their distance is zero.  

Consider a matrix S of size m×n, initialized with zero. Each 

entry Sj[i] in row i of column j, stores the distance between 

sub-pattern 
1, , ip p  and sub-string 1, ,j i jt t   . Therefore, 

the last entry of each column, [ ]jS m , is the distance between 

the pattern and sub-string 1,...,j j m jT t t   of length m . 

In a recursive manner, the value of column jS  can be 

computed solely based on the previous column 1jS   and the 

distance between the seen character at position j of the text 

and each character of the pattern. More precisely we have the 

following, while initializing all undefined cells    0 ,  0jS i S

with zero. 

     
miandnj

ptdiSiS ijjj

,,1  ,,1 

 ,,11



    (1) 

In other words, after seeing character jt , the values in jS  

are updated by shifting down (assumed as a column) the 

previous values, while entering a zero from the top, and 

adding the distance between jt and each character 
ip of the 

pattern. 

In the following, we redefine the Shift-ADD algorithm in 

three phases. This description is useful in the next sections, 

where a secure outsourcing protocol is presented. 

Phase 1. Pattern preprocessing 

In this phase, pattern P is represented in the form of a 

distance matrix (denoted by matrix D) of size | |m   , i.e. a 

row for each symbol of P and a column for symbol of  . 

Each entry of D is set to zero if the corresponding symbol of P 

and   are equal (match), and non-zero otherwise (mismatch). 

This matrix is an instantiation of distance function d that we 

used above. We denote by [ ]D   a column of D indexed by 

character σ. 

Phase 2. Text evaluation 

We can consider two cases for a text; a stream of characters 

or a set of keywords. In the first case, we assume the text as an 

unstructured sequence of characters. While in the keyword 

case, we assume the text is constructed as a set of keywords. 

In this section, for the sake of generality, we consider text T as 

a stream of characters. Later, we show how our protocol can 

be used in the case of keywords. 

A matrix of size m n , denoted by R, is used to evaluate 

the preprocessed pattern over T. In each step of the evaluation, 

in order to realize Equation 1, read character jt  of T and 

compute the jth column jR  of R as: 

1. Initialize column jR by cloning the shifted elements 

of 1jR  while entering 0 from the top. 

2. Add 
jD t    to jR  element-wise. 

Phase 3. Result extraction 

Any [ ] 0jR m   ( [ , ] 0R m j  ) indicates a match. This is 

due to the fact that in the computed matrix R, the cell [ , ]R k j

indicates the distance between the sub-string 1,...,j k jt t   and  
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Fig. 1. ideal functionality for secure outsourced pattern matching. 

 

the prefix 
1( ) ,..., kp k p p  of P; the last row ( [ , ]R m j ) 

indicates the distance between each substring and the pattern. 

B. Security Model and Definition 

In this section we proceed with describing the security 

definitions used in this paper as well as the necessary 

cryptographic background. 

Additively Homomorphic Semantically Secure Encryption. 

Throughout this paper, we use a public-key encryption scheme

 : , ,E Gen Enc Dec  with an additive homomorphism and 

semantic security property. The key generation algorithm Gen 

outputs a public-private key pair (pk,sk), taking a security 

parameter 1 . The encryption algorithm Enc outputs a 

ciphertext c, based on inputs pk and a plaintext message M.  

The decryption algorithm Dec takes a ciphertext c and private 

key sk and outputs a decrypted message M (or an error). 

The additive homomorphism property of this scheme allows 

addition of the corresponding plaintexts of two ciphertexts by 

applying an efficient operation, without the need of the sk and 

decryption. This operation is denoted by Encpk(X+Y)= 

Encpk(X)+hEncpk(Y) for plaintexts X and Y. This also implies 

that the corresponding plaintext X of a ciphertext c can be 

multiplied by a known integer, which we denote by Encpk(v · 

X) = v ·h Encpk(X) for a known integer v. In practice, +h and .h 

respectively correspond to multiplication and exponentiation; 

we use this notation in the rest of this paper   

We also define the encryption of an array to be an 

elementwise encryption of it. We can then define the addition 

of two encrypted arrays of the same dimensions by 

homomorphically adding their corresponding elements. 

Moreover, the semantic security of the scheme implies that 

the adversary is not able to distinguish one message from 

another once they are encrypted with more probability that 

random guessing. 

Security Definitions. We follow the ideal/real world 

paradigm in order to prove the security of our protocol. We 

use two different definitions of security to preserve efficiency 

of our protocol in the presence of semi-honest and malicious 

adversaries. Both definitions follow the simulation of the real 

world in the ideal world. Roughly speaking, according to 

simulation paradigm, security is guaranteed if any real world 

adversary is not able to harm more in comparison to an ideal 

world adversary. In the ideal world the parties privately send 

their input to an ideal functionality, where he does the 

computation and privately returns to each party its defined 

output. The security in the ideal world is guaranteed by 

definition. In the real world the parties engage in a protocol to 

obtain their output. We say that this protocol is secure if for 

any adversary in the real world there is a simulator in the ideal 

world that a distinguisher is not able to distinguish between 

the generated transcripts, i.e. views, of two worlds [17]. For 

inputs (x,y), we denote the ideal world transcript by IDEAL 

and the real world transcript by REAL. Note that in the 

literature this definition is equivalent to the definition of 

indistinguishability of views, for semi-honest adversaries [17]. 

Definition 1 formalizes this security definition.  

Definition 1. We say that a two-party protocol π securely 

realizes functionality F if for any PPT adversary adv in the 

real world there exists a PPT simulator Sim in the ideal world 

such that for any tuple of inputs (x,y) and auxiliary input z, 

, ( ) ,adv( )( , ) ( , )
c

F Sim z zIDEAL x y REAL x y   

Where 
c

  denotes computational indistinguishability.  

The second definition of security is helpful when one party 

has no input and no output in the protocol, the same as our 

case. In this setting, we relieve the security definition, for the 

sake of efficiency. Here, the definition requires that the party 

with no input and output is unable to distinguish between any 

two inputs of the other party. Note that this definition does not 

provide correctness of output. This is formulated via 

indistinguishability of two views of the adversary in the real 

world for any two inputs, denoted by 
, ( ), (x, )adv

adv z BVIEW  and

, ( ), (x , )adv

adv z BVIEW
  , respectively. 

Definition 2. Let F be a functionality run between parties A 

and B where party B has no input and output. We say that a 

two-party protocol π provides privacy of the input/output of 

party A, according to functionality F, if for any input x and 

auxiliary input z the following holds: 

, ( ), , ( ),(x, ) (x , )
c

adv adv

adv z B adv z BVIEW VIEW 
   . 

Ideal Functionality. The inputs of our pattern matching 

outsourcing problem are a text T of length n and a pattern P of 

size m; Client outsources the text once and may query for 

 

Functionality FOPM  

Functionality FOPM  runs between Client and Server as follows: 

– Upon receiving a message (text, T, tid) from Client, stores T under ID tid and sends (outsource, tid, |T|) to Server. 

– Upon receiving a message (query, P, tid, qid) from Client, checks whether it has a text stored under tid and sends 

(tid,qid,|P|) to Server. It then retrieves T stored under tid, computes Matched = {j|P matches Tj} by searching for 

pattern P at each location in T, and stores Matched under index 

(tid,qid). 

– Upon receiving a message (approve, tid, qid) from Server, retrieves Matched stored under (tid,qid) and sends (result, 

tid, qid, Matched) to Client. Otherwise, it sends ⊥. 
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several patterns later. The goal is to find all positions in text in 

which the pattern matches the sub-string of the same length 

ending at those positions. This problem is formalized via an 

ideal functionality in the ideal world, shown in Figure 1. 

III. PROTOCOL SPECIFICATION 

Recall that Client has a private text that she stores in an 

encrypted form with Server. Client later requests Server to 

search for some private patterns (queries) in Client’s text. 

Besides the trivial information such as the text and the pattern 

length, the functionality implies that Server should not learn 

anything about Client’s data, i.e. the text or the patterns. We 

proceed to present a secure protocol that realizes this 

functionality, which is intrinsically based on the bit-parallel 

shift-add algorithm. 

Roughly speaking, in this protocol, Server stores an 

encrypted representation of the text which is preprocessed and 

outsourced by Client. Client later sends a query in the form of 

encrypted pattern and Server evaluates the query by 

obliviously computing the difference between the 

corresponding characters of the pattern and each sub-string of 

the text, which is solely efficient computing on encrypted data. 

Let a mapping Ψ map each character of the alphabet to a 

distinct integer, i.e. each character of the alphabet is 

represented using a numerical value denoted by Ψ(σ) for 

character σ. We define the distance between two characters as 

the difference of their numeric values; the distance function is 

defined as d[σ1,σ2] =Ψ(σ1)−Ψ(σ2), where σ1 and σ2 are 

characters. More precisely, we realize this definition by 

adding a NULL symbol ∅ to the alphabet (typically Ψ(∅)=0) 

and assign an index to each symbol of the alphabet which is 

treated as its distance from the ∅ character. Now, the distance 

of each pair of characters can be computed as the difference of 

their distances from the ∅ character: 

1 2 1 2

1 2

[ ] [ ] [ ],  , ,

 ( ) ( )

d d d   

 

   

 
        (2) 

An instant implication of such definition is that the distance 

between two same length strings can be the sum of distances 

of their corresponding characters (Equation 3); two strings are 

matching if their distance is zero.  

1 2 1 2

1 1 22

[ ... , ]

[ , ] [ , ] ... [ , ]

... nn

n n

d

d d d

     

     

  

  
  (3) 

Note that the solution we are describing here is applicable 

only to the case when two characters/strings are considered 

either a match or mismatch for the purposes of the search (i.e., 

the distance matrices are binary) and simple patterns 

consisting of only alphabet characters. Later, we will 

demonstrate how to modify this solution to support wildcards 

as well. 

We emphasize that in this approach, by definition, distances 

between any two given characters can be negative, positive, or 

zero. Since the algorithm adds the distances between a 

character of the text and a character of the pattern, it may 

produce false positives, i.e. total zero distance while some 

partial distance are non-zero, where positive distances are 

compensated by negative distances. As a simple example, 

strings GT and TG is considered as matched since

[ ] [, ,  0]d G T d T G  .  

We see three options to mitigate this shortcoming: The first 

option is to ignore it by definition, since in some contexts this 

kind of match may be useful. The second option is to compute 

squared distances between two characters prior to adding them 

together. Implementing this option will necessitate the use of 

pairing operations [22]. The third option is to randomize non-

zero distances over a large space prior to adding them with 

new ones. More precisely, Server randomizes each entry of the 

previous column by homomorphically multiplying them by a 

fresh randomness. This will randomize the non-zero values 

while making the zero ones unchanged. Since by construction 

zero indicates a match and any mismatch can be represented 

by a random value, this will preserve the properties of the 

solution while making the probability of false positives 

negligible.  

Since the third option can be realized more efficiently than 

the second one, we use it in our construction. 

We proceed with protocol specifications. In order to 

outsource a text, Client opts a private arbitrary mapping Ψ to 

index all symbols of the alphabet and the NULL character, e.g. 

{∅ = 0, A = 1,C = 2,T = 3,G = 4}. The mapping function can 

be even a Pseudo Random Function (PRF) [23]. Then, using a 

semantically secure non-deterministic additively 

homomorphic encryption scheme, she substitute each 

character of the text with an encryption of its corresponding 

index, resulting in vector 𝐶. Client stores this encrypted 

representation of the text with Server, while keeping the key 

and the mapping locally. 

Note that the text is not needed anymore to be kept locally 

since it can be restored by downloading it from Server and 

decrypting. 

After outsourcing the text to Server, whenever Client wants 

to search for a private pattern P in her text, she simply creates 

a vector of size m and set each of its elements to

( ) ( )ip   , for each character pi of P. Then she encrypts 

this vector element-wise and sends resulted vector D∅ to 

Server. 

Server is now able to evaluate the pattern, in form of vector 

D∅, on encrypted text 𝐶 inspired by the fact that 

   hC j D i  is the distance between jth character of the 

text and ith character of pattern P, in an encrypted form. In 

other words, Server is able to obliviously compute the 

randomized sum of the distances of each character of the text 

with the corresponding characters of P, which can be used to 

compute the distance of each sub-string with the pattern. 
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More precisely, Server creates matrix R of size 𝑚 × 𝑛, 

initialized with zero. In each step j of the evaluation, Server 

needs to compute the distance of each sub-string of the text 

ending at position j and each prefix of the pattern. To this end, 

Server reads next encrypted character 𝑐𝑗 of the encrypted text, 

homomorphically adds it to each element of vector D
, 

randomizes the resulted vector, shifts down Rj-1, while 

entering an encryption of zero from the top, and finally adds 

the randomized vector with Rj-1 to obtain vector Rj. Note that 

Server is able to compute an encryption of zero since he has 

the public key of Client, however he is not able to distinguish 

any encrypted value from another since the encryption scheme 

is semantically secure. 

As discussed earlier, the last row of matrix Result at 

position j, indicates the randomized sum of the pattern with 

the sub-string of the same length ending at position j. This row 

should be sent back to Client, where she can decrypt and find 

if there is any matched position. 

IV. SECURITY EVALUATION 

The detail of the construction are given in Figure 2. In this 

construction, all necessary operation performed by Server is 

done without allowing him to obtain any information about the 

outsourced text, pattern, or the distances. Thus, we obtain the 

following: 

Theorem 1. Given an additively homomorphic semantically 

secure encryption scheme (Gen,Enc,Dec), protocol πOPM in 

Figure 2 securely realizes the functionality FOPM in Figure 1 in 

the presence of semi-honest adversaries. 

Proof. We show both correctness and privacy. 

Correctness. We need every single pattern P queried by 

Client is correctly being answered, with overwhelming 

probability, with respect to the outsourced text T. Our protocol 

achieves correctness if and only if any time Tj = P it returns 

the position j as a match. We next show that the algorithm in 

Figure 2 returns all indices j when Tj = P. 

The server computes resultj for each index j of T. As shown 

in Equation 4 below, resultj is the randomized sum of the 

distances of each character of Tj with the relevant characters of 

P. The distances will add to 0 if all of them are actually 0, 

which indicates a match. With a negligible probability, resultj 

may be add to 0, while jT P  , which is a false positive.  
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This concludes the correctness part of the proof. 

Privacy. In order to show the security of the protocol, we 

construct two simulators SimS, SimC for adversarial Server and 

Client, respectively. Without loss of generality we assume that 

the alphabet is public. 

Case 1: Adversarial Client Since Server has no input in this 

protocol, the output of Client is solely dependent on her own 

input. SimC for adversarial Client is naïve; SimC executes the 

same instructions as Server does in the real world. 

 

Protocol πOPM 

This protocol runs between Client and Server. Client outsources a text T ∈ Σn and later may query patterns P ∈ Σm for a 

finite alphabet Σ. The distances between the alphabet character and pattern characters are considered to be binary.  

Setup phase. 

– Setup(1κ): Client chooses a semantically secure additively homomorphic encryption scheme E = (Gen,Enc,Dec) and 

runs the Gen(1κ) to produce a key pair (sk,pk). She publishes pk. Client also creates a mappingΨ : Σ ∪∅ → Z 

(typicallyΨ(∅) = 0). 

– GenText(pk,T): Client substitute each character tj of T with cj = Enc(Ψ(tj)−Ψ(∅)) and stores C = {cj|j = 1,...,n} with 

Server. 

Query phase. 

– GenPattern(pk,P): Client creates an empty vector D∅ of size m = |P| and fills the ith element D∅[i] with 

Encpk(Ψ(∅)−Ψ(pi)), where pi is the ith symbol of pattern P. Client then sends D∅ to Server. 

– Eval(C,D∅,pk): For each encrypted character cj, Server maintains a vector Rj of size m = |P|.  

For each j, Server randomly samples rj from the plaintext space of Enc and computes: 

Rj[1] = cj +h D∅[1] 

Rj[k] = rj ·h (Rj−1[k−1])  +h cj  +h D∅[k]  for 2 ≤ k ≤ m  

resultj = Rj[m] 

Extract phase. 

– Extract(Res,sk):  Server sends Res = {resultj|j = 1,...,n} to Client. Client parses Res as {resultj|j = 1,...,n} and decrypts 

each resultj. Client returns all indices j as matching locations where Decsk(resultj) = 0. 

 
 

Fig. 2. Secure protocol for outsourced pattern matching in the semi-honest model. 

 



 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016                                       20 

 

Case 2: Adversarial Server Since the adversary controlling 

Server learns no information about the pattern and the text and 

observes only encrypted values, the simulation is 

straightforward: 

– SimS initially runs (sk0, pk0) ← KeyGen(1κ) and sends pk0 

to B. 

– Upon receiving a message (outsource, tid, n) from the 

trusted party (i.e., Client wants to outsource text T of 

length n), SimS generates an arbitrary text T’ of length n 

from alphabet ∑ and stores it under ID tid. SimS runs C’← 

GenText(pk,T) and sends C’ to Server. 

– Upon receiving a message (tid, qid, M) from the trusted 

party, SimS generates an arbitrary pattern P’ of length m 

from Σ. SimS then runs 
pD 

  ← GenPattern(pk’, P’) for 

this pattern and sends vector 
pD 

 to Server. 

To show that the two views are indistinguishable, consider 

that it is possible to distinguish between them, namely, (C,

pD 
) and (C’,

pD 

 ). It is obvious that all of these elements are 

ciphertexts of a semantically secure encryption scheme. Thus, 

any non-negligible advantage in distinguishing the views can 

be used to build a distinguisher for breaking security of the 

encryption with a non-negligible probability. This contradicts 

semantic security of the encryption scheme. This concludes 

the proof. 

Before we conclude this section, we comment on the 

security of this protocol in the presence of malicious 

adversaries. The protocol of Figure 2 in its current description 

is not able to provide correctness against an adversarial server. 

Correctness is achievable using the known techniques in the 

literature but will burden the communication and 

computational complexity of the protocol. 

On the other hand, since the adversarial server has no input 

to the protocol and receives no output as well, it is rather 

simple to define and prove the privacy of the protocol against 

a malicious server. We obtain the following: 

Theorem 2. Given an additively homomorphic semantically 

secure encryption scheme (Gen,Enc,Dec), protocol πopm in 

Figure 2 preserves the privacy of the pattern, outsourced text, 

and matching results, according to functionality FOPM in 

Figure 1 in the presence of a malicious server. 

Proof. Our proof for privacy against a malicious server is 

based on the indistinguishability of two inputs based on 

Definition 2. More precisely, based on this definition, if the 

adversary is not able to distinguish between two different 

inputs, he gains no non-trivial information about the input and 

output. Intuitively, the indistinguishability of the views for 

two different sets of inputs (pattern/text) is evident, since the 

encryption scheme is semantically secure; formally, we show 

that if the adversary is able to distinguish between two inputs, 

we can use him to build a distinguisher that distinguishes 

between two plaintexts once they are encrypted using a 

semantically secure encryption scheme. 

We use three views in our proof; ((P,T), )V VIEW   is 

the view for pattern P and text T, 
2V VIEW ((P,T), )  is 

the view for the same pattern and text with different 

randomness, and 
1 ((P ,T ), )V VIEW    is the view for 

pattern P and text T of the same lengths: 

[m]}],...,1[[m],],...,1[,c,...,c{

n}.mmn,...,1|V{:)T),((P,

[m]},],...,1[[m],],...,1[,c,...,c{

n}.mmn,...,1|V{:)),T,P((
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n}.mmn,...,1|{V:)T),((P,

11

2

11

1

11

nn

l

nn

l

nn

l

RRDD

lWVIEV

RRDD

lWVIEV

RRDD

lVIEWV



















 

Server sees V in a protocol run. Then, Client engages in 

another run with Server using either (P, T) or ( P ,T  ) as input 

and Server will see view Vb. Server is able to distinguish 

between two views if he can guess b with more probability 

than random guessing. Consider that Server is able to 

distinguish between these views, which means that Sever is 

able to learn if V=V2 or V≠V1, where notation = means that 

the decrypted value of each element of these sets at the same 

position is equal and ≠ means that they differ in at least one 

position.  

We have two cases: in the first case, if Server is able to 

learn that V=V2, he is able to learn that for every position

1,...,n m m.nl    , ll VV  . This is in contradiction with 

semantic security of the encryption scheme; however the 

inputs for these two views are identical, Client used a fresh 

randomness for each of them and the values Vl
 and Vl

 are 

uniformly distributed in the range of the encryption scheme.  

In the second case, Server is able to learn that there exist at 

least one position α where V V 
 . This is also in 

contradiction with the semantic security of the encryption 

scheme. This concludes the proof of Theorem 2. 

A. Variants 

Before we conclude this section, we comment on the 

applicability of this construction to some different variants of 

pattern matching; the Hamming distance computation, 

wildcards, and the keyword search. 

An important result of pattern matching that one may seek 

is the Hamming distance [19]. In this case, the evaluator is to 

know how many positions of a pattern and a sub-string of the 

same length differ. Binary or non-binary Hamming distance is 

referred to the cases that the alphabet is binary or non-binary, 

respectively.  

Using the proposed protocol, computing the Hamming 

distance (in both cases) is not straightforward since Client uses 

virtual distances instead of actual ones. However, the client is 

able to learn the Hamming in some cases by using well-

defined indices. Also, in this regard, Client can send to Server 

a power of ten that is greater than the maximum distance in 

vector D∅. Server exponentiates the previous distance (shifted 

element of matrix R) with it, prior adding the currently 

computed distance. Also, the randomization step is eliminated.  

Using this modification, Client is able to compute the 

Hamming distance simply after decrypting the returned result; 
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zeros indicates a match, while non-zero values can repeatedly 

divide on that power of ten, while any non-zero factor means a 

character mismatch in the corresponding position.  

Another important variant of pattern matching is the case of 

wildcards (don’t care). A wildcard character in a pattern 

matches any character of the alphabet. For the sake of 

efficiency, we consider two cases. In the first case, Server 

learns from Client the positions of wildcards in the pattern. 

This leakage should be reflected in the ideal functionality. In 

each step of the search, after computing the distance of 

characters, Server simply substitutes those positions with an 

encryption of zero and continues the evaluation like before. 

This substitution compensates the distance of those positions 

to zero. 

In the second case, Client considers the wildcard positions 

as private. Client may use a masking mechanism to void the 

effect of those positions on the search by compensating their 

distance to zero. This mechanism leaves the ideal functionality 

unchanged, but comes at the price of pairing operation. This 

mask is a vector of length m set with encryptions of zero in 

wildcard positions and with encryptions of one elsewhere. In 

each step of the search, Server multiplies this mask vector to 

the computed vector of distances, using a pairing operation, 

prior adding that vector to the shifted previous distances. 

The other variant that we would like to emphasize is the 

case of keyword search. In the protocol, we assumed the text 

as a stream of characters of size n, where we refer to it as the 

text search. In keyword search case, we assume Client stores 

with Server a set of 𝜔 keywords of different lengths (a simpler 

variant is when the lengths are equal). The ideal functionality 

can simply be modified to reflect this case. In the protocol, 

Client outsources each keyword as she outsources a text. 

Server evaluates each keyword as he evaluates a text in the 

protocol. In this case, those keywords which are shorter that 

the pattern are eliminated from the evaluation. For each 

keyword 𝑤𝑙  , 𝑙 = 1, … , 𝜔 of length |𝑤𝑙  | ≥ 𝑚 Server evaluates 

the keyword; this means that in this case one can search for a 

pattern inside the longer keywords. Moreover, it is only 

necessary to compute the last |𝑤𝑙  | − 𝑚 elements of matrix R 

and send them to Client, which reduces the computational and 

communication complexity of the search in practice. 

B. Outsourcing of Decryption 

An important topic that we would like to bring up is 

fetching and extracting the results by the client. We discussed 

two cases of text search and keyword search. In both cases, 

Server learns no information about the text/keywords, pattern, 

and matched position/keywords; however, this privacy is 

obtained with a price.  

In the text search case, Server evaluates the result as an 

encrypted vector of size𝑂(𝑛), which requires 𝑂(𝑛. 𝜅) 

communication and 𝑂(𝑛) decryptions from Client in order to 

learn the matched positions. This seems to be inefficient 

especially when m is small; however, the word “inefficient” is 

fairly misleading. In theory, as we mentioned in Section 1, it is 

not possible to achieve sublinear communication complexity 

without any leakage about the pattern or the text to the server. 

So, the minimum theoretical bound in this case is 𝑂(𝑛. 𝜅). On 

the other hand, this complexity is as large as the following 

trivial solution:  

 Outsourcing: Client stores the encrypted text (using a 

symmetric or an asymmetric scheme) with Server. 

 Query: Client downloads the text (as a whole or part by 

part), decrypts it, and searches for the private pattern. (Note 

that in this solution, Client must search for the pattern herself 

which implies the search complexity for Client) 

Therefore, one may argue that the secure outsourcing of 

pattern matching without any leakages is absurd, due to the 

same communication complexity as this trivial solution; 

however, the communication complexity of our protocol can 

be mitigated using the following well-known technique (Note 

that this technique is not applicable to the trivial solution and 

necessitates a multi-party searching protocol). 

In order to mitigate this problem, Client could also 

outsource the result extraction phase (fetching and decryption) 

to a set of servers. We suggest the following modifications: 

Client uses a (k,k)-threshold cryptosystem and shares the 

private key between k servers. Also, Client chooses a fresh 

key pair (pk2,sk2) and sends pk2 to Server. Server encrypts 

each index j using public key pk2, creates set ER of pairs 

Mj=(Enc(j), resultj), j=1,…,n, and sends it to decryption 

servers. These k servers re-randomize the encryptions and 

randomly permute the set members in a distributed way. 

Finally they jointly decrypt the resultj of each member and 

send the Enc (j) part to Client whenever Dec (resultj)=0. 

Client can simply decrypt Enc (j) and find the matched 

positions. In this case, we achieve optimal communication 

complexity for Client which is linear in the number of 

matches.  

Note that we have been able to merge this decryption 

protocol with protocol πOPM, but intentionally avoided it; 

because, it can be used as a black-box, its security properties is 

different from πOPM, someone may want to change it without 

effecting the whole protocol, and this step is not necessary in 

keyword search case. 

In the keyword case, communication complexity is 

𝑂(𝜔𝑚. 𝜅) where 𝜔𝑚 is the number of keywords with length 

equal to or longer than the pattern (considering that all 

differences of their lengths with the pattern’s length are 

limited to a constant). In other words, for each keyword with 

the same length as the pattern only one encrypted element 

should be transferred and decrypted. Therefore, this protocol 

could be considered as an efficient protocol in the keyword 

search case in practice. Also, one may decide to outsource the 

decryptions as well. 

V. PERFORMANCE ANALYSIS 

Table 1 shows the communication and computational 

complexity of our protocol. As shown, the communication 

complexity of the protocol can be optimized to the order of 

number of matches, if Client chooses to outsource the 

decryption as well. Also, the round complexity of the protocol 

is one round (one-way) for outsourcing and two rounds (one-
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way) for the rest of the protocol.  

 

Before continuing with the implementation result of our 

scheme, we like to compare the security and performance of 

our protocol with one of the most recent works [8] which 

claims to be the first work considering the outsourced pattern 

matching problem. The main advantage of [8] over our work 

is that it can be used directly to delegate the search capability 

to other parties, while we did not consider this setting in this 

paper. On the other hand, our protocol outstands [8] in several 

properties. Table 2 summarizes some of these properties. 

On the other hand, computational complexity of [8] during 

query phase is 𝑂(𝑛. 𝑚2)  modular multiplications and 𝑂(𝑛. m) 

modular exponentiations. The communication complexity of 

[8] is reduced to be linear in the number of matches since it 

allows the server to learn the matching positions, as otherwise 

there is no way to be achieved.  

 
 

Table 3 and Table 4 show performance results of the 

implementation of the proposed protocol in the text search and 

keyword search respectively. These experiments were 

performed on two Intel Core i7 (3770K) 3.5GHz machines 

with 4GB of memory running Ubuntu 14.04. These machines 

were connected via Ethernet (100Mbps). Implementation was 

done as a single-threaded program in C++ utilizing libpaillier 

library [24] for Paillier Cryptosystem [25] using 1024-bit key. 

We used random patterns and texts, and tested alphabets of 

sizes 100 (printable) and 2 (binary). The protocol’s 

computational complexity does not depend on the alphabet 

size, as shown in the tables. 

A. Practical Optimizations 

Note that the outsource phase is run once, it can be executed 

offline, and can benefit from precomputation techniques, e.g. 

we can precompute random numbers and their exponentiations 

required in the Paillier cryptosystem. Also, since the 

characters of each alphabet are known, exponentiation of each 

character can be computed once and reused in every position 

of the text that this character appears (randomness is different 

in every repetition).  

Also, almost all steps of the protocol can be parallelized. 

Bit-Parallel Shift-ADD algorithm can benefit from parallelism 

in the instruction level. This is due to the fact that in each step 

of the search all new states are independent of each other and 

can be computed simultaneously. The proposed protocol 

inherits this property in the thread-level and can be 

parallelized to run on multiple cores simultaneously; each new 

state can be computed independently and simultaneously on a 

separate thread running on a separate CPU core.  Parallelism is 

also applicable on different portions of the text at the same 

time. This implies that the computation can be parallelized by 

a factor of number of cores. 

Another optimization is related to the memory consumption 

of the protocol. We mentioned that Server creates a matrix of 

size m×n, in order to compute the states of the search in the 

query phase. As another inherited property of Shift-ADD 

algorithm, the new states in each step of the search are merely 

TABLEII  

COMPARISON BETWEEN SOME FUNCTIONAL PROPERTIES OF [8] AND OUR 

PROTOCOL 

[8] Our protocol 

Alphabet is binary 
Alphabet is arbitrary with 

negligible effect on the 

performance 

Text must be fully known 
before outsourcing 

Text can be change or grow even 
during the query phase 

Patterns must be predicted 

before outsourcing 

No information is needed about 

the pattern before query phase 

Only keyword search Text search and keyword search 

Maximum size of the pattern 
must be predicted before 

outsourcing 

No limitation for pattern size 

Small patterns cannot be used 
due to vulnerability to brute 

force attack 

Security does not depend on the 
pattern size; any size can be 

queried. 

Simple predicted patterns can 

be queried 

More complex patterns, e.g. 

wildcard, can be queried 

Security depends on several 

conflicting parameters (there is 

a trade-of between them) 

Security depends on the security 

parameter of the encryption 

scheme 

Several kinds of information 

leakage, e.g. some repetitions 

and matching positions can be 
learnt, some un-queried 

patterns can be queried. 

No information leakage regarding 

the Ideal Functionality. 

 

TABLE I 

 COMPLEXITY OF PROTOCOL ΠOPM IN THE TEXT AND KEYWORD SEARCH 

SETTING. µ IS THE NUMBER OF MATCHED POSITIONS. 

 
 Client Server  

 Enc. Dec. Exp. Mult. Bandwidth 

Out. 

phase 
O(n) - - - O (n.𝜅) 

Query  

phase 
O(m) - 

O(m.n) 

O(m.𝜔) 

O(m.n) 

O(m.𝜔) 
O (m.𝜅) 

Dec. 

Phase 
- 

O(n)  

O(𝜔) 
- - 

O (n.𝜅) 

O (𝜔. 𝜅) 

Dec. 

Phase 

(outsourced)  

- O(µ) 

O (n) or O(𝜔) partial 

decryption for each 

decryption server. 

O (n.𝜅) or  

O (𝜔. 𝜅) for 

decryption 

servers. 

 

O(µ) for Client 
 

 

 

TABLE III 

 PERFORMANCE RESULTS OF ΠOPM FOR DIFFERENT SETTING OF 

ALPHABET, PATTERN, AND TEXT. ALL THE TIMES ARE WALL-CLOCK 

TIME ROUNDED AND SHOWN IN SECONDS. 

|∑| |P| |T| 
Out. 
(sec) 

Query 
(sec) 

Dec. 
(sec) 

B.W. 
(bit) 

100 1K 100K 1070 750 1000 200M 

100 1K 10K 105 60 100 18M 

100 1K 1K 11 0.007 10 2K 

100 100 100K 1070 60 1000 200M 

100 100 10K 105 7.5 100 18M 

100 100 1K 11 0.75 10 1.7M 

100 100 100 1 0.000 1 2K 

100 10 100K 1070 7.5 1000 200M 

100 10 10K 105 0.75 100 19M 

100 10 1K 11 0.075 10 1.8M 

100 10 100 1 0.0075 1 180K 

2 1K 100K 1070 750 1000 200M 

2 100 100K 1070 60 1000 200M 

2 10 100K 1070 7.5 1000 200M 
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dependent on the states of the previous step and the current 

character of the text. This property can be utilized in order to 

reduce the required dynamic memory from a matrix of size 

m×n into two vectors of size m, without any negative effect on 

the computation performance. 

 

VI. FUTURE WORKS 

Before concluding the paper, we would like to bring up 

some further directions to follow our work. First, extending 

this work in order to support secure delegation of searching is 

very interesting. More precisely, this work considered the case 

that they only person who wants to search in the outsourced 

text is the outsourcer; however, she may want to delegate her 

search ability to other parties. This extension requires, at least, 

a protocol between the outsourcer and a third party in order to 

create a search token without revealing the third party’s 

pattern to the outsourcer. 

Another interesting direction, that we may follow, is to pack 

vector D∅ into a single encrypted value. More precisely, in this 

paper we used a vector of encrypted values, while we can pack 

them together and use a single encrypted value representing 

that vector. This would liken the Shift-ADD algorithm and our 

protocol even more, reducing the server-side computation 

complexity from O(m.n) into O(n), which is very interesting. 

VII. CONCLUSION 

In this work, we studied the problem of secure outsource 

pattern matching. To this end, we present a two round (one-

way) protocol that enables a client to outsource her text or set 

of keywords to an untrusted server and search for her patterns 

in the outsource database later. Our construction does not 

force the outsourcer to specify her pattern when preprocessing 

the text or set of keywords, then she is able to search for any 

unpredicted pattern later. The scheme is secure against any 

semi-honest adversaries and retains the privacy of the pattern, 

text, and matched positions even in the presence of malicious 

adversaries. Unlike other relevant schemes, ours does not 

reveal any statistical information about the text, e.g. 

repetitions in the text. Also, this is the first scheme to allow 

wildcard search.  
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TABLE IV 

 PERFORMANCE RESULTS OF ΠOPM FOR DIFFERENT PATTERN SIZES AND 

DIFFERENT NUMBER OF KEYWORDS. ALL THE TIMES ARE ROUNDED WALL-

CLOCK TIME SHOWN IN SECONDS. WE ASSUMED 𝜔 KEYWORDS WITH THE 

SAME LENGTH OF THE PATTERN. ALSO, WE FIXED THE ALPHABET SIZE TO 

100 CHARACTERS.  

|P| 𝜔 
Out. 

(sec) 

Query 

(sec) 

Dec. 

(sec) 

B.W. 

(bit) 

100 10K 10000 7500 100 20M 

100 1K 1000 750 10 2M 

100 100 100 75 1 200K 

100 10 10 7.5 0.1 20K 

10 10K 1000 750 100 20M 

10 1K 100 75 10 2M 

10 100 10 7.5 1 200K 

10 10 1 0.7 0.1 20K 

 


