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Secure Outsourced Pattern Matching based on
Bit-Parallelism

Mohammad Hasan Samadani and Mehdi Berenjkoub

Abstract—Secure outsourcing is essential to growth of cloud
usage. There are some protocols allowing any functionality to be
outsourced. However, specific constructions are necessary in
order to do so in an efficient way. In this paper, we consider the
problem of secure outsourced pattern matching. Our solution is
based on Bit-Parallel Shift-ADD algorithm. The properties of this
insecure algorithm allow our construction to search in an
outsourced text, without revealing any non-trivial information to
the computing server. We achieve a round optimal protocol that
allows us to search for patterns with wildcards and handles the
Hamming distance computation. Since the protocol has no
leakage to the server, it cannot be optimal considering
communication complexity; however, we suggest efficient
techniques to achieve communication optimality through
outsourcing of decryption as well. The security of our protocol is
proved in the semi-honest setting. Then, in order to retain the
efficiency of the protocol, we omit the correctness property in the
malicious setting and prove that the scheme remains private in
the presence of malicious adversaries.

Index Terms— Bit-Parallel Shift-ADD, Outsourcing, Secure
pattern matching, Two-party computation.

. INTRODUCTION

I n the simplest form, the pattern matching problem consists
in finding all the positions in a text T of length n that
matches a pattern P of length m, both from a finite alphabet 2.
Due to vast applicability of this problem it has been studied
for decades. Recently, with the trending attention into secure
multi-party computation there is growing interest in the secure
pattern matching problem. In a typical secure two-party
setting, the pattern owner wants to search for her private
pattern in the private text of the text owner, while the pattern
owner learns nothing about the text more than the matching
positions and the text owner learns nothing about the pattern.
Du and Attalah [1] were the first to formalize the secure
pattern matching problem. They categorized this problem into
four distinct scenarios; in the first two scenarios, Client wants
to search for her private pattern either in the private or public
text of Server. In the third scenario, Client wants to search for
her private pattern in her private text (in an encrypted form)
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outsourced to Server, which we refer to as outsourced pattern
matching. In the last scenario, Client is going to delegate her
search capabilities on her outsourced private text to Carl who
has a private pattern, which we refer to as delegated pattern
matching. The first scenario received much attention in the
literature [2-7] while the others are rarely considered [8, 9].

The focus of this paper is on the outsourced pattern
matching. To be precise, Client has a private text that she
stores in an encrypted form with Server. She later issues
queries in the form of private search patterns, which Server
evaluates on the outsourced text. As part of this functionality,
Server should not learn anything about Client’s data (either the
text or the patterns) besides the publicly available information
such as the text and pattern lengths.

Our protocol is intuitively based on an insecure pattern
matching algorithm called the Bit-Parallel Shift-ADD
algorithm [10], which is a non-comparison based algorithm
[11]. Then we design a specific construction for secure pattern
matching outsourcing by exploiting the functional structure of
this algorithm.

This protocol supports wildcards in the pattern and works
for any finite alphabet. Also, its required storage space,
communication and computation complexity are independent
of the alphabet size which makes it suitable for very large
alphabets, e.g. UTF-8 [12]. Moreover, our protocol can be
used when the outsourced text is a database of keywords
(keyword search), a stream of characters (text search), and a
live stream of characters (live text search). The text is
outsourced to a single server, besides it can be deleted from
the outsourcer side since it can be fetched and decrypted later.

It also take O (n -K') space to store a text of size n, where x

is the security parameter. It is also very easy to update or
delete the whole or any portions of the outsourced text as well
as adding any new characters or keywords to any desired
position in the text.

The most notable property of this protocol is that there is no
need to predict, designate, or fix the patterns to be queried
later while preprocessing the text for outsourcing, despite all
other known protocols. This enables the outsourcer to query
for any new or unpredicted pattern with arbitrary length after
outsourcing.

The proposed protocol is round-optimal; only one round
(one-way) for outsourcing the text and two rounds (one-way)
for searching. In the pattern matching problem, the optimal
communication complexity during query phase for the
receiver is linear in the number of matches. Since the worst
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case output size is proportional to the length of the text and a
circuit that tolerates this worst case is needed, it is not clear
how to achieve optimal communication complexity during
query phase in two rounds even using Fully Homomorphic
Encryption [13]. On the other hand, there is no way to achieve
the optimal communication complexity unless giving the
possibly corrupted server some leakages about the pattern,
text, or matched positions. Intuitively, one can think of this
case as if Server is able to send sublinear information to Client
in the query phase without sacrificing any matched position,
he has been able to know which parts of the text did not match
the pattern and which parts possibly did. This at least means
that Server has some information about the pattern, text, or
matched positions. In the literature, researchers [8, 9] allowed
some leakages in order to avoid linear communication
complexity. We emphasize that our protocol is able to avoid
this leakage at the price of this complexity. However, one can
choose to outsource the result extraction phase in order to
avoid the communication complexity.

The paper is organized as follow: the rest of this section
consists of problem statement, related work, and our
contributions. We covered some basic concepts that are used
through the paper in Section 2. Then, in Section 3, we
proposed our secure protocol for pattern matching
outsourcing. The security and performance of the protocol are
discussed in Sections 4 and 5 respectively. Finally, Section 6
points some future works and Section 7 concludes the paper.

A. Related work

With the recent growth in cloud computing services, the
problem of secure outsourcing of computations gained more
attention. There are some works in the area of outsourcing and
delegatable computation which enable clients to outsource any
functionality to an untrusted server [14-16]. These general
constructions often have poor efficiency and high computation
overhead due to the use of fully homomorphic encryption [8].
The previous experience in the literature of two/multi-party
computation proved that to move towards more practical
schemes one may use the special properties of each
functionality to design specific constructions rather than using
such general solutions [17].

The problem of secure pattern matching has received a great
attention in the literature of two-party computation motivated
by its critical and broad applicability in computer science. Du
and Atallah [1] were the first to formalize the secure pattern
matching problem and defined four scenarios of secure pattern
matching. They proposed a basic secure protocol for
computing the inner product to vectors with the help of an
untrusted third party. Then, they used this basic protocol to
design secure solutions for each of those scenarios. However,
almost all of these protocols are just feasibility results and
impractical. Also, they suffer from major limitations; the help
of an untrusted third party is needed, text must be stored in the
form of equal-length keywords, and only the same length
patterns can be evaluated.

Their work is followed up with other researches in various
directions. The first scenario, where Client has a private

pattern and Server has a private text, has gained much more
attention [2-7]. Also, various kinds of pattern, from a simple
string of characters to the complex form of regular expression
[14], are considered. On the other hand, the third scenario
(outsourcing) which is the focus of this paper, is rarely
considered in the literature.

The most significant work in this regard is the work of
Faust, Hazay, and Venturi [8], which covers the forth scenario
(delegation) as well. Their work considers a trapdoor for each
pattern of length m in the form of an easy to solve instance of
the subset sum problem [18]. Namely, Client outsources her
text in the form of a random vector in which all positions that
match a specific pattern equals an instance of the subset sum
problem, where giving a trapdoor for that pattern is easy to
solve. Any party that is able to generate such a trapdoor is able
to search for that pattern. This makes this scheme applicable in
the case that Client wants delegate her search power to other
parties; this delegation is done through a secure protocol in
which the other party privately learns the trapdoor.

They proved this protocol using simulation-based security
[17], in the presence of semi-honest and malicious adversaries.
Also, during the query phase the overall communication and
computation complexity done by Client is linear in the number
of matches, however, it allows some leakages to Server. More
precisely, Server learns the matched positions and more
importantly the repetitions in the text; Server is not able to
learn the context of these positions, however, this enables him
to run statistical analysis on the text and learn even more
information about it. Moreover, pattern’s length m must be
known and fixed prior preprocessing a text for outsourcing
and the pattern must be in the simplest form, i.e. a simple
string of characters and no wildcard.

Another work by Wei and Reiter considered more complex
patterns in the form of Deterministic Finite Automata (DFA)
[19]. This work is an interactive protocol with round
complexity linear in the size of the text.

We are also aware of the context of Searchable Encryption
(SE) [20]. In a SE scheme a server is allowed to search in an
encrypted data on behalf of a client without learning
information about the data. There are two high level
approaches to achieve a SE scheme; some schemes implement
this via a ciphertext that allows searching [21], while in most
others the client generates a list of encrypted (possibly non-
decryptable, e.g. using a hash function) predefined keywords.
A main problem with the first type is that the queried pattern
is revealed to the server if matched. Also, the problem with the
second type is that the patterns to be queried must be known
and fixed at the time of outsourcing; if a pattern is present in
the text but is not considered as a keyword to be search later
when outsourcing, it cannot be found during the search.

The main problem with SE is that searchable encryption
usually does not ensure the privacy of the searched pattern
[20]. While this issue is addressed in some schemes, it arises a
more severe problem in which all the plaintext in the specific
positions should be associated with the pattern (keyword)
ahead of time. Since the simulator does not know the text, it is
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not possible to produce a consistent preprocessed text in the
simulation. It is actually unclear how to generate such an
indistinguishable view even in the random oracle model [8].

B. Our contribution

We propose an efficient secure protocol for outsourcing the
pattern matching problem. This protocol supports wildcards,
text and keyword search, and is able to handle the Hamming
distance. The protocol is round optimal; only one round (one-
way) for outsourcing the text and two rounds (one-way) for
searching and there is no need for any more interactions.

Also, we proved that no nontrivial information is leaked to
the computing server. We also proposed a technique to
outsource the fetching and decryption phase of the protocol,
which enables us to achieve optimal communication and
computation complexity while preserving the round optimality
for the client and the computing server.

Il. BAsSIC CONCEPTS

In this section, we give a high level overview on the basic
concepts and preliminaries required throughout the paper.
Also, we provide the security definitions and the ideal
functionality.

A. Bit-Parallel Shift-ADD Algorithm

Our central tool for providing an outsourced pattern
matching protocol is Bit-Parallelism [10,11], a powerful
family of insecure pattern matching algorithms to represent all
possible states of the search at each step, so as to update all of
them simultaneously with a few logical and arithmetic
operations when observing the next character of the text (next
step). All members of this family have the Shift operation is
common, though based on the second operation they are
instantiated as the Shift-AND, Shift-OR, or Shift-ADD
algorithms. In this paper, we used the logic behind the Shift-
ADD algorithm. We describe here what is essential to know
about the Shift-ADD protocol in this paper with some minor
modifications to better fit our requirements; we refer the
readers to [11] for more details about Bit-Parallel pattern
matching.

Recall that T is a text of length n and P is a pattern of length
m, both from a finite alphabetX. The Shift-ADD algorithm
considers m parallel search states and updates all of them
simultaneously based on the seen character of the text [10].
Each of these states is the current distance between a pair of
corresponding (sub-pattern, sub-string).

Let define the distance between each pair of characters as
either zero or non-zero, standing for match or mismatch. Until

precise definition of distance matrix D, let d(o;,0,) be a

distance function that takes two characters (o;,0,) and

outputs their defined distance. Further, the distance between
two equal length strings is defined as the sum of distances
between the pairs of characters at the same positions. This
implies that these strings are matched if their distance is zero.
Consider a matrix S of size mxn, initialized with zero. Each
entry Sj[i] in row i of column j, stores the distance between

sub-pattern p;,..., p; and sub-stringt; ;,;,...,t; . Therefore,
the last entry of each column, S, [m], is the distance between

the pattern and sub-string T; =t .t of lengthm .

jom+1re
In a recursive manner, the value of column Sj can be
computed solely based on the previous column S, and the

distance between the seen character at position j of the text
and each character of the pattern. More precisely we have the

following, while initializing all undefined cells S[i ], S, [O]
with zero.
Sj[i]: Sj—l[i _1]+ d(tj’ pi)’
j=1...,nandi=1...,m
In other words, after seeing character t;, the values in Sj

o))

are updated by shifting down (assumed as a column) the
previous values, while entering a zero from the top, and

adding the distance between t; and each character p; of the

pattern.

In the following, we redefine the Shift-ADD algorithm in
three phases. This description is useful in the next sections,
where a secure outsourcing protocol is presented.

Phase 1. Pattern preprocessing

In this phase, pattern P is represented in the form of a
distance matrix (denoted by matrix D) of sizem-|Z]|, i.e. a

row for each symbol of P and a column for symbol of X.
Each entry of D is set to zero if the corresponding symbol of P
and X are equal (match), and non-zero otherwise (mismatch).
This matrix is an instantiation of distance function d that we
used above. We denote by D[o] a column of D indexed by
character o.

Phase 2. Text evaluation

We can consider two cases for a text; a stream of characters
or a set of keywords. In the first case, we assume the text as an
unstructured sequence of characters. While in the keyword
case, we assume the text is constructed as a set of keywords.
In this section, for the sake of generality, we consider text T as
a stream of characters. Later, we show how our protocol can
be used in the case of keywords.

A matrix of sizem xn, denoted by R, is used to evaluate
the preprocessed pattern over T. In each step of the evaluation,

in order to realize Equation 1, read character t; of T and
compute the jth column R; of R as:
1. Initialize column R ; by cloning the shifted elements
of R;_, while entering 0 from the top.
2. Add D[tJ to R; element-wise.

Phase 3. Result extraction
Any R;[m]=0 (R[m, j]=0) indicates a match. This is

due to the fact that in the computed matrix R, the cell Rk, j]
indicates the distance between the sub-string t; , ;,...,t; and
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Functionality Fopm

(tid,qid).

tid, gid, Matched) to Client. Otherwise, it sends L.

Functionality Fopm runs between Client and Server as follows:
-Upon receiving a message (text, T, tid) from Client, stores T under ID tid and sends (outsource, tid, |T|) to Server.
-Upon receiving a message (query, P, tid, gid) from Client, checks whether it has a text stored under tid and sends
(tid,qid,|P]) to Server. It then retrieves T stored under tid, computes Matched = {j|P matches T;} by searching for
pattern P at each location in T, and stores Matched under index

-Upon receiving a message (approve, tid, qid) from Server, retrieves Matched stored under (tid,gid) and sends (result,

Fig. 1. ideal functionality for secure outsourced pattern matching.

the prefix p(k)=p,,...,p, of P; the last row (R[m, j])
indicates the distance between each substring and the pattern.

B. Security Model and Definition

In this section we proceed with describing the security
definitions used in this paper as well as the necessary
cryptographic background.

Additively Homomorphic Semantically Secure Encryption.
Throughout this paper, we use a public-key encryption scheme

E :=(Gen,Enc,Dec) with an additive homomorphism and

semantic security property. The key generation algorithm Gen
outputs a public-private key pair (pk,sk), taking a security

parameter 1°. The encryption algorithm Enc outputs a
ciphertext ¢, based on inputs pk and a plaintext message M.
The decryption algorithm Dec takes a ciphertext ¢ and private
key sk and outputs a decrypted message M (or an error).

The additive homomorphism property of this scheme allows
addition of the corresponding plaintexts of two ciphertexts by
applying an efficient operation, without the need of the sk and
decryption. This operation is denoted by Encu(X+Y)=
Encp(X)+nEncu(Y) for plaintexts X and Y. This also implies
that the corresponding plaintext X of a ciphertext ¢ can be
multiplied by a known integer, which we denote by Encp(v -
X) = v -n Encp(X) for a known integer v. In practice, +, and .x
respectively correspond to multiplication and exponentiation;
we use this notation in the rest of this paper

We also define the encryption of an array to be an
elementwise encryption of it. We can then define the addition
of two encrypted arrays of the same dimensions by
homomorphically adding their corresponding elements.

Moreover, the semantic security of the scheme implies that
the adversary is not able to distinguish one message from
another once they are encrypted with more probability that
random guessing.

Security Definitions. We follow the ideal/real world
paradigm in order to prove the security of our protocol. We
use two different definitions of security to preserve efficiency
of our protocol in the presence of semi-honest and malicious
adversaries. Both definitions follow the simulation of the real
world in the ideal world. Roughly speaking, according to
simulation paradigm, security is guaranteed if any real world

adversary is not able to harm more in comparison to an ideal
world adversary. In the ideal world the parties privately send
their input to an ideal functionality, where he does the
computation and privately returns to each party its defined
output. The security in the ideal world is guaranteed by
definition. In the real world the parties engage in a protocol to
obtain their output. We say that this protocol is secure if for
any adversary in the real world there is a simulator in the ideal
world that a distinguisher is not able to distinguish between
the generated transcripts, i.e. views, of two worlds [17]. For
inputs (x,y), we denote the ideal world transcript by IDEAL
and the real world transcript by REAL. Note that in the
literature this definition is equivalent to the definition of
indistinguishability of views, for semi-honest adversaries [17].
Definition 1 formalizes this security definition.

Definition 1. We say that a two-party protocol m securely
realizes functionality F if for any PPT adversary adv in the
real world there exists a PPT simulator Sim in the ideal world
such that for any tuple of inputs (x,y) and auxiliary input z,

IDEALF,Sim(z)(X ly)zREALzr,adv(z)(va)

c

Where ~ denotes computational indistinguishability.

The second definition of security is helpful when one party
has no input and no output in the protocol, the same as our
case. In this setting, we relieve the security definition, for the
sake of efficiency. Here, the definition requires that the party
with no input and output is unable to distinguish between any
two inputs of the other party. Note that this definition does not
provide correctness of output. This is formulated via
indistinguishability of two views of the adversary in the real

world for any two inputs, denoted by VIEW %, s (X,—)and

VIEW 5, ;)6 (X, —) , respectively.

Definition 2. Let F be a functionality run between parties A
and B where party B has no input and output. We say that a
two-party protocol m provides privacy of the input/output of
party A, according to functionality F, if for any input x and
auxiliary input z the following holds:

VIEW zra,da\l/jv (z),B (X’_):’V IEW;ra,da\év (z),B (X,’ _) .

Ideal Functionality. The inputs of our pattern matching
outsourcing problem are a text T of length n and a pattern P of
size m; Client outsources the text once and may query for
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several patterns later. The goal is to find all positions in text in
which the pattern matches the sub-string of the same length
ending at those positions. This problem is formalized via an
ideal functionality in the ideal world, shown in Figure 1.

I1l. PROTOCOL SPECIFICATION

Recall that Client has a private text that she stores in an
encrypted form with Server. Client later requests Server to
search for some private patterns (queries) in Client’s text.
Besides the trivial information such as the text and the pattern
length, the functionality implies that Server should not learn
anything about Client’s data, i.e. the text or the patterns. We
proceed to present a secure protocol that realizes this
functionality, which is intrinsically based on the bit-parallel
shift-add algorithm.

Roughly speaking, in this protocol, Server stores an
encrypted representation of the text which is preprocessed and
outsourced by Client. Client later sends a query in the form of
encrypted pattern and Server evaluates the query by
obliviously computing the difference between the
corresponding characters of the pattern and each sub-string of
the text, which is solely efficient computing on encrypted data.

Let a mapping ¥ map each character of the alphabet to a
distinct integer, i.e. each character of the alphabet is
represented using a numerical value denoted by ¥(o) for
character o. We define the distance between two characters as
the difference of their numeric values; the distance function is
defined as d[o1,02] =¥(o1)—¥(02), Where o1 and o, are
characters. More precisely, we realize this definition by
adding a NULL symbol @ to the alphabet (typically ¥(@)=0)
and assign an index to each symbol of the alphabet which is
treated as its distance from the @ character. Now, the distance
of each pair of characters can be computed as the difference of
their distances from the @ character:
d[oy,0,] =d[0,,]-d[0,,2]

=Y¥(a,) —Y¥(o,)

An instant implication of such definition is that the distance
between two same length strings can be the sum of distances
of their corresponding characters (Equation 3); two strings are
matching if their distance is zero.
dlo,0,..0,,0/0,..0!]1=

@

d[o,,0/]1+d[o,,0,]+...+d[o,,0,] ®)

Note that the solution we are describing here is applicable
only to the case when two characters/strings are considered
either a match or mismatch for the purposes of the search (i.e.,
the distance matrices are binary) and simple patterns
consisting of only alphabet characters. Later, we will
demonstrate how to modify this solution to support wildcards
as well.

We emphasize that in this approach, by definition, distances
between any two given characters can be negative, positive, or
zero. Since the algorithm adds the distances between a

character of the text and a character of the pattern, it may
produce false positives, i.e. total zero distance while some
partial distance are non-zero, where positive distances are
compensated by negative distances. As a simple example,
strings GT and TG is considered as matched since
d[G,T]+d[T ,G] =0.

We see three options to mitigate this shortcoming: The first
option is to ignore it by definition, since in some contexts this
kind of match may be useful. The second option is to compute
squared distances between two characters prior to adding them
together. Implementing this option will necessitate the use of
pairing operations [22]. The third option is to randomize non-
zero distances over a large space prior to adding them with
new ones. More precisely, Server randomizes each entry of the
previous column by homomorphically multiplying them by a
fresh randomness. This will randomize the non-zero values
while making the zero ones unchanged. Since by construction
zero indicates a match and any mismatch can be represented
by a random value, this will preserve the properties of the
solution while making the probability of false positives
negligible.

Since the third option can be realized more efficiently than
the second one, we use it in our construction.

We proceed with protocol specifications. In order to
outsource a text, Client opts a private arbitrary mapping ¥ to
index all symbols of the alphabet and the NULL character, e.g.
{®p=0,A=1C=2T = 3,G = 4}. The mapping function can
be even a Pseudo Random Function (PRF) [23]. Then, using a
semantically secure non-deterministic additively
homomorphic encryption scheme, she substitute each
character of the text with an encryption of its corresponding
index, resulting in vector C. Client stores this encrypted
representation of the text with Server, while keeping the key
and the mapping locally.

Note that the text is not needed anymore to be kept locally
since it can be restored by downloading it from Server and
decrypting.

After outsourcing the text to Server, whenever Client wants
to search for a private pattern P in her text, she simply creates
a vector of size m and set each of its elements to

Y(D)—"P(p, ), for each character p; of P. Then she encrypts

this vector element-wise and sends resulted vector D% to
Server.

Server is now able to evaluate the pattern, in form of vector
D% on encrypted text C inspired by the fact that

C[j]+, D?[i] is the distance between jth character of the

text and ith character of pattern P, in an encrypted form. In
other words, Server is able to obliviously compute the
randomized sum of the distances of each character of the text
with the corresponding characters of P, which can be used to
compute the distance of each sub-string with the pattern.
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Protocol zopm
This protocol runs between Client and Server. Client outsources a text T € 2"and later may query patterns P € 2™ for a
finite alphabet X. The distances between the alphabet character and pattern characters are considered to be binary.

Setup phase.
-Setup(1¥): Client chooses a semantically secure additively homomorphic encryption scheme E = (Gen,Enc,Dec) and
runs the Gen(1*) to produce a key pair (sk,pk). She publishes pk. Client also creates a mapping? : X U@ — Z
(typically (@) = 0).
-GenText(pk,T): Client substitute each character tj of T with ¢; = Enc(¥(t;)—%(®)) and stores C = {cj|j = 1,...,n} with

19

Server.
Query phase.

Ri[1] = ¢;+n D[1]

Ri[K] = rj -h (Rj-1[k—1]) +nCj +n D?[K] for2 <k <m
result; = Rj[m]

Extract phase.

-GenPattern(pk,P): Client creates an empty vector D? of size m =

Encpc(P(D)—¥(pi)), where piis the ith symbol of pattern P. Client then sends D?to Server.

-Eval(C,D?,pk): For each encrypted character c;j, Server maintains a vector R;of size m = |P|.
For each j, Server randomly samples r; from the plaintext space of Enc and computes:

— Extract(Res,sk): Server sends Res = {resultj|j = 1,...,n} to Client. Client parses Res as {resultjj = 1,...,n} and decrypts
each resultj. Client returns all indices j as matching locations where Decg(result;) = 0.

|P| and fills the ith element D?[i] with

Fig. 2. Secure protocol for outsourced pattern matching in the semi-honest model.

More precisely, Server creates matrix R of size m X n,
initialized with zero. In each step j of the evaluation, Server
needs to compute the distance of each sub-string of the text
ending at position j and each prefix of the pattern. To this end,
Server reads next encrypted character c; of the encrypted text,

homomorphically adds it to each element of vector D7,
randomizes the resulted vector, shifts down Rji, while
entering an encryption of zero from the top, and finally adds
the randomized vector with R;.1 to obtain vector R;. Note that
Server is able to compute an encryption of zero since he has
the public key of Client, however he is not able to distinguish
any encrypted value from another since the encryption scheme
is semantically secure.

As discussed earlier, the last row of matrix Result at
position j, indicates the randomized sum of the pattern with
the sub-string of the same length ending at position j. This row
should be sent back to Client, where she can decrypt and find
if there is any matched position.

IV. SECURITY EVALUATION

The detail of the construction are given in Figure 2. In this
construction, all necessary operation performed by Server is
done without allowing him to obtain any information about the
outsourced text, pattern, or the distances. Thus, we obtain the
following:

Theorem 1. Given an additively homomorphic semantically
secure encryption scheme (Gen,Enc,Dec), protocol mopm in
Figure 2 securely realizes the functionality Fopm in Figure 1 in
the presence of semi-honest adversaries.

Proof. We show both correctness and privacy.

Correctness. We need every single pattern P queried by

Client is correctly being answered, with overwhelming
probability, with respect to the outsourced text T. Our protocol
achieves correctness if and only if any time T; = P it returns
the position j as a match. We next show that the algorithm in
Figure 2 returns all indices j when T;=P.

The server computes result; for each index j of T. As shown
in Equation 4 below, resultj is the randomized sum of the
distances of each character of T; with the relevant characters of
P. The distances will add to 0 if all of them are actually 0,
which indicates a match. With a negligible probability, result;

may be add to 0, whileT; # P, which is a false positive.
result; =State;[m]

= (r;+,State; ,[m —1]) +, ¢; +, D?[m]

joma o DD 4, @
r (€54 +, DZ[m 1) +, (c; +, D?[m])

=Enc (r_n. o (Yt _na) —¥(p)) +...

+(P(t;) - ¥ (py,))

_{Enc(O) if T,=P

=Enc(0) i Fimez (c

Enc(random) if T, =P

This concludes the correctness part of the proof.

Privacy. In order to show the security of the protocol, we
construct two simulators Sims, Simc for adversarial Server and
Client, respectively. Without loss of generality we assume that
the alphabet is public.

Case 1: Adversarial Client Since Server has no input in this
protocol, the output of Client is solely dependent on her own
input. Simc for adversarial Client is naive; Simc executes the
same instructions as Server does in the real world.



MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 20

Case 2: Adversarial Server Since the adversary controlling
Server learns no information about the pattern and the text and
observes only encrypted values, the simulation is
straightforward:

—Sims initially runs (sk°, pk® < KeyGen(1¥) and sends pk®
to B.

—Upon receiving a message (outsource, tid, n) from the
trusted party (i.e., Client wants to outsource text T of
length n), Sims generates an arbitrary text 7~ of length n
from alphabet Y and stores it under ID tid. Sims runs C’«—
GenText(pk,T) and sends C’ to Server.

—Upon receiving a message (tid, qid, M) from the trusted
party, Sims generates an arbitrary pattern P’ of length m

from 2. Sims then runs Df’, «— GenPattern(pk’, P*) for

this pattern and sends vector D to Server.

To show that the two views are indistinguishable, consider
that it is possible to distinguish between them, namely, (C,

D) and (C’, D). Itis obvious that all of these elements are

ciphertexts of a semantically secure encryption scheme. Thus,
any non-negligible advantage in distinguishing the views can
be used to build a distinguisher for breaking security of the
encryption with a non-negligible probability. This contradicts
semantic security of the encryption scheme. This concludes
the proof.

Before we conclude this section, we comment on the
security of this protocol in the presence of malicious
adversaries. The protocol of Figure 2 in its current description
is not able to provide correctness against an adversarial server.
Correctness is achievable using the known techniques in the
literature but will burden the communication and
computational complexity of the protocol.

On the other hand, since the adversarial server has no input
to the protocol and receives no output as well, it is rather
simple to define and prove the privacy of the protocol against
a malicious server. We obtain the following:

Theorem 2. Given an additively homomorphic semantically
secure encryption scheme (Gen,Enc,Dec), protocol mopm in
Figure 2 preserves the privacy of the pattern, outsourced text,
and matching results, according to functionality Fopm in
Figure 1 in the presence of a malicious server.

Proof. Our proof for privacy against a malicious server is
based on the indistinguishability of two inputs based on
Definition 2. More precisely, based on this definition, if the
adversary is not able to distinguish between two different
inputs, he gains no non-trivial information about the input and
output. Intuitively, the indistinguishability of the views for
two different sets of inputs (pattern/text) is evident, since the
encryption scheme is semantically secure; formally, we show
that if the adversary is able to distinguish between two inputs,
we can use him to build a distinguisher that distinguishes
between two plaintexts once they are encrypted using a
semantically secure encryption scheme.

We use three views in our proof;V =VIEW ((P,T),-) is

the view for pattern P and text T, V, =VIEW'((P,T),—-)is

the view for the same pattern and text with different
randomness, and V, =VIEW ((P',T"),-)is the view for

pattern P"and text T' of the same lengths:
V =VIEW ((P,T),-) ={V, |l =1,...,n+ m+ m.n}

={CysCyy D?[L],..., D?[m], Ry[L],..., R, [m]},
V, =VIEW'((P", T"),—) ={V/|l =1..., n+ m+m.n}

={¢} ..., D“'[1]...., D? [m], Ri[L],..., R,[m]},
V, =VIEW"((P,T),-) ={V/'|l =1...,n+ m+m.n}

={c]....c¢,D?"[],..., D" [m], RL]...., R’[m]}

Server sees V in a protocol run. Then, Client engages in
another run with Server using either (P, T) or (P, T") as input
and Server will see view V. Server is able to distinguish
between two views if he can guess b with more probability
than random guessing. Consider that Server is able to
distinguish between these views, which means that Sever is
able to learn if V=V, or V#Vi, where notation = means that
the decrypted value of each element of these sets at the same
position is equal and # means that they differ in at least one
position.

We have two cases: in the first case, if Server is able to
learn that V=V, he is able to learn that for every position

| =1,..,n+m+m.n,V, =V/. This is in contradiction with

semantic security of the encryption scheme; however the
inputs for these two views are identical, Client used a fresh

randomness for each of them and the values V, and V,"are

uniformly distributed in the range of the encryption scheme.
In the second case, Server is able to learn that there exist at

least one position o whereV, =V . This is also in

contradiction with the semantic security of the encryption
scheme. This concludes the proof of Theorem 2.

A. Variants

Before we conclude this section, we comment on the
applicability of this construction to some different variants of
pattern matching; the Hamming distance computation,
wildcards, and the keyword search.

An important result of pattern matching that one may seek
is the Hamming distance [19]. In this case, the evaluator is to
know how many positions of a pattern and a sub-string of the
same length differ. Binary or non-binary Hamming distance is
referred to the cases that the alphabet is binary or non-binary,
respectively.

Using the proposed protocol, computing the Hamming
distance (in both cases) is not straightforward since Client uses
virtual distances instead of actual ones. However, the client is
able to learn the Hamming in some cases by using well-
defined indices. Also, in this regard, Client can send to Server
a power of ten that is greater than the maximum distance in
vector DZ. Server exponentiates the previous distance (shifted
element of matrix R) with it, prior adding the currently
computed distance. Also, the randomization step is eliminated.
Using this modification, Client is able to compute the
Hamming distance simply after decrypting the returned result;
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zeros indicates a match, while non-zero values can repeatedly
divide on that power of ten, while any non-zero factor means a
character mismatch in the corresponding position.

Another important variant of pattern matching is the case of
wildcards (don’t care). A wildcard character in a pattern
matches any character of the alphabet. For the sake of
efficiency, we consider two cases. In the first case, Server
learns from Client the positions of wildcards in the pattern.
This leakage should be reflected in the ideal functionality. In
each step of the search, after computing the distance of
characters, Server simply substitutes those positions with an
encryption of zero and continues the evaluation like before.
This substitution compensates the distance of those positions
to zero.

In the second case, Client considers the wildcard positions
as private. Client may use a masking mechanism to void the
effect of those positions on the search by compensating their
distance to zero. This mechanism leaves the ideal functionality
unchanged, but comes at the price of pairing operation. This
mask is a vector of length m set with encryptions of zero in
wildcard positions and with encryptions of one elsewhere. In
each step of the search, Server multiplies this mask vector to
the computed vector of distances, using a pairing operation,
prior adding that vector to the shifted previous distances.

The other variant that we would like to emphasize is the
case of keyword search. In the protocol, we assumed the text
as a stream of characters of size n, where we refer to it as the
text search. In keyword search case, we assume Client stores
with Server a set of w keywords of different lengths (a simpler
variant is when the lengths are equal). The ideal functionality
can simply be modified to reflect this case. In the protocol,
Client outsources each keyword as she outsources a text.
Server evaluates each keyword as he evaluates a text in the
protocol. In this case, those keywords which are shorter that
the pattern are eliminated from the evaluation. For each
keyword w; ,l =1, ..., w of length |w; | = m Server evaluates
the keyword; this means that in this case one can search for a
pattern inside the longer keywords. Moreover, it is only
necessary to compute the last |w; | — m elements of matrix R
and send them to Client, which reduces the computational and
communication complexity of the search in practice.

B. Outsourcing of Decryption

An important topic that we would like to bring up is
fetching and extracting the results by the client. We discussed
two cases of text search and keyword search. In both cases,
Server learns no information about the text/keywords, pattern,
and matched position/keywords; however, this privacy is
obtained with a price.

In the text search case, Server evaluates the result as an
encrypted vector of sizeO(n), which requires O(n.k)
communication and 0 (n) decryptions from Client in order to
learn the matched positions. This seems to be inefficient
especially when m is small; however, the word “inefficient” is
fairly misleading. In theory, as we mentioned in Section 1, it is
not possible to achieve sublinear communication complexity
without any leakage about the pattern or the text to the server.

So, the minimum theoretical bound in this case is O(n.x). On
the other hand, this complexity is as large as the following
trivial solution:

e Outsourcing: Client stores the encrypted text (using a
symmetric or an asymmetric scheme) with Server.

o Query: Client downloads the text (as a whole or part by
part), decrypts it, and searches for the private pattern. (Note
that in this solution, Client must search for the pattern herself
which implies the search complexity for Client)

Therefore, one may argue that the secure outsourcing of
pattern matching without any leakages is absurd, due to the
same communication complexity as this trivial solution;
however, the communication complexity of our protocol can
be mitigated using the following well-known technique (Note
that this technique is not applicable to the trivial solution and
necessitates a multi-party searching protocol).

In order to mitigate this problem, Client could also
outsource the result extraction phase (fetching and decryption)
to a set of servers. We suggest the following modifications:
Client uses a (k,k)-threshold cryptosystem and shares the
private key between k servers. Also, Client chooses a fresh
key pair (pkz,skz) and sends pk. to Server. Server encrypts
each index j using public key pkp, creates set ER of pairs
Mj=(Enc(j), resulty), j=I,...,n, and sends it to decryption
servers. These k servers re-randomize the encryptions and
randomly permute the set members in a distributed way.
Finally they jointly decrypt the result; of each member and
send the Enc (j) part to Client whenever Dec (resultj)=0.
Client can simply decrypt Enc (j) and find the matched
positions. In this case, we achieve optimal communication
complexity for Client which is linear in the number of
matches.

Note that we have been able to merge this decryption
protocol with protocol mopm, but intentionally avoided it;
because, it can be used as a black-box, its security properties is
different from zopm, SOMeone may want to change it without
effecting the whole protocol, and this step is not necessary in
keyword search case.

In the keyword case, communication complexity is
O(wn,. k) where w,, is the number of keywords with length
equal to or longer than the pattern (considering that all
differences of their lengths with the pattern’s length are
limited to a constant). In other words, for each keyword with
the same length as the pattern only one encrypted element
should be transferred and decrypted. Therefore, this protocol
could be considered as an efficient protocol in the keyword
search case in practice. Also, one may decide to outsource the
decryptions as well.

V. PERFORMANCE ANALYSIS

Table 1 shows the communication and computational
complexity of our protocol. As shown, the communication
complexity of the protocol can be optimized to the order of
number of matches, if Client chooses to outsource the
decryption as well. Also, the round complexity of the protocol
is one round (one-way) for outsourcing and two rounds (one-
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TABLE |
COMPLEXITY OF PROTOCOL Ilgpy IN THE TEXT AND KEYWORD SEARCH
SETTING. p IS THE NUMBER OF MATCHED POSITIONS.

Client Server
Enc. Dec. Exp. Mult. Bandwidth
Out.
phase O(n) - - - O (n.x)
Query O(m.n) O(m.n)

phase O(m) ome) | Om.a) 0 (m.x)
Dec. } O(n) } O (n.x)
Phase O(w) O (w. k)

O (n.x) or

Dec. O (n) or O(w) partial ?ﬂe(car} Kt)i(f)?]r
Phase - O(u) decryption for each serzzrs
(outsourced) decryption server. '

O(p) for Client

way) for the rest of the protocol.

Before continuing with the implementation result of our
scheme, we like to compare the security and performance of
our protocol with one of the most recent works [8] which
claims to be the first work considering the outsourced pattern
matching problem. The main advantage of [8] over our work
is that it can be used directly to delegate the search capability
to other parties, while we did not consider this setting in this
paper. On the other hand, our protocol outstands [8] in several
properties. Table 2 summarizes some of these properties.

On the other hand, computational complexity of [8] during
query phase is 0(n.m?) modular multiplications and 0(n.m)
modular exponentiations. The communication complexity of
[8] is reduced to be linear in the number of matches since it
allows the server to learn the matching positions, as otherwise
there is no way to be achieved.

TABLEII
COMPARISON BETWEEN SOME FUNCTIONAL PROPERTIES OF [8] AND OUR
PROTOCOL
[8] Our protocol

Alphabet is arbitrary with

Alphabet is binary negligible effect on the

performance
Text must be fully known Text can be change or grow even
before outsourcing during the query phase

Patterns must be predicted
before outsourcing

No information is needed about
the pattern before query phase

Only keyword search

Text search and keyword search

Maximum size of the pattern
must be predicted before
outsourcing

No limitation for pattern size

Small patterns cannot be used
due to vulnerability to brute
force attack

Security does not depend on the
pattern size; any size can be
queried.

Simple predicted patterns can
be queried

More complex patterns, e.g.
wildcard, can be queried

Security depends on several
conflicting parameters (there is
a trade-of between them)

Security depends on the security
parameter of the encryption
scheme

Several kinds of information

leakage, e.g. some repetitions

and matching positions can be
learnt, some un-queried
patterns can be queried.

No information leakage regarding
the Ideal Functionality.

Table 3 and Table 4 show performance results of the
implementation of the proposed protocol in the text search and

TABLE Il
PERFORMANCE RESULTS OF Ilopm FOR DIFFERENT SETTING OF
ALPHABET, PATTERN, AND TEXT. ALL THE TIMES ARE WALL-CLOCK
TIME ROUNDED AND SHOWN IN SECONDS.

Out. | Query | Dec. | B.W.
PP T see) | (sec) | (sec) | (bit)

100 | 1K | 100K | 1070 | 750 1000 | 200M
100 | 1K | 10K | 105 60 100 | 18M
100 | 1K | 1K 11 0.007 10 2K

100 | 100 | 100K | 1070 60 1000 | 200M
100 | 100 | 10K | 105 75 100 | 18M
100 | 100 | 1K 11 0.75 10 | 1.7™M
100 | 100 | 100 1 0.000 1 2K

100 | 10 | 100K | 1070 75 1000 | 200M
100 | 10 | 10K | 105 | 0.75 100 | 1M
100 | 10 1K 11 0.075 10 | 1.8M
100 | 10 | 100 1 0.0075 1 180K
1K | 100K | 1070 | 750 | 1000 | 200M
100 | 100K | 1070 60 1000 | 200M
10 | 100K | 1070 75 1000 | 200M

keyword search respectively. These experiments were
performed on two Intel Core i7 (3770K) 3.5GHz machines
with 4GB of memory running Ubuntu 14.04. These machines
were connected via Ethernet (L00Mbps). Implementation was
done as a single-threaded program in C++ utilizing libpaillier
library [24] for Paillier Cryptosystem [25] using 1024-bit key.
We used random patterns and texts, and tested alphabets of
sizes 100 (printable) and 2 (binary). The protocol’s
computational complexity does not depend on the alphabet
size, as shown in the tables.

A.Practical Optimizations

Note that the outsource phase is run once, it can be executed
offline, and can benefit from precomputation techniques, e.g.
we can precompute random numbers and their exponentiations
required in the Paillier cryptosystem. Also, since the
characters of each alphabet are known, exponentiation of each
character can be computed once and reused in every position
of the text that this character appears (randomness is different
in every repetition).

Also, almost all steps of the protocol can be parallelized.
Bit-Parallel Shift-ADD algorithm can benefit from parallelism
in the instruction level. This is due to the fact that in each step
of the search all new states are independent of each other and
can be computed simultaneously. The proposed protocol
inherits this property in the thread-level and can be
parallelized to run on multiple cores simultaneously; each new
state can be computed independently and simultaneously on a
separate thread running on a separate CPU core. Parallelism is
also applicable on different portions of the text at the same
time. This implies that the computation can be parallelized by
a factor of number of cores.

Another optimization is related to the memory consumption
of the protocol. We mentioned that Server creates a matrix of
size mxn, in order to compute the states of the search in the
query phase. As another inherited property of Shift-ADD
algorithm, the new states in each step of the search are merely
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TABLE IV
PERFORMANCE RESULTS OF Ilopm FOR DIFFERENT PATTERN SIZES AND
DIFFERENT NUMBER OF KEYWORDS. ALL THE TIMES ARE ROUNDED WALL-
CLOCK TIME SHOWN IN SECONDS. WE ASSUMED @ KEYWORDS WITH THE
SAME LENGTH OF THE PATTERN. ALSO, WE FIXED THE ALPHABET SIZE TO
100 CHARACTERS.

Pl w Out. Query Dec. BW
(sec) (sec) (sec) (bit)
100 10K 10000 7500 100 20M
100 1K 1000 750 10 2M
100 100 100 75 1 200K
100 10 10 7.5 0.1 20K
10 10K 1000 750 100 20M
10 1K 100 75 10 2M
10 100 10 75 1 200K
10 10 1 0.7 0.1 20K

dependent on the states of the previous step and the current
character of the text. This property can be utilized in order to
reduce the required dynamic memory from a matrix of size
mxn into two vectors of size m, without any negative effect on
the computation performance.

VI. FUTURE WORKS

Before concluding the paper, we would like to bring up
some further directions to follow our work. First, extending
this work in order to support secure delegation of searching is
very interesting. More precisely, this work considered the case
that they only person who wants to search in the outsourced
text is the outsourcer; however, she may want to delegate her
search ability to other parties. This extension requires, at least,
a protocol between the outsourcer and a third party in order to
create a search token without revealing the third party’s
pattern to the outsourcer.

Another interesting direction, that we may follow, is to pack
vector D? into a single encrypted value. More precisely, in this
paper we used a vector of encrypted values, while we can pack
them together and use a single encrypted value representing
that vector. This would liken the Shift-ADD algorithm and our
protocol even more, reducing the server-side computation
complexity from O(m.n) into O(n), which is very interesting.

VII. CONCLUSION

In this work, we studied the problem of secure outsource
pattern matching. To this end, we present a two round (one-
way) protocol that enables a client to outsource her text or set
of keywords to an untrusted server and search for her patterns
in the outsource database later. Our construction does not
force the outsourcer to specify her pattern when preprocessing
the text or set of keywords, then she is able to search for any
unpredicted pattern later. The scheme is secure against any
semi-honest adversaries and retains the privacy of the pattern,
text, and matched positions even in the presence of malicious
adversaries. Unlike other relevant schemes, ours does not
reveal any statistical information about the text, e.g.
repetitions in the text. Also, this is the first scheme to allow
wildcard search.
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