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Abstract— Counting the minimum number of differential 

active S-boxes is a common way to evaluate the security of 

block ciphers against differential and linear cryptanalysis. In 

this paper, we use mixed-integer linear programming (MILP) 

to calculate minimum number of active S-boxes of the some 

Feistel structures. We focus on Type-II of  Feistel structures 

with four and six partitions and explain how to analyze them 

by MILP when they have more than one MDS2 matrices (like 

Clefia) in their structure. Moreover, we propose a new four 

partitions Feistel structure with three multiple MDS matrices 

which have more active S-boxes rather than Clefia structure. 

We also generalize Clefia structure in to six partitions Feistel 

structure by three multiple MDS matrices for 192 bits block 

size. 

Keywords— Clefia Structure, Linear Programming, Switching 

Method, Generalized Feistel Structure, Active S-boxes, 

I. INTRODUCTION 

ENERALIZED Feistel structures (GFS) are one of the 

applicable structures for design of block ciphers which 

have suitable implementation properties. For instance the 

GFS have smaller F-functions compared to the common 

SPN structure (for the same block size) and also GFS do not 

need inverse F-function for decryption [1]. There are 

different types of generalizes Feistel structures according to 

input and output of the F-function and in this paper we focus 

on Type-II with SP function. 

   To evaluate the immunity of a cryptosystem against 

differential attack, counting the number of active S-boxes is 

a suitable method. Hitherto many algorithms have been 

proposed to count the minimum number of active S-boxes of 

Feistel structures such as [1, 2, 3]. 

   To drive an upper bound for the probability of the best 

characteristic, after finding the minimum number of active 

S-boxes, maximum differential probability of the S-boxes 

are powered to the number of active S-boxes. An actual 

characteristic with the given number of active S-boxes may 
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not exist. This is not a concern, since our goal is to calculate 

a security bound against differential cryptanalysis.  

    The ratio of the minimum number of active S-boxes for 

Feistel structures is lower than SPN structure in the 

specified number of rounds. It is usual, because the total 

number of S-boxes of Feistel structures is half of number of 

S-boxes in corresponding SPN structure. But the ratio of the 

minimum number of active S-boxes for Feistel cipher is 

lower than half of SPN structure in the specified number 

rounds. This is because of difference cancellation which 

always occurs in the XOR operation. To avoid these 

cancellations a method called switching has been proposed

[2, 4, 5, 6, 7]. 

   Clefia [5] is a light weight block cipher which is designed 

by Sony Corporation. The plaintext in the block cipher 

Clefia divides to four partitions. This block cipher is based 

on switching method where two different MDS matrices are 

used.  

   The method which we use to count the minimum number 

of active S-boxes for Feistel structures is based on mixed-

integer linear programming. This method is derived from 

Mouha et al.’s method [8] that has been proposed to find 

lower bounds on minimum number of active S-boxes of the 

stream cipher Enocoro-128v2 [9]. This method only 

involves writing out simple linear equality and inequality 

constraints that are input into a MILP solver and use 

CPLEX software [10].  

      In this paper we explain how we can convert the 

switching mechanism in to inequalities that are used in 

MILP model. Moreover we propose a four partitions Feistel 

structure with three multiple MDS matrices which is more 

resistant against differential attack rather than Clefia and 

also generalize Clefia structure in to six partitions Feistel 

structure with three multiple MDS matrices.   

    This paper is organized as follows. In Section II some 

definitions are reviewed that we need. MILP method is 

explained for differential analysis of common Feistel 

structure in Section III. In Section IV we use the described 

method in Section III to analyze the four partitions Feistel 

structure with one MDS matrix and two MDS matrices 

(Clefia). Finally in Section V we propose the four partitions 

Feistel structure with three multiple MDS matrices and then 

we generalize Clefia structure in to six partitions Feistel 

structure with three multiple MDS matrices.  

II. PRELIMINARIES 

A. Description of standard  four and six partitions Feistel 

structure 

   In this paper, we focus on the standard four and six 

partitions Feistel structures Type-II. In the following we 

describe the structure of standard four partitions structure. 
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Suppose that a 4mn-bit plaintext P is divided in to 4 sub 

blocks as (1) (1) (1) (1)

0 1 2 3( , , , )p x x x x  where ( ) {0,1}i mn

jx  . 

Moreover, the output of round i+1 is calculated as follows 

[1]: 

 

( 1) ( 1) ( 1) ( 1)

0 1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 0 1 2 2 3

( , , , )

( , ( ) , , ( ) )

i i i i

i i i i i i i i

x x x x

x F x x x F x x

   

  
   (1)                                                

 

   where 
( ) :{0,1} {0,1}i mn mn

jF   is a j-th round function in 

the i-th round, and π  is a deterministic permutation (for 

example 0 1 2 3 1 2 3 0( , , , ) ( , , , )x x x x x x x x  ).  

    One round of the standard four partitions Feistel 

structures is shown in Fig 1.  

 

 

 

 

 

 

 
Fig. 1. One round of four partitions Feistel structure 

 

    The structure of the standard six partitions structure is 

shown in Fig 2.  

 

 

 

 

 

 

 

 

 

    In both structures we assume that each round function is 

the SP-type F-function which consists of an mn-bit round 

key addition, m parallel n-bit bijective S-boxes and an m*m 

matrix with element in GF(2
n
).  

By relying on switching method instead of using one 

matrix, we can use multiple matrices. For instance, two 

matrices are used in Clefia structure. The way of assigning 

matrices to the functions in Clefia structure is shown in Fig 

A.1. Also the way of assigning matrices to the functions in 

the proposed four and six partitions structure are 

respectively shown in Fig A.3. 

B. Definitions 

Active Differential S-box: An S-box which has non-zero input 

difference [4].  

Hamming Weight: Let  110 ,...,,  mxxxx  by {0,1}n

ix  . 

The Hamming weight )(xw   is defined as [1]: 

 

 

}0,10|{#)(  ixmiiw x                                (2)  

             

Branch Number: Let P be a linear transformation with m1 

inputs and m2 outputs. The branch number of P is defined as 

[1]: 

))}(()({)( min
0

aa
a

PwwPBr 


                                 (3) 

 

Truncated Difference Vector: Consider a string   consisting 

of m bytes as  110 ,...,,  mΔ . The truncated 

difference vector  110 ,...,,  mxxxx  corresponding to 

Δ  is defined as [8]:  

 

                           
0 0

1

i

i

if
x

otherwise

 
 


                              (4) 

 

MDS matrix:  A matrix with maximum branch number is 

called MDS. If P is an MDS m m  matrix, the branch 

number of P equals to m+1. In the rest of paper we assume 

that all of the used matrices are MDS. 

 

III. USING MILP IN DIFFERENTIAL ANALYSIS OF FEISTEL 

STRUCTURE 

 

    In MILP, an objective function like 
1 2( , ,..., )nf x x x   is 

optimized (minimized or maximized) subject to linear 

inequalities involving decision variables ,1ix i n  . 

Therefore to describe MILP program we need to define 

decision variables, objective function and constraints related 

to decision variables. 

   In order to define decision variables to count the active S-

boxes of a Feistel structure, consider the F function in the i-

th round. Suppose that each n-bit sequence which is placed 

at the input of each S-box is corresponded to a binary 

variable.  

    Let ,i jx denote a truncated variable corresponded to an n-

bit sequence which is the j-th input of F function in the i-th 

round and also the truncated variable ,i jz  is corresponded 

to an n-bit sequence which is the j-th output of F function in 

the i-th round. A schematic overview of this description is 

given in Fig. 3. 

    Therefore the input difference vector of F function will be 

,0 ,1 , 1( , ,..., )i i i mx x x   and output difference vector of F 

function will be ,0 ,1 , 1( , ,..., )i i i mz z z  . Now we can describe 

objective function and constraints related to decision 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 3. Binary variables correspond to input and output of each F function 

in the i-th round 
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Fig. 2. One round of six partitions Feistel structure 
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A. Equations Describing the XOR Operation 

 Consider the i-th round of Feistel structure for describing 

XOR operation equations. According to Fig. 4, XOR of each 

element of corresponding vectors must computed peer to 

peer.   

 

  

 

 

 

 

 

More precisely the variables 1,i jx   and ,i jz  (0 1)j m     

are input of XOR operation and the variable 1,i jx   is the 

output of XOR operation. It is well known that the branch 

number of XOR operation is equal to 2. To express this 

branch number in equations, we need to define a new binary 

dummy variable for each XOR operation. Therefor we 

define the binary dummy vector variables ( , ,..., )
0 1 1
i i id d d

m
. 

The binary variable 
i

jd  ( 0 1j m   ) is zero iff 1,i jx   ،

,i jz  and 1,i jx   are zero, otherwise it must be equal to one. 

Thus to describe the relations between input difference 

vectors and output difference vector, we can write the 

following inequality: 

1,0 ,0 1,0 02 i

i i ix z x d     

0 1,0

i

id x   

0 ,0

i

id z  

0 1,0

i

id x                                                                          (5) 

1, 1 , 1 1, 1 12 i

i m i m i m mx z x d                                                                                        

1 1, 1

i

m i md x    

1 , 1

i

m i md z  

1 1, 1

i

m i md x   

B. Equations describing F-function 

   To describe the F function, Fig. 3.  According to relation 

(5), we define the new binary dummy variable called 
idd

and assume that the branch number of used matrix is .  

Equations (6) are obtained as below:  

,0 ,1 , 1 ,0 ,1 , 1... ... i

i i i m i i i mx x x z z z dd          

        

















1

0

,

1

0

,

m

j

ji

i

m

j

ji

i

zdd

xdd

                                                             (6) 

C. Objective function 

The objective function should be defined in a way that 

number of active S-boxes is minimized. Therefore to obtain 

the minimum number of active S-boxes of a Feistel 

structure, we have to minimize sum of all variables which 

are placed in the input of F function in every round (i.e.,) 










1

0

1

0

r

i

m

j

jix ,min . 

     To ensure that at least one S-box is active, we add a 

linear equation to our MILP program. This linear equation is 

sum of all truncated binary variables which are 

corresponded to plaintext. This equation must be greater-

equal than one.    

 

II. DIFFERENTIAL ANALYZE OF THE FOUR PARTITIONS FEISTEL 

STRUCTURE 

    In this section, the method of counting the minimum 

number of active S-boxes if explained for four partitions 

Feistel structure with one MDS matrix (case A) and two 

MDS matrices (case B), by MILP.  

    It is easy to realize that by generalizing the variables in 

case A, we can calculate the minimum number of active S-

boxes of six partitions of Feistel structure with one MDS 

matrix.  

A. Four partitions Feistel structure with one MDS matrix 

There are two XOR operations and two F functions in 

each round of four partitions Feistel structure. We can show 

the differential behavior of these operations by using the 

equations which is described in prior section.  

     To determine the variables which are input and output of 

the F function, consider first round. We explain the 

equations for the first round and this process will be 

repeated for each round and the equations will be added to 

MILP program until reaching to the round that we want to 

calculate its minimum number of active S-boxes. 

    

 

 

 

 

 

 

 

 
Fig. 5. Deccision variables in round 1 for four partitions Feistel structure 

 

    The input difference vectors of F functions are called 

0,0 0, 1( ,..., )mx x 
 and 

0, 0,2 1( ,..., )m mx x 
 respectively and 

also the output difference vectors are called 

0,0 0, 1( ,..., )mz z 
 and 

0, 0,2 1( ,..., )m mz z 
 respectively. Also 

to establish regularity in definition of  variables in other 

rounds, in round one the difference vectors which their XOR 

with output of F functions must be computed, are called 

0,0 0, 1( ,..., )my y 
 and 

0, 0,2 1( ,..., )m my y 
 respectively (some 

parts of plaintext). The output difference vector of XOR 

operations will be 
1,0 1, 1( ,..., )mx x 

 and 
1, 1,2 1( ,..., )m mx x 

 

respectively. We continue this process for other rounds. 

Fig.  4. The difference vector involved in XOR operation in Feistel 

structure 
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   By defining the binary dummy variables vector 

0 2 1( ,..., )md d 
, the inequalities related to XOR operation 

for round 1, are similar relation (5). 

    It is worth noting that we need to define a new binary 

dummy variables vector for each round. More precisely, 

every XOR operation needs a new binary dummy variable. 

Therefore the index of these binary variables must be 

incremented for the other rounds. 

   By defining binary dummy variables 
0dd  for the left F 

function and 
1dd  for the right F function in round 1, the 

equations related to F functions in round 1 are obtained as 

follows: 

0,0 0, 1 0,0 0, 1 0... ... ( 1)m mx x z z m dd         

  





























1

0

,0

1

0

,0

0

1

0

,

1

0

, )1(

m

j

ji

i

m

j

ji

i

i
m

j

ji

m

j

ji

zmdd

xmdd

ddmzx

                                              (7)                                                                               
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







12

,1

12

,1

1

12

,

12

, )1(

m
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ji

i

m

mj

ji

i

i
m

mj

ji

m

mj

ji

zmdd

xmdd

ddmzx

                                             (8) 

As before every F-function needs a new binary dummy 

variable, therefore the index of binary dummy variables 

must be incremented for other rounds.                                                                     

   According to relations 5, 7 and 8 for one round of four 

partitions Feistel structure that the branch number of used 

matrix is m+1 we need 8 m   and 4 2m   equations for 

XOR operations and for F functions respectively. Also to 

ensure that at least one S-box is active we add equation 9 to 

our MILP program.  

  
0,0 0, 1 0,0 0, 1

0, 0,2 1 0, 0,2 1

( ... ) ( ... )

( ... ) ( ... ) 1

m m

m m m m

x x y y

x x y y

 

 

     

     
            (9) 

The objective function for r round is obtained as follows: 

 

                                
1 2 1

,

0 0

min
r m

i j

i j

x
 

 

                                (10) 

B. Clefia structure 

   The only difference between the Clefia structure and 

structure in Fig. 5 is the matrices which are used in Clefia 

structures. These matrices cause the minimum number of 

active S-boxes will be increased. Therefore to calculate the 

minimum number of active S-boxes of this structure we 

have all of relations which we have obtained for prior 

structure to our MILP program1 and some equations related 

to the switching method are added to previous non-

equalities. 

   We consider the truncated difference vector ,0 , 1( ,..., )i i mx x   

briefly is equivalent to vector 
,0iX and also , ,2 1( ,..., )i m i mx x   

, 
,0 , 1( ,..., )i i mz z 

 and 
, ,2 1( ,..., )i m i mz z 

 are equivalent to 

,1iX , 
,0iZ  and  

,1iZ  respectively. We call the matrix 

which is used in the first F function 
1M  and the matrix in 

the second F function 
2M .  

   According to Fig A.1, some of difference vectors which 

are involved in the switching mechanism have lied on red 

and blue path. Thus following relations are obtained 

respectively: 

 

                              
0.0 1.1 3.0 4.0

0.1 1.0 3.1 4.1

X Z Z X

X Z Z X

  

  
                 (11)                                                 

 

According to this point that S-box has no effect on truncated 

difference vector (S(Xi)=Xi), The above relations are 

equivalent to: 

 

                   0.0 2 1.1 1 3.0 4.0

0.1 1 1.0 2 3.1 4.1

X M X M X X

X M X M X X

  

  
                      (12) 

 

 Or: 

                    

1,1

1 2 0,0 4,0

3,0

1,0

1 2 0,1 4,1

3,1

[ , ]

[ , ]

X
M M X X

X

X
M M X X

X

 
  

 

 
  

 

                       (13) 

   According to switching condition that has been explained 

in [4], If 1,1 3,00 0X and X   and also in other relation 

1,0 3,10 0X and X   the branch number  the matrix 

1 2[ , ]M M  is equal m+1(the branch number  the matrix  like 

1 2[ , ]M M  must be smaller-equal than branch number of 

matrices like M1 or M2).  Inequalities are obtained from (13) 

as follow: 

            

2 1 1 1 1

1, 3, 0, 4,

0 0 0

1 2 1 2 1 2 1

1, 3, 0, 4,

0

( 1) ( )

( 1) ( )

m m m m

i i i i

i m i i i

m m m m

i i i i

i i m i m i m

x x m x x

x x m x x

   

   

   

   

    

    

   

   

           (14) 

    To ensure that the vectors 
1,1 3,00 0X and X   and also 

the vectors 
1,0 3,10 0X and X  , we need to define a new 

binary dummy variable called ddd0 and ddd1. Therefor the 

relations 14 can be written as follows: 

 

          

1 2 1 1 1

0, 1, 3, 4, 0

0 0 0

2 1 1

0 1, 3, 0

0

2 1 1 2 1 2 1

0, 1, 3, 4, 1

0

1 2 1

1 1, 3, 1

0

( 1)

2

( 1)

2

m m m m

i i i i

i i m i i

m m

i i

i m i

m m m m

i i i i

i m i i m i m

m m

i i

i i m

x x x x m ddd

ddd x x mddd

x x x x m ddd

ddd x x mddd

   

   

 

 

   

   

 

 

    

  

    

  

   

 

   

 

         (15)          

   So the switching condition must be added to  MILP 

program after fifth round and we must obtain relations (15) 

for every five consecutive round (according to indexes) and 

we continue this process until reaching the round which we 

want to calculate its minimum number of active S-boxes.    

III. PROPOSED FEISTEL STRUCTURES WITH THREE MDS 

MATRICES 

   In this section by relying on simple analyze by using 

MILP, we have proposed a new standard four partitions and 

six partitions Feistel structure which both of them are more 
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resistant against differential cryptanalysis than Clefia 

structure. In case A, we explain about calculating minimum 

number of active S-boxes of four partitions proposed Feistel 

structure and in case B explain about the six partitions 

proposed Feistel structure which is generalized state of 

Clefia. 

A. Standard four partitions Feistel structure with three 

MDS matrices 

  To analyze this structure, we must add all of the constraints 

which we have made for Clefia to the MILP program. Since 

according to Fig.A.2 of appendix A, every property which is 

established for Clefia can be established for this structure 

even the relations which we have described for switching 

conditions. The excellence of this structure rather than 

Clefia is some equations which we have to add to MILP 

program. According to Fig.A.2, some of difference vectors 

which are involved in the switching mechanism have lied on 

red and blue path. Thus following relations are obtained 

respectively. 

                   0.0 1.1 3.0 5.1 6.1

0.1 1.0 3.1 5.0 6.0

X Z Z Z X

X Z Z Z X

   

   
                     (16) 

    By similar method to obtain relations (15), the relations 

(16) are equivalent to relations (17) with this difference that 

In this case we don’t need to define new binary dummy 

variables because it isn’t possible that the sum of elements 

of three truncated difference vectors  
1,1 3,0 5,1X and X and X  

and also 
1,0 3,1 5,0X and X and X be zero at the same time. It is 

mentioned for more specific case with two truncated 

difference vector before.  
1 2 1 1 2 1 2 1

0, 1, 3, 5, 6,

0 0

2 1 1 2 1 1 1

0, 1, 3, 5, 6,

0 0 0

( 1)

( 1)

m m m m m

i i i i i

i i m i i m i m

m m m m m

i i i i i

i m i i m i i

x x x x x m

x x x x x m

    

    

    

    

     

     

    

    

                  (17) 

   Relation (17) must be obtained for every six consecutive 

round and we continue this process until the round which we 

want to calculate its minimum number of active S-boxes. 

We add the obtained equations to our MILP program. 

B. Generalizing Clefia in to Standard six partitions Feistel 

structure with three MDS matrices 

Generalizing Clefia in to Standard six partitions Feistel 

structure with three MDS matrices As we mentioned in 

Section IV to analyze this structure with one MDS matrix 

we must generalize the variables of four partitions to six 

partitions. So the objective function for r round will be as                                                  
1 3 1

,

0 0

min
r m

i j

i j

x
 

 

 .                                                                  (18) 

Now after adding XOR and F-functions relations to our 

MILP program to obtain the equations of switching method 

we follow the same process which we have done for clefia 

structure. In Fig.3 of appendix A, the way of assigning 

matrices to F-functions are shown and some of difference 

vectors which are involved in the switching mechanism 

have lied on red and blue and green path. So the following 

relations are obtained for the red, blue and green path 

respectively: 

                     

 

 

 

 

TABEL I. 

COMPARING MINIMUM NUMBER OF ACTIVE S-BOXES FOR THREE FOUR 

PARTITIONS AND TWO SIX PARTITIONS FEISTEL STRUCTURE 

 

0.0 1.2 3.1 5.0 6.0

0.1 1.0 3.2 5.1 6.1

0.2 1.1 3.0 5.2 6.2

X Z Z Z X

X Z Z Z X

X Z Z Z X

   

   

   

                                          (19) 

Finally By similar method to obtain relations 15, we have:  
1 3 1 2 1 1 1

0, 1, 3, 5, 6, 0

0 2 0 0

3 1 2 1 1

0 1, 3, 5, 0

2 0

2 1 1 3 1 2 1 2 1

0, 1, 3, 5, 6, 1

0 2

1

( 1)

3

( 1)

m m m m m

i i i i i

i i m i m i i

m m m

i i i

i m i m i

m m m m m

i i i i i

i m i i m i m i m

x x x x x m ddd

ddd x x x mddd

x x x x x m ddd

ddd

    

    

  

  

    

    

     

   

     

    

  

    
1 3 1 2 1

1, 3, 5, 1

0 2

3 1 2 1 1 3 1 3 1

0, 1, 3, 5, 6, 2

2 0 2 2

2 1 1 3 1

2 1, 3, 5, 2

0 2

3

( 1)

3

m m m

i i i

i i m i m

m m m m m

i i i i i

i m i m i i m i m

m m m

i i i

i m i i m

x x x mddd

x x x x x m ddd

ddd x x x mddd

  

  

    

    

  

  

   

     

   

  

    

  

           (20) 

Similar to Clefia relations, we must consecutively obtain 

relation (20) for every seven consecutive round and continue 

this process until reaching the round which we want to 

calculate its minimum number of active S-boxes. 

   In Table 1, we have shown the minimum number of active 

S-boxes of three standard four partitions Feistel structure 

(with one and two and three MDS matrices) and also 2 

standard six-partitions Feistel structure (with one and three 

MDS matrices) for 26 rounds with branch number 5 . 

Also, Table 1 shows that the proposed four and six partitions 

Feistel structure with three MDS matrices are more resistant 

against the differential cryptanalysis rather than Clefia 

structure. It is clear that we can expect similar results for 

linear cryptanalysis.  In this paper we used CPLEX software 

to obtain results.  

round GFS4 

With 1 

matrix 

Clefia 

With 2 

matrices 

GFS4 

With 3 

matrices 

GFS6 

With 1 

matrix 

GFS6 

With 3 

matrices 
1 0 0 0 0 0 

2 1 1 1 1 1 

3 2 2 2 2 2 

4 6 6 6 6 6 

5 8 8 8 8 8 

6 12 12 12 12 12 

7 12 14 16 14 14 

8 13 18 18 18 18 

9 14 20 20 21 21 

10 18 22 23 25 25 

11 20 24 26 27 28 

12 24 28 30 30 34 

13 24 30 32 31 37 

14 25 34 35 35 38 

15 26 36 37 37 42 

16 30 38 40 41 44 

17 32 40 42 43 48 

18 36 44 46 47 50 

19 36 46 48 50 54 

20 37 50 51 54 57 

21 38 52 53 56 61 

22 42 55 56 59 64 

23 44 56 58 60 69 

24 48 59 62 64 73 

25 48 62 64 66 74 

26 49 65 67 70 78 
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Appendix A. The way of assigning matrices to the functions 

in Clefia and proposed structures 
Fig A.1.  Clefia structure with 2 MDS matrices and the difference vector 
involved in switching path 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.2.  Four partitions structure with 3 MDS matrices and the difference 

vector involved in switching path 
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Fig. A.3.  Six partitions structure with 3 MDS matrices and the         

difference vector involved in switching path 

 
 

   

   

   

   

   

   

   

   

   

   

   

   

  

 

 

  

   

   

   

   

      

      

      

      

      


