MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 40

DroidNMD: Network-based Malware Detection 1in
Android Using an Ensemble of One-Class Classifiers

Fariba Ghaffari, Mahdi Abadi, Asghar Tajoddin, and Mahsa Lamiyan

Abstract—During the past few years, the number of malware
designed for Android devices has increased dramatically. To con-
front with Android malware, some anomaly detection techniques
have been proposed that are able to detect zero-day malware, but
they often produce many false alarms that make them impractical
for real-world use. In this paper, we address this problem by pre-
senting DroidNMD, an ensemble-based anomaly detection tech-
nique that focuses on the network behavior of Android applica-
tions in order to detect Android malware. DroidNMD constructs
an ensemble classifier consisting of multiple heterogeneous one-
class classifiers and uses an ordered weighted averaging (OWA)
operator to aggregate the outputs of the one-class classifiers. Our
work is motivated by the observation that combining multiple one-
class classifiers often produces higher overall classification accu-
racy than any individual one-class classifier. We demonstrate the
effectiveness of DroidNMD using a real dataset of Android benign
applications and malware samples. The results of our experiments
show that DroidNMD can detect Android malware with a high
detection rate and a relatively low false alarm rate.

Index Terms—Android malware, anomaly detection, ensemble
classifier, network behavior, one-class classifier, ordered weighted
averaging.

[. INTRODUCTION

Android is a mobile operating system that is based on the
Linux kernel and designed primarily for touchscreen mo-
bile devices such as smartphones and tablets. The development
of mobile applications on Android has attracted a lot of atten-
tion in research and industry in recent years. Android applica-
tions come in the form of an Android package, which is an
archive file that contains the compiled code and manifest file,
as well as various resources and folders. More specifically, the
Android compiler suite compiles the developer's Java files into
class files, and then the class files are converted into DEX files.
A DEX file contains the bytecode for the Dalvik virtual ma-
chine. The DEX files, XML files, and other resources that are
required to run an Android application, are packaged into an
Android package file with a .apk extension. Once the package
is generated, it is signed with the developer's key and uploaded
onto the Google Play store, formerly known as the Android
Market.

According to a recent report [1], the number of available

Manuscript received July 14, 2017; accepted September 7, 2017.

The authors are with the Faculty of Electrical and Computer Engineering,
Tarbiat Modares University, Tehran, Iran (e-mail: {fariba.ghaffari, abadi,
a.tajoddin, m.lamiyan} @modares.ac.ir).

applications on Google Play, reached 2.8 million applications
in March 2017, after surpassing 1 million applications in July
2013. In addition, Android devices are currently dominating the
global smartphone market [2]. The growing popularity of
Android applications and devices has attracted malware writers
to exploit Android vulnerabilities and write more malware for
it. Fig. 1 shows a growing trend in the number of new Android
malware samples from 2012 to the first quarter of 2017 [3]. This
growth is due to the fact that Android applications are often
stored in third-party markets that do not analyze them against
malicious code.

Existing Android malware detection techniques can be cate-
gorized into misuse detection and anomaly detection. Misuse
detection techniques rely on identifying signatures of known
malware, while anomaly detection techniques try to detect
deviations from normal application behavior. The advantages
of misuse detection techniques are that they produce low false
alarms and that they can quickly detect malware. Their disad-
vantages are that they are not capable of detecting unknown or
zero-day malware and that they have to maintain a large
database of malware signatures. In contrast, anomaly detection
techniques can potentially detect unknown malware, but they
usually produce many false alarms.

Misuse and anomaly detection techniques generally rely
either on static analysis or on dynamic analysis to extract partic-
ular features from malware samples. Static analysis [4] aims to
analyze the source code of applications for suspicious patterns
without actually running the applications in an Android emula-
tor or device. A number of static analysis techniques [5] parse
the manifest file for information such as requested permissions,
services, broadcast receivers, and so on. On the other hand,
dynamic analysis techniques [4] run applications in a controlled
environment to reveal their runtime behavior. Static analysis is
advantageous on resource-limited Android devices because it
does not need to run applications. However, this technique has
a major drawback of code obfuscation [6] and dynamic code
loading [7]. In contrast, dynamic analysis is less vulnerable to
various code obfuscation and dynamic code loading, but needs
more resources and provides less code coverage [8]. Since some
malicious behavior is only triggered by certain external events,
dynamic analysis will not detect an application's malicious be-
havior if the events are not triggered.

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 41

35
P 3.25
=l
S 30
25 233
2.0
1.55
1.5
1.19
1.0 0.75
0.5
0.21
0o LM
2012 2013 2014 2015 2016 2017/Q1

Fig. 1. Number of new Android malware samples (in Millions) from 2012 to
the first quarter of 2017 [3].

In this paper, we propose DroidNMD, a novel network-based
anomaly detection technique that uses an ensemble classifier
consisting of multiple heterogeneous one-class classifiers to de-
tect Android malware. DroidNMD focuses on the network be-
havior of Android applications. Specifically, the behavior of an
application is represented by a set of features that are extracted
from packets sent or received by the application. These features
are divided into two groups: aggregation-based and entropy-
based. Aggregation-based features measure the amount of net-
work traffic consumed by the application, while entropy-based
features measure the degree of complexity in the application's
network behavior.

DroidNMD aggregates the outputs of one-class classifiers in
the ensemble classifier using a novel ordered weighted averag-
ing (OWA) operator, called NOWA, that increases the detec-
tion performance. It has been both theoretically and empirically
demonstrated that ensemble classifiers can largely improve the
classification accuracy of their constituent members [9]. Also,
the OWA operators [10] are general aggregation operators that
take multiple values as input and reorder them in ascending or
descending order before aggregating them. Because of their
simplicity and robustness, they have been widely used in en-
semble classification [9], [11].

The rest of this paper is organized as follows: Section II
reviews the related work. Section III is fully dedicated to the
background. Section IV presents DroidNMD and Section V
reports experimental results. Finally, Section VI draws some
conclusions.

II. RELATED WORK

In response to the growing number of Android malware, re-
searchers have introduced various detection techniques that can
be categorized into misuse detection and anomaly detection. In
the following, we give a brief overview of these techniques.

Aafer et al. [12] present a misuse detection technique for
Android malware that relies on API level information within
the bytecode. They first extract API calls and their package
level information as features from both benign applications and

malware samples, and then reduce the feature set to contain
only those API calls whose support in malware samples is
significantly higher than in benign applications. Finally, they
generate a set of feature vectors and use them to build different
classification models. Arp et al. [13] propose another misuse
detection technique for Android malware that performs static
analysis to extract 8 different feature sets (such as hardware
features, requested permissions, suspicious API calls, and so
on) from benign applications and malware samples. The feature
sets are then mapped to a joint vector space and used to train a
linear SVM classifier. Feng et al. [14] present Apposcopy, a
semantics-based approach for identifying a prevalent class of
Android malware that steals private and peronal user infor-
mation. Apposcopy incorporates a high-level language for
specifying signatures that describe semantic characteristics of
malware families and a static analysis for deciding if a given
application matches a malware signature. Yang et al. [15]
consider a security-sensitive behavior as an invocation of a
security-sensitive method under a certain context and introduce
AppContext that uses static analysis to differentiate between
benign and malicious behaviors within Android applications
based on the contexts that trigger security-sensitive behaviors.
A method is security-sensitive if it is permission-protected or it
is either a source method or a sink method of an information
flow. Dash et al. [16] propose DroidScribe, a misuse detection
technique that uses a multi-class SVM classifier to classify An-
droid malware into families based on runtime behavior derived
from system call traces. DroidScribe refines the SVM classifi-
cation by selectively applying conformal prediction to obtain
sets of matches whenever the SVM classifier does not achieve
an acceptable confidence. Wang ef al. [17] extract 34,630 static
features from each Android application and employ an ensem-
ble of multiple classifiers to detect Android malware and to
categorize benign applications.

Another active area of research deals with anomaly detection
in Android. Shabtai et al. [18] attempt to detect a specific type
of Android malware with self-updating capabilities that accom-
plish malicious activities sometime after the installation (e.g.,
after dynamic loading of a precompiled code). For each appli-
cation, semi-supervised machine learning algorithms are used
to detect meaningful deviations from its expected network be-
havior. However, their experimental results show that this tech-
nique has relatively low detection rate on applications infected
with Trojans, where the main functionality is preserved and
some new functionality is added. Ghaffari ez al. [19] propose
DroidMalHunter, an entropy-based anomaly detection system
that focuses on profiling applications' network behavior to de-
tect Android malware. DroidMalHunter uses a one-class SVM
classifier to identify applications that have anomalous network
behavior, and then calculates an anomaly score for each appli-
cation according to its current and previous suspicious values.
An application is reported as malware if its anomaly score
exceeds a predefined threshold. Saracino et al. [20] propose
MADAM, a behavior-based and multi-level malware detection
system for Android devices that concurrently monitors running
applications by retrieving five groups of features at four differ-
ent levels of abstraction. For some groups of features, MADAM

GHAFFARI et al. DROIDNMD: NETWORK-BASED MALWARE DETECTION IN ANDROID 42

applies an anomaly detection technique and for the others it im-
plements a misuse detection technique that considers behavioral
patterns obtained from known malware misbehaviors. How-
ever, their usability experiments show that the number of false
positives per day noticeably increases with a heavy usage. In
particular, a large number of false positives are generated by
installation of new applications.

III. BACKGROUND

In this section, we give a brief overview of some basic con-
cepts and techniques used throughout this paper.

A. Modified Sample Entropy

The modified sample entropy [21], also known as mSampEn,
is a conditional probability measure that quantifies the likeli-
hood that two sequences of the same length m, matching each
other within a tolerance of r, will continue to be matched when
their length is increased to m + 1. More formally, given a finite
sequence X = (X, Xz, ., xy), let X", i=1,2,..,N—m+1,
be subsequences of X with length m that are generalized by
removing a local baseline:

m __ m m
X=X — W X1 — Hi s o> Xigpm—1

i (1)

m-1
Z Xivk - (2)
k=0

The distance between any two subsequences X;" and X"

(i,j=1,2,..,N —m,i # j), denoted by d;}, is defined as

where u" is defined as

3

Wt =

djj = max_|xi = - 3)
Then, the probability of matching any two subsequences of

length m is given by

N-m
1
B™(r) = 3—— > B0,)

where B"(r) is the probability that any subsequence X" is
matched with a subsequence X;™ within r:

1 N-m
B*(r) = mz 'ﬁ(r,d{}l) (5)
Jj=1,j#1
where ¥ is a sigmoid-based similarity function between any two
subsequences X;" and X/™:

1
"1+ exp((dF—05)/r)

It should be mentioned that in (5) and (6), only the first N —
m subsequences of length m are considered to ensure that, for
alli =1,2,..,N —m,both X/ and X/*** are defined.

Similarly, the probability of matching any two subsequences
of length m + 1 is given by

o(r, df} (6)

N-m
am(r) = ﬁ > arm, @)
i=1

where A7* () is defined as

N-m

1
A‘:n(‘r) = m . z .19(7", dl‘-r?-'—l . (8)

j=1,j#i

Finally, the modified sample entropy (mSampEn) of X, de-
noted by mSampEn(X, m,), is defined as

mSampEn(X, m, r) = —In(4A™(r)/B™(r)) .)

B. Ordered Weighted Averaging Operators

The ordered weighted averaging (OWA) operators [10] are
general aggregation operators in which the order of the argu-
ments has primary role in the aggregation process. Formally, an
OWA operator of dimension L is a mapping 0,,: Rt - R which
has an associated weighting vector w = (wy, w,, ..., w;) in
which Y'Y, w;=1and0 <w; <1foralli =1,2,..,L,such
that

L
Ou(@s, @,y @) =) wibi, (10)

i=1

where b; is the ith smallest value among all the arguments a4,
a,, ..., a;. Note that here we assume that the elements of w are
in ascending order.

The result of the aggregation performed by an OWA operator
mainly depends upon its associated weights. To characterize the
associated weights of an OWA operator, we can use the orness
measure, which is defined as

L

1
V(wy, wa, ., w) = HZG - Dw;.

i=1

an

The orness measure, also known as the attitudinal character
of the aggregation, specifies the degree to which the OWA
operator is like an or (max) operation. Specifically, when the
degree of orness is greater than 0.5, the OWA operator is con-
sidered as more orlike than andlike. In this case, the larger argu-
ments play a more important role in the aggregation process.

IV. ANOMALY-BASED ANDROID MALWARE DETECTION

In this section, we present DroidNMD, a novel technique that
uses an ensemble classifier consisting of multiple one-class
classifiers to detect Android malware by intercepting each
application's incoming and outgoing traffic. DroidNMD con-
sists of two main steps, namely, training and detection. In the
following subsections, we describe each of these steps in detail.

A. Training Step

In this step, we take a set of Android benign applications and
capture bidirectional flows for each application by running it on
a real Android device. Recall that a flow is defined as a set of
packets that share some common properties, such as source IP
address, source port, destination IP address, destination port,
and protocol. There are different types of flows [22]: unidirec-
tional and bidirectional. A unidirectional flow, or briefly uni-
flow, is a flow composed only of packets sent from a single host
to another single host. On the other hand, a bidirectional flow,

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016

TABLEI
FEATURES CALCULATED FROM THE FLOWS OF AN APPLICATION AT EACH
SLIDING WINDOW

Group Description
The average time difference between consecutive flows
The average number of bytes per flow

Aggregation-
based

The average number of packets per flow
The average flow duration

The maximum time difference between two consecutive
flows

The modified sample entropy of time differences be-
tween consecutive flows

The modified sample entropy of the number of bytes per
Entropy-based flow

The modified sample entropy of the number of packets
per flow

The modified sample entropy of flow durations

or briefly biflow, is a flow composed of packets sent in both
directions between two hosts. From now on, for the sake of con-
venience, we will refer to bidirectional flows simply as “flows”.

After capturing an application's flows, we extract a number
of features from the flows using a sliding window technique.
To do so, we use a sliding window of W consecutive time
periods across the T total time periods, producing T — W + 1
overlapping windows. For each window, we calculate the
features shown in Table I. These features are divided into two
different categories [19]: aggregation-based and entropy-based.
Aggregation-based features measure the amount of network
traffic consumed by the application and entropy-based features
measure the degree of complexity (or predictability) in the
application's network behavior. For each entropy-based feature,
we set its values to —1 (i.e., predictable) if they are less than a
cutoff threshold and to +1 (i.e., unpredictable) otherwise. We
use another set of Android benign applications to determine the
cutoff thresholds of all the entropy-based features. In doing so,
we sort each feature's values in ascending order and then set the
cutoff thresholds at the 2nd percentile of the values.

Subsequently, we create L training datasets X;, X5, ..., X} of
feature vectors by choosing L different overlapping subsets of
features from the entire feature set and projecting all the
applications' feature values on the feature subsets. Finally, we
employ the training datasets to construct an ensemble classifier
C consisting of L one-class classifiers €y, Cs, ..., C;. For each
one-class classifier C; € C, the decision threshold, denoted by
6, is determined as

1X;

1
6;: mz I(p;Xiklwp) = 6;) =v;, 12)
=]

where wp is the benign class, X;;, is a feature vector belonging
to X;, v; is the training acceptance rate of C;, and I is an indicator
function defined as

1 ifAistrue,
1(4) ={ (13)

0 otherwise.

43

B. Detection Step

In this step, we continuously capture flows for each un-
labeled Android application and apply a sliding window tech-
nique to extract the features in Table I. Then, we create L dif-
ferent feature vectors per window, similar to that we described
in the training step. Next, we give each window's feature vec-
tors to the one-class classifiers of the ensemble classifier con-
structed in the training step. Subsequently, we reorder the out-
puts of the classifiers in ascending order and then aggregate
them using a novel OWA operator, called NOWA, to predict
the most likely class (“benign” or “suspicious”) the unlabeled
application belongs to. Finally, we count the number of total
windows in which the application has been classified as sus-
picious and report the application as malware if this number
exceeds a predefined threshold. Formally, let z, (t), z,(t), ...,
z, (t) be the feature vectors created in the current window t and
04(t), 05(t), ..., 0,(t) € [0,1] be the outputs of the one-class
classifiers Cy, Cs, ..., C; such that 0;(t) = p;(z;(t)|wg) for all
i=1,2,..,L. Using the NOWA operator, the decision rule for
the application is defined as

2(t)
_ {wB lfow(ol(t)ﬂ Oz(t)’ R OL(t)) = Ow(glz 927 ey GL) 5(14)
wg otherwise,

where wg is the suspicious class, O, is the aggregation function
given in (10), and w is the associated weighting vector of
NOWA, whose elements w;, fori = 1, 2, ..., L, are defined as

w2 (15)
oBn =17
where 7; is given by
N = 2Mi-1 + N2, (16)

withn; = 1andn, = 2. The application is reported as malware
if the total number of suspicious windows among all previous
windows exceeds a minimum detection threshold S:

t
Z 16(0) = w5) = 8. (17)

T=tg

In the following, we prove that the NOWA weights satisfy
the condition of summing up to 1. In addition, we prove that the
orness degree of NOWA is always in the range (0.5,1]. This
causes it gives more importance to one-class classifiers that are
more confident in their decision for the given feature vector.

Lemma 1. The NOWA weights satisfy the condition of sum-
ming up to 1.

PROOF. To prove this lemma, we compute
L L
z W = Z o
l - —
= p 3, +1mp-1—1

L
>

[n; .

377L+77L—1_1L.=1 '

(18)

GHAFFARI et al. DROIDNMD: NETWORK-BASED MALWARE DETECTION IN ANDROID 44

Now we need to compute Y'*_, n;. From (16), we have

L L
Z n=n+n+ Z(Zm_l +1i-2)
i=1 =

=3

L L
=1+42n,+ 22’71‘—1 +Z77i—2
=3 i=3

L-1 L-2
i=2 i=1
L L
= 1+22m—2m+2m—m—m-1
i=1 i=1
L
=143 =3 =
i=1
Thus, we get
L
3+ —1
Zm = (20)

i=1
By substituting (20) in (18), we find that ¥F_, w; = 1. O

Recall that orness is a measure of the degree of optimism.
The larger the orness degree is, the more optimistic the aggrega-
tor is.

Lemma 2. The orness degree of NOWA is always in the
range (0.5,1].

PROOF. It has already been shown that if the OWA weights
are in ascending (or descending) order and the input arguments
are sorted in ascending (or descending) order, then the degree
of orness is always in the range (0.5,1] [23]. Thus, we only need
to show the NOWA weights have the property that w; < w;,4
fori=1,2,..,L —1.

From (16), we know thatn; <n;q fori=1,2,..,L — 1.
Hence, fori =1, 2,...,L — 1, we have

2n; < 2N
3, +n—1—1" 3, +n,,—1

2y

or

Wi < Wiyq - (22)

Therefore, we conclude that the NOWA weights are in as-
cending order. i

V. EXPERIMENTS

In this section, we evaluate the detection performance of
DroidNMD by using a real dataset of Android benign applica-
tions and malware samples.

A. Dataset

The dataset used in our experiments consists of 180 and 97
Android benign applications and malware samples, respec-
tively. The benign applications are selected among the most
downloaded free applications on Google Play. We suppose the

applications are not compromised, since they are daily down-
loaded by thousands of users and are frequently analyzed by
security experts from around the world. The malware samples
are randomly selected from Drebin [13]. We run each benign
application and malware sample on a rooted Samsung Galaxy
S3 running Android 4.4.4 KitKat and use the Android specific
version of Tepdump to capture packets.

We split our dataset into two parts: training and testing. The
training dataset consists of 50 percent of the whole benign
applications and is used to construct an ensemble classifier. The
testing dataset consists of the remaining benign applications
and all malware samples and is used exclusively for evaluation
purposes.

A. Performance Measures

To evaluate the detection performance of DroidNMD, we use
three standard measures: detection rate (DR), false alarm rate
(FAR), and accuracy (ACC). DR is defined as the percentage
of malware samples that are correctly classified, FAR is defined
as the percentage of benign samples that are incorrectly classi-
fied, and ACC is defined as the percentage of benign and mal-
ware samples that are correctly classified. Since ACC considers
both DR and FAR, we use it as the main performance measure
in our experiments.

B. Experimental Setup

To construct an ensemble classifier, we use the traditional
random subspace method (RSM) [24] with four simple hetero-
geneous one-class classifiers, namely, Gaussian (Gauss), K-
nearest neighbor (KNN), Parzen-window (PW), and principal
component analysis (PCA), and then build three models from
each of them with the training acceptance rate of 97%. This
results in an ensemble classifier of size L = 12. We assume that
each random feature subset in RSM consists of 60% of the
whole features in Table 1.

Unless otherwise stated, we use the following parameter set-
tings: the parameters of the sliding window technique are set to
W =8 and T = 24, resulting in 17 overlapping windows. The
length of a time period is set to one hour. The parameters of
mSampEn are set to m = 2 and r = 0.003. Finally, the thresh-
old of the malware detection rule is set to § = 4.

All experiments are done in MATLAB using PRTools [25]
and DDTools [26]. All reported results are the average of 30
independent runs. To compare different algorithms, we use the
same feature subsets for their corresponding runs and then per-
form the Friedman test [27], with a significance level of 0.05,
followed with the Nemenyi post-hoc test [27]. Recall that the
Friedman test is a non-parametric statistical test often used for
comparing more than two algorithms over multiple datasets. It
ranks the algorithms for each dataset, and then checks to deter-
mine whether the measured average ranks are significantly dif-
ferent from the mean rank. The null hypothesis being tested is
that there are no differences between the performances of all the
algorithms. If the null hypothesis is rejected, then the Nemenyi
post-hoc test is performed for pairwise comparisons. The results
for the Nemenyi test are shown in critical difference diagrams,
where the horizontal axis indicates the average ranks and the

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016

TABLE II

PERFORMANCE MEASURES OF DROIDNMD FOR DIFFERENT VALUES OF 8

Average DR

Average ACC

45

B =
1 83.13
2 89.86
3 92.51
4 96.56
5 97.84
6 98.97
7 98.97
8 100.00
9 100.00

10 100.00

11 100.00

12 100.00

13 100.00

14 100.00

15 100.00

16 100.00

17 1 100.00

B=2
0.00
72.58
80.41
87.35
92.51
96.70
97.90
97.90
98.97
99.90
99.90
100.00
100.00
100.00
100.00
100.00
100.00

COMPARISON OF NOWA WITH THREE COMBINATION RULES IN TERMS OF THE AVERAGE DR, FAR, AND ACC

g=3
0.00
0.00
67.39
78.28
83.92
89.31
95.53
97.77
97.77
98.93
99.86
99.86
99.97
100.00
100.00
100.00
100.00

B=4
0.00
0.00
0.00

66.19

75.26

83.78

89.21

94.47

97.63

97.73

98.76

99.73

99.76

99.90

99.97

99.97

99.97

B=5
0.00
0.00
0.00
0.00

64.05

73.09

82.54

87.01

91.31

95.43

96.56

98.66

99.62

99.69

99.76

99.79

99.86

B=6
0.00
0.00
0.00
0.00
0.00

57.01

69.04

78.38

84.71

89.90

94.16

95.29

97.42

98.56

98.59

98.63

99.76

B =
0.11
1.33
1.33
1.37
1.59
2.81
4.07
5.52
6.78
6.85
6.89
7.19
8.41
8.41
8.70
9.85
10.00

B=5
0.00
0.00
0.00
0.00
0.00
0.04
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15

B=6
0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04

B =
91.19
94.10
95.47
97.56
98.11
98.11
97.50
97.34
96.74
96.70
96.68
96.54
95.95
95.95
95.81
95.26
95.19

p=2
48.13
85.76
89.80
93.35
95.95
98.09
98.15
98.07
98.54
99.02
99.02
99.06
98.89
98.89
98.89
98.75
98.75

g=3
48.13
48.13
83.08
88.72
91.59
94.37
97.56
98.20
98.16
98.77
99.25
99.25
99.30
99.32
99.32
99.32
99.30

B=4
48.13
48.13
48.13
82.46
87.15
91.52
94.31
97.04
98.66
98.72
99.25
99.75
99.77
99.84
99.88
99.88
99.88

B =
48.13
48.13
48.13
48.13
81.35
86.02
90.87
93.19
95.42
97.56
98.15
99.23
99.73
99.77
99.80
99.82
99.86

B=6
48.13
48.13
48.13
48.13
48.13
77.70
83.92
88.77
92.05
94.74
96.95
97.54
98.65
99.23
99.25
99.27
99.86

Average DR

NOWA Majority Mean
1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 66.19 61.62 63.99
5 75.26 71.55 73.54
6 83.78 80.82 82.27
7 89.21 86.29 87.87
8 94.47 92.23 93.47
9 97.63 95.36 96.70
10 97.73 96.19 97.04
11 98.76 97.56 98.18
12 99.73 98.56 99.21
13 99.76 98.59 99.21
14 99.90 99.14 99.52
15 99.97 99.52 99.76
16 99.97 99.52 99.79
17 99.97 99.52 99.79

SOWA
0.00
0.00
0.00

64.40
73.99
82.68
88.11
93.75
96.94
97.32
98.42
99.35
99.35
99.59
99.79
99.79
99.79

NOWA
0.00
0.00
0.00
0.00
0.04
0.15
0.19
0.19
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

Average FAR
B=2 B=3 B=4
0.00 0.00 0.00
0.04 0.00 0.00
0.07 0.00 0.00
0.19 0.04 0.00
033 0.15 0.04
041 0.19 0.15
1.59 026 0.19
1.74 133 0.19
1.93 141 0.22
1.93 141 0.22
1.93 141 022
1.96 141 022
230 141 022
230 141 022
230 141 022
259 141 022
259 144 022
TABLE III
Average FAR
Majority Mean
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.07 0.11
0.07 0.22
0.11 0.22
0.11 0.22
0.22 0.37
0.22 0.37
0.22 0.37
0.22 0.37
0.22 0.37
0.22 0.37
0.22 0.37
0.22 0.37
0.33 0.41
TABLE IV

SOWA
0.00
0.00
0.00
0.04
0.07
0.19
0.19
0.19
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26

NOWA
48.13
48.13
48.13
82.46
87.15
91.52
94.31
97.04
98.66
98.72
99.25
99.75
99.77
99.84
99.88
99.88
99.88

Average ACC
Majority Mean
48.13 48.13
48.13 48.13
48.13 48.13
80.09 81.32
85.20 86.22
90.02 90.70
92.83 93.60
95.92 96.51
97.49 98.11
97.91 98.29
98.63 98.88
99.14 99.41
99.16 99.41
99.45 99.57
99.64 99.70
99.64 99.71
99.59 99.70

RESULTS OF THE FRIEDMAN TEST FOR RANKING THE COMBINATION RULES USING ACC AS THE PERFORMANCE MEASURE

Statistical Test Average Ranks

Significance Level

0.05

P-value

2.35x10%

Significant Differences

Yes

groups of algorithms that are not significantly different are con-

nected with a colored line on the top of the axis.

C. Experimental Results

We run experiments to analyze how different parameters and

operators affect the detection performance of DroidNMD.

NOWA
2.10

Majority
2.80

Mean

2.64

SOWA
48.13
48.13
48.13
81.52
86.47
90.93
93.74
96.67
98.29
98.48
99.06
99.54
99.54
99.66
99.77
99.77
99.77

SOWA
2.46

In the first set of experiments, we investigate the usefulness

of the history parameter, 8. Table II reports the detection per-
formance of DroidNMD in terms of the average DR, FAR, and
ACC for different values of § over 17 overlapping windows.

From the table, we observe that by increasing the value of § up

to 4, we obtain a slightly lower value of DR and a significantly

GHAFFARI et al. DROIDNMD: NETWORK-BASED MALWARE DETECTION IN ANDROID 46

COMPARISON OF DROIDNMD WITH FOUR SINGLE ONE—CI:SZLCEXSMHERS IN TERMS OF THE AVERAGE DR, FAR, AND ACC
Window Average DR Average FAR Average ACC

DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13
4 66.19 4433 69.07 69.07 67.01 0.00 0.00 1.11 0.00 0.00 82.46 71.12 8342 8396 82.89
5 75.26 56.70 77.32 7732 76.29 0.04 0.00 2.22 1.11 0.00 87.15 77.54 87.17 87.70 87.70
6 83.78 68.04 8557 8557 85.57 0.15 0.00 3.33 1.11 0.00 91.52 83.42 9091 9198 9251
7 89.21 72.16 91.75 90.72 89.69 0.19 0.00 333 1.11 0.00 94.31 85.56 94.12 94.65 94.65
8 94.47 82.47 9485 9485 93.81 0.19 0.00 4.44 1.11 0.00 97.04 9091 95.19 96.79 96.79
9 97.63 8557 9794 9794 9691 0.22 1.11 5.56 2.22 1.11 98.66 9198 9626 97.86 97.86
10 97.73 89.69 97.94 9794 97.94 0.22 1.11 5.56 2.22 1.11 98.72 94.12 96.26 97.86 98.40
11 98.76 92.78 98.97 9897 98.97 0.22 1.11 5.56 2.22 1.11 99.25 9572 96.79 98.40 98.93
12 99.73 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.75 96.26 96.79 98.93 99.47
13 99.76 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.77 96.26 96.79 98.93 99.47
14 99.90 96.91 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.84 97.86 96.79 98.93 99.47
15 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 1.11 99.88 98.40 96.26 98.93 99.47
16 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 222 99.88 98.40 96.26 9893 98.93
17 99.97 97.94 100.00 100.00 100.00 0.22 2.22 7.78 2.22 222 99.88 97.86 9626 9893 98.93

TABLE VI

RESULTS OF THE FRIEDMAN TEST FOR RANKING THE ONE-CLASS CLASSIFIERS USING ACC AS THE PERFORMANCE MEASURE

Statistical Test Average Ranks

Significance Level P-value Significant Differences DroidNMD Gauss KNN PW PCA
0.05 4.05x10%™ Yes 1.88 441 3.92 2.55 2.24

lower value of FAR, resulting in a higher value of ACC. This
may be due to the fact that by increasing the value of S,
DroidNMD reports an application as malware if it observes
more suspicious windows in past in order to prevent making
hasty decisions, which causes the decrease in the number of
false positives is much more than the decrease in the number of
true positives.

In the second set of experiments, we evaluate the overall
impact of NOWA on the detection performance of DroidNMD.
For this purpose, we use two popular combination rules, namely
Majority and Mean, and a simple OWA operator, proposed in
[28], to aggregate the outputs of one-class classifiers in the en-
semble classifier constructed by DroidNMD. For convenience,
we refer to this simple OWA operator as SOWA. Table III
compares NOWA with these combination rules in terms of the
average DR, FAR, and ACC. Obviously, NOWA has the best
detection performance among all the combination rules. We as-
sign ranks to the corresponding runs of the combination rules,
using ACC as the performance measure. The best combination
rule is assigned the rank of 1. We apply the Friedman test to
determine whether the measured average ranks are significantly
different from the mean rank, which is 2.5 in our case, under
the null hypothesis. The results, as given in Table IV, show that
the null hypothesis is rejected at the significance level of 0.05.
Thus, we apply the Nemenyi post-hoc test for pairwise compar-
isons. Fig. 2 shows the critical difference diagram for the
Nemenyi test. A significant difference between two combina-
tion rules occurs when the difference in rankings is greater than

the critical difference, which is 0.20 in this test. From the figure,
we notice that NOWA has the best average rank, 2.10, which is
significantly better than that of Majority, Mean, and SOWA.

Critical Difference: 0.20

SOWA

NOWA
EE:
| T | T | T |
1 2 3 4

Mean
Majority

Fig. 2. Pairwise comparison of the combination rules using the Nemenyi test.

Critical Difference: 0.30

PW
PCA KNN
DroidNMD —I ,7 Gauss

| T | T | T T T |
1 2 3 4 5

Fig. 3. Pairwise comparison of the one-class classifiers using the Nemenyi test.

In the third set of experiments, we compare the detection per-
formance of DroidNMD with that of four single one-class clas-
sifiers, namely, Gauss, KNN, PW, and PCA. Table V reports
the obtained results. Obviously, DroidNMD has a much lower
FAR while having a comparable DR, resulting in a higher ACC.
Similar to the previous experiment, we perform the Friedman
test followed with the Nemenyi test to validate the statistical
significance of ranking differences for pairwise comparisons.

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 47

Table VI and Fig. 3 show the obtained results. Clearly, we
notice that DroidNMD has the best average rank, 1.88, which is
significantly better than that of Gauss, KNN, PW, and PCA.
Therefore, we conclude that ensemble classifiers can be con-
sidered as an effective tool for anomaly malware detection in
Andriod.

VI. CONCLUSION

Given the widespread growth of malware threats on Android,
there is an urgent need for techniques that can effectively com-
bat these threats. To meet this need, researchers have proposed
various misuse and anomaly detection techniques. Many of
these techniques show promising results, but they often fail to
cope with zero-day malware or produce many false alarms. In
this paper, we have addressed these shortcomings by presenting
DroidNMD, a novel network-based anomaly detection tech-
nique that applies ensemble classification to improve the accu-
racy of malware detection in Android. DroidNMD constructs
an ensemble classifier consisting of multiple one-class classifi-
ers and aggregates the outputs of the classifiers using a novel
OWA operator, called NOWA.

We have conducted three experiments to analyze how differ-
ent parameters and operators affect the detection performance
of DroidNMD. In particular, we have evaluated the overall
impact of NOWA on the detection performance of DroidNMD.
Furthermore, we have compared the detection performance of
DroidNMD with that of four different single one-class classifi-
ers, namely, Gauss, KNN, PW, and PCA. The experimental
results have shown that NOWA outperforms popular combina-
tion rules in terms of accuracy. In addition, DroidNMD signifi-
cantly increases the accuracy as compared to single one-class
classifiers. Consequently, DroidNMD classifies Android appli-
cations as either benign or malware, with a high detection rate
close to 100% and a low false alarm rate close to 0.20%.

REFERENCES

[1] Statista. (2017). Number of available applications in the Google Play
store from December 2009 to March 2017. [Online]. Available: https://
www.statista.com/statistics/266210

[2] Statista. (2017). Installed base of smartphones by operating system from
2015 to 2016. [Online]. Available: https://www.statista.com/statistics/
385001

[3] C.Lueg.(2017). 8,400 new Android malware samples every day. [Online].
Available: https://www.gdatasoftware.com/blog

[4] P.Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan, “Android security: A survey of issues, malware penetration,
and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 998—
1022, Q2 2015.

[5] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on
permission-based detection for Android malware,” in Advances in
Intelligent Systems and Applications, J.-S. Pan, C.-N. Yang, and C.-C.
Lin, Eds. Berlin, Heidelberg, Germany: Springer, 2013, pp. 111-120.

[6] V.Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating Android
anti-malware against transformation attacks,” in Proc. 8th ACM SIGSAC
Symp. Inform., Comput. Commun. Secur. (ASIA CCS 'l3), Hangzhou,
China, 2013, pp. 329-334.

[71 Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, and J. Zhang,
“Auditing anti-malware tools by evolving Android malware and dynamic
loading technique,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7, pp.

1529-1544, Jul. 2017.

C.-Y. Huang, C.-H. Chiu, C.-H. Lin, and H.-W. Tzeng, “Code coverage
measurement for Android dynamic analysis tools,” in Proc. 2015 IEEE
Int. Conf. Mobile Services (MS '15), New York, NY, USA, 2015. pp. 209—
216.

[9] E.Parhizkar and M. Abadi, “BeeOWA: A novel approach based on ABC
algorithm and induced OWA operators for constructing one-class classi-
fier ensembles,” Neurocomputing, vol. 166, pp. 367-381, Oct. 2015.

[10] R. R. Yager, “On ordered weighted averaging aggregation operators in
multicriteria decision making,” JEEE Trans. Syst., Man, Cybern., vol. 18,
no. 1, pp. 183—190, Jan. 1988.

[11] E. Parhizkar and M. Abadi, “OC-WAD: A one-class classifier ensemble
approach for anomaly detection in web traffic,” in Proc. 2015 23rd
Iranian Conf. Elect. Eng. (ICEE '15), Tehran, Iran, 2015, pp. 631-636.

[12] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level fea-
tures for robust malware detection in Android,” in Security and Privacy
in Communication Networks, T. Zia, A. Zomaya, V. Varadharajan, and
M. Mao, Eds. Cham, Switzerland: Springer International Publishing,
2013, pp. 86-103.

[13] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin:

Effective and explainable detection of Android malware in your pocket,”

in Proc. 2014 Network Distributed Syst. Secur. Symp. (NDSS '14), San

Diego, CA, USA, 2014, pp. 1-12.

Y. Feng, S. Anand, L. Dillig, and A. Aiken, “Apposcopy: Semantics-based

detection of Android malware through static analysis,” in Proc. 22nd

ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE '14), Hong Kong,

China, 2014, pp. 576-587.

[15] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proc. 2015 37th IEEE Int. Conf. Softw. Eng. (ICSE '15), vol. 1,
Florence, Italy, 2015, pp. 303-313.

[16] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, “DroidScribe: Classifying Android malware based on
runtime behavior,” in Proc. 2016 IEEE Secur. Privacy Workshops (SPW
'16), San Jose, CA, USA, 2016, pp. 252-261.

[17] W.Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android ma-
licious apps and categorizing benign apps with ensemble of classifiers,”
Future Gener. Comput. Syst., vol. 78, no. 3, pp. 987-994, Jan. 2018.

[18] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, “Mobile malware detection through analysis of deviations
in application network behavior,” Comput. Secur., vol. 43, pp. 1-18, Jun.
2014.

[19] F. Ghaffari and M. Abadi, “DroidMalHunter: A novel entropy-based
anomaly detection system to detect malicious Android applications,” in
Proc. 2015 5th Int. Conf. Comput. Knowl. Eng. (ICCKE '15), Mashhad,
Iran, 2015, pp. 301-306.

[20] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,” IEEE Trans. Dependable Secure Comput., to be published.

[21] H.-B. Xie, W.-X. He, and H. Liu, “Measuring time series regularity using
nonlinear similarity-based sample entropy,” Phys. Lett. A, vol. 372, no.
48, pp. 7140-7146, Dec. 2008.

[22] B. H. Trammell and E. Boschi, “RFC 5103: Bidirectional flow export
using IP flow information export (IPFIX),” Internet Engineering Task
Force (IETF), Tech. Rep., 2008.

[23] D. Filev, R. R. Yager, “Analytic properties of maximum entropy OWA
operators,” Inf. Sci., vol. 85, no. 1-3, pp. 11-27, Jul. 1995.

[24] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832—
844, Aug. 1998.

[25] D. de Ridder, D. M. J. Tax, B. Lei, G. Xu, M. Feng, Y. Zou, F. van der
Heijden, Classification, Parameter Estimation and State Estimation: An
Engineering Approach Using MATLAB, 2nd ed. Hoboken, NJ, USA: John
Wiley & Sons, 2017.

[26] D.M.J. Tax. (2015). DDTools, the data description toolbox for MATLAB,
version 2.1.2. [Online]. Available: http://prlab.tudelft.nl/david-tax/dd
tools.html

[27] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical
Methods, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2014.

[28] R.R. Yager, “Families of OWA operators,” Fuzzy Sets Syst., vol. 59, no.
2, pp. 125-148, Oct. 1993.

[14

[l

	I. Introduction
	II. Related Work
	III. Background
	A. Modified Sample Entropy
	B. Ordered Weighted Averaging Operators

	IV. Anomaly-based Android Malware Detection
	A. Training Step
	B. Detection Step

	V. Experiments
	A. Dataset
	A. Performance Measures
	B. Experimental Setup
	C. Experimental Results

	VI. Conclusion
	References

