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Abstract—During the past few years, the number of malware 

designed for Android devices has increased dramatically. To con-
front with Android malware, some anomaly detection techniques 
have been proposed that are able to detect zero-day malware, but 
they often produce many false alarms that make them impractical 
for real-world use. In this paper, we address this problem by pre-
senting DroidNMD, an ensemble-based anomaly detection tech-
nique that focuses on the network behavior of Android applica-
tions in order to detect Android malware. DroidNMD constructs 
an ensemble classifier consisting of multiple heterogeneous one-
class classifiers and uses an ordered weighted averaging (OWA) 
operator to aggregate the outputs of the one-class classifiers. Our 
work is motivated by the observation that combining multiple one-
class classifiers often produces higher overall classification accu-
racy than any individual one-class classifier. We demonstrate the 
effectiveness of DroidNMD using a real dataset of Android benign 
applications and malware samples. The results of our experiments 
show that DroidNMD can detect Android malware with a high 
detection rate and a relatively low false alarm rate. 
 

Index Terms—Android malware, anomaly detection, ensemble 
classifier, network behavior, one-class classifier, ordered weighted 
averaging. 
 

I. INTRODUCTION 
ndroid is a mobile operating system that is based on the 
Linux kernel and designed primarily for touchscreen mo-

bile devices such as smartphones and tablets. The development 
of mobile applications on Android has attracted a lot of atten-
tion in research and industry in recent years. Android applica-
tions come in the form of an Android package, which is an 
archive file that contains the compiled code and manifest file, 
as well as various resources and folders. More specifically, the 
Android compiler suite compiles the developer's Java files into 
class files, and then the class files are converted into DEX files. 
A DEX file contains the bytecode for the Dalvik virtual ma-
chine. The DEX files, XML files, and other resources that are 
required to run an Android application, are packaged into an 
Android package file with a .apk extension. Once the package 
is generated, it is signed with the developer's key and uploaded 
onto the Google Play store, formerly known as the Android 
Market. 

According to a recent report [1], the number of available 
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applications on Google Play, reached 2.8 million applications 
in March 2017, after surpassing 1 million applications in July 
2013. In addition, Android devices are currently dominating the 
global smartphone market [2]. The growing popularity of 
Android applications and devices has attracted malware writers 
to exploit Android vulnerabilities and write more malware for 
it. Fig. 1 shows a growing trend in the number of new Android 
malware samples from 2012 to the first quarter of 2017 [3]. This 
growth is due to the fact that Android applications are often 
stored in third-party markets that do not analyze them against 
malicious code. 

Existing Android malware detection techniques can be cate-
gorized into misuse detection and anomaly detection. Misuse 
detection techniques rely on identifying signatures of known 
malware, while anomaly detection techniques try to detect 
deviations from normal application behavior. The advantages 
of misuse detection techniques are that they produce low false 
alarms and that they can quickly detect malware. Their disad-
vantages are that they are not capable of detecting unknown or 
zero-day malware and that they have to maintain a large 
database of malware signatures. In contrast, anomaly detection 
techniques can potentially detect unknown malware, but they 
usually produce many false alarms. 

Misuse and anomaly detection techniques generally rely 
either on static analysis or on dynamic analysis to extract partic-
ular features from malware samples. Static analysis [4] aims to 
analyze the source code of applications for suspicious patterns 
without actually running the applications in an Android emula-
tor or device. A number of static analysis techniques [5] parse 
the manifest file for information such as requested permissions, 
services, broadcast receivers, and so on. On the other hand, 
dynamic analysis techniques [4] run applications in a controlled 
environment to reveal their runtime behavior. Static analysis is 
advantageous on resource-limited Android devices because it 
does not need to run applications. However, this technique has 
a major drawback of code obfuscation [6] and dynamic code 
loading [7]. In contrast, dynamic analysis is less vulnerable to 
various code obfuscation and dynamic code loading, but needs 
more resources and provides less code coverage [8]. Since some 
malicious behavior is only triggered by certain external events, 
dynamic analysis will not detect an application's malicious be-
havior if the events are not triggered. 
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Fig. 1.  Number of new Android malware samples (in Millions) from 2012 to 
the first quarter of 2017 [3]. 

 
In this paper, we propose DroidNMD, a novel network-based 

anomaly detection technique that uses an ensemble classifier 
consisting of multiple heterogeneous one-class classifiers to de-
tect Android malware. DroidNMD focuses on the network be-
havior of Android applications. Specifically, the behavior of an 
application is represented by a set of features that are extracted 
from packets sent or received by the application. These features 
are divided into two groups: aggregation-based and entropy-
based. Aggregation-based features measure the amount of net-
work traffic consumed by the application, while entropy-based 
features measure the degree of complexity in the application's 
network behavior. 

DroidNMD aggregates the outputs of one-class classifiers in 
the ensemble classifier using a novel ordered weighted averag-
ing (OWA) operator, called NOWA, that increases the detec-
tion performance. It has been both theoretically and empirically 
demonstrated that ensemble classifiers can largely improve the 
classification accuracy of their constituent members [9]. Also, 
the OWA operators [10] are general aggregation operators that 
take multiple values as input and reorder them in ascending or 
descending order before aggregating them. Because of their 
simplicity and robustness, they have been widely used in en-
semble classification [9], [11]. 

The rest of this paper is organized as follows: Section II 
reviews the related work. Section III is fully dedicated to the 
background. Section IV presents DroidNMD and Section V 
reports experimental results. Finally, Section VI draws some 
conclusions. 

II. RELATED WORK 
In response to the growing number of Android malware, re-

searchers have introduced various detection techniques that can 
be categorized into misuse detection and anomaly detection. In 
the following, we give a brief overview of these techniques. 

Aafer et al. [12] present a misuse detection technique for 
Android malware that relies on API level information within 
the bytecode. They first extract API calls and their package 
level information as features from both benign applications and 

malware samples, and then reduce the feature set to contain 
only those API calls whose support in malware samples is 
significantly higher than in benign applications. Finally, they 
generate a set of feature vectors and use them to build different 
classification models. Arp et al. [13] propose another misuse 
detection technique for Android malware that performs static 
analysis to extract 8 different feature sets (such as hardware 
features, requested permissions, suspicious API calls, and so 
on) from benign applications and malware samples. The feature 
sets are then mapped to a joint vector space and used to train a 
linear SVM classifier. Feng et al. [14] present Apposcopy, a 
semantics-based approach for identifying a prevalent class of 
Android malware that steals private and peronal user infor-
mation. Apposcopy incorporates a high-level language for 
specifying signatures that describe semantic characteristics of 
malware families and a static analysis for deciding if a given 
application matches a malware signature. Yang et al. [15] 
consider a security-sensitive behavior as an invocation of a 
security-sensitive method under a certain context and introduce 
AppContext that uses static analysis to differentiate between 
benign and malicious behaviors within Android applications 
based on the contexts that trigger security-sensitive behaviors. 
A method is security-sensitive if it is permission-protected or it 
is either a source method or a sink method of an information 
flow. Dash et al. [16] propose DroidScribe, a misuse detection 
technique that uses a multi-class SVM classifier to classify An-
droid malware into families based on runtime behavior derived 
from system call traces. DroidScribe refines the SVM classifi-
cation by selectively applying conformal prediction to obtain 
sets of matches whenever the SVM classifier does not achieve 
an acceptable confidence. Wang et al. [17] extract 34,630 static 
features from each Android application and employ an ensem-
ble of multiple classifiers to detect Android malware and to 
categorize benign applications. 

Another active area of research deals with anomaly detection 
in Android. Shabtai et al. [18] attempt to detect a specific type 
of Android malware with self-updating capabilities that accom-
plish malicious activities sometime after the installation (e.g., 
after dynamic loading of a precompiled code). For each appli-
cation, semi-supervised machine learning algorithms are used 
to detect meaningful deviations from its expected network be-
havior. However, their experimental results show that this tech-
nique has relatively low detection rate on applications infected 
with Trojans, where the main functionality is preserved and 
some new functionality is added. Ghaffari et al. [19] propose 
DroidMalHunter, an entropy-based anomaly detection system 
that focuses on profiling applications' network behavior to de-
tect Android malware. DroidMalHunter uses a one-class SVM 
classifier to identify applications that have anomalous network 
behavior, and then calculates an anomaly score for each appli-
cation according to its current and previous suspicious values. 
An application is reported as malware if its anomaly score 
exceeds a predefined threshold. Saracino et al. [20] propose 
MADAM, a behavior-based and multi-level malware detection 
system for Android devices that concurrently monitors running 
applications by retrieving five groups of features at four differ-
ent levels of abstraction. For some groups of features, MADAM 
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applies an anomaly detection technique and for the others it im-
plements a misuse detection technique that considers behavioral 
patterns obtained from known malware misbehaviors. How-
ever, their usability experiments show that the number of false 
positives per day noticeably increases with a heavy usage. In 
particular, a large number of false positives are generated by 
installation of new applications. 

III. BACKGROUND 
In this section, we give a brief overview of some basic con-

cepts and techniques used throughout this paper. 

A. Modified Sample Entropy 
The modified sample entropy [21], also known as mSampEn, 

is a conditional probability measure that quantifies the likeli-
hood that two sequences of the same length 𝑚𝑚, matching each 
other within a tolerance of 𝑟𝑟, will continue to be matched when 
their length is increased to 𝑚𝑚 + 1. More formally, given a finite 
sequence 𝑋𝑋 = 〈𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁〉, let 𝑋𝑋𝑖𝑖𝑚𝑚, 𝑖𝑖 = 1, 2, … , 𝑁𝑁 −𝑚𝑚 + 1, 
be subsequences of 𝑋𝑋 with length 𝑚𝑚 that are generalized by 
removing a local baseline: 

𝑋𝑋𝑖𝑖𝑚𝑚 = 〈𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑚𝑚, 𝑥𝑥𝑖𝑖+1 − 𝜇𝜇𝑖𝑖𝑚𝑚, … , 𝑥𝑥𝑖𝑖+𝑚𝑚−1 − 𝜇𝜇𝑖𝑖𝑚𝑚〉 , (1) 

where 𝜇𝜇𝑖𝑖𝑚𝑚 is defined as 

𝜇𝜇𝑖𝑖𝑚𝑚 =
1
𝑚𝑚
� 𝑥𝑥𝑖𝑖+𝑘𝑘

𝑚𝑚−1

𝑘𝑘=0

. (2) 

The distance between any two subsequences 𝑋𝑋𝑖𝑖𝑚𝑚 and 𝑋𝑋𝑗𝑗𝑚𝑚 
(𝑖𝑖, 𝑗𝑗 = 1, 2, … , 𝑁𝑁 −𝑚𝑚, 𝑖𝑖 ≠ 𝑗𝑗), denoted by 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚, is defined as 

𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = max
0≤𝑘𝑘≤𝑚𝑚−1

�𝑥𝑥𝑖𝑖+𝑘𝑘 − 𝑥𝑥𝑗𝑗+𝑘𝑘� . (3) 

Then, the probability of matching any two subsequences of 
length 𝑚𝑚 is given by 

𝐵𝐵𝑚𝑚(𝑟𝑟) =
1

𝑁𝑁 −𝑚𝑚
� 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

, (4) 

where 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) is the probability that any subsequence 𝑋𝑋𝑗𝑗𝑚𝑚 is 
matched with a subsequence 𝑋𝑋𝑖𝑖𝑚𝑚 within 𝑟𝑟: 

𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) =  
1

𝑁𝑁 −𝑚𝑚 − 1
� 𝜗𝜗�𝑟𝑟, 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚�
𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

, (5) 

where 𝜗𝜗 is a sigmoid-based similarity function between any two 
subsequences 𝑋𝑋𝑖𝑖𝑚𝑚 and 𝑋𝑋𝑗𝑗𝑚𝑚: 

𝜗𝜗�𝑟𝑟, 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚� =
1

1 + exp��𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 − 0.5� 𝑟𝑟⁄ �
 . (6) 

It should be mentioned that in (5) and (6), only the first 𝑁𝑁 −
𝑚𝑚 subsequences of length 𝑚𝑚 are considered to ensure that, for 
all 𝑖𝑖 = 1, 2, … , 𝑁𝑁 −𝑚𝑚, both 𝑋𝑋𝑖𝑖𝑚𝑚 and 𝑋𝑋𝑖𝑖𝑚𝑚+1 are defined. 

Similarly, the probability of matching any two subsequences 
of length 𝑚𝑚 + 1 is given by 

𝐴𝐴𝑚𝑚(𝑟𝑟) =
1

𝑁𝑁 −𝑚𝑚
� 𝐴𝐴𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

, (7) 

where 𝐴𝐴𝑖𝑖𝑚𝑚(𝑟𝑟) is defined as 

𝐴𝐴𝑖𝑖𝑚𝑚(𝑟𝑟) =
1

𝑁𝑁 −𝑚𝑚 − 1
� 𝜗𝜗�𝑟𝑟, 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚+1�
𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

. (8) 

Finally, the modified sample entropy (mSampEn) of 𝑋𝑋, de-
noted by mSampEn(𝑋𝑋, 𝑚𝑚, 𝑟𝑟), is defined as 

mSampEn(𝑋𝑋, 𝑚𝑚, 𝑟𝑟) = − ln(𝐴𝐴𝑚𝑚(𝑟𝑟) 𝐵𝐵𝑚𝑚(𝑟𝑟)⁄ ) . (9) 

B. Ordered Weighted Averaging Operators 
The ordered weighted averaging (OWA) operators [10] are 

general aggregation operators in which the order of the argu-
ments has primary role in the aggregation process. Formally, an 
OWA operator of dimension 𝐿𝐿 is a mapping 𝒪𝒪𝐰𝐰:ℝ𝐿𝐿 → ℝ which 
has an associated weighting vector 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝐿𝐿) in 
which ∑ 𝑤𝑤𝑖𝑖 = 1𝐿𝐿

𝑖𝑖=1  and 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 for all 𝑖𝑖 = 1, 2, … , 𝐿𝐿, such 
that 

𝒪𝒪𝐰𝐰(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝐿𝐿) = �𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖

𝐿𝐿

𝑖𝑖=1

, (10) 

where 𝑏𝑏𝑖𝑖 is the 𝑖𝑖th smallest value among all the arguments 𝑎𝑎1, 
𝑎𝑎2, … , 𝑎𝑎𝐿𝐿. Note that here we assume that the elements of 𝐰𝐰 are 
in ascending order. 

The result of the aggregation performed by an OWA operator 
mainly depends upon its associated weights. To characterize the 
associated weights of an OWA operator, we can use the orness 
measure, which is defined as 

⋁(𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝐿𝐿) =
1

𝐿𝐿 − 1
�(𝑖𝑖 − 1)𝑤𝑤𝑖𝑖

𝐿𝐿

𝑖𝑖=1

. (11) 

The orness measure, also known as the attitudinal character 
of the aggregation, specifies the degree to which the OWA 
operator is like an or (max) operation. Specifically, when the 
degree of orness is greater than 0.5, the OWA operator is con-
sidered as more orlike than andlike. In this case, the larger argu-
ments play a more important role in the aggregation process. 

IV. ANOMALY-BASED ANDROID MALWARE DETECTION 
In this section, we present DroidNMD, a novel technique that 

uses an ensemble classifier consisting of multiple one-class 
classifiers to detect Android malware by intercepting each 
application's incoming and outgoing traffic. DroidNMD con-
sists of two main steps, namely, training and detection. In the 
following subsections, we describe each of these steps in detail. 

A. Training Step 
In this step, we take a set of Android benign applications and 

capture bidirectional flows for each application by running it on 
a real Android device. Recall that a flow is defined as a set of 
packets that share some common properties, such as source IP 
address, source port, destination IP address, destination port, 
and protocol. There are different types of flows [22]: unidirec-
tional and bidirectional. A unidirectional flow, or briefly uni-
flow, is a flow composed only of packets sent from a single host 
to another single host. On the other hand, a bidirectional flow, 
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or briefly biflow, is a flow composed of packets sent in both 
directions between two hosts. From now on, for the sake of con-
venience, we will refer to bidirectional flows simply as “flows”. 

After capturing an application's flows, we extract a number 
of features from the flows using a sliding window technique. 
To do so, we use a sliding window of 𝑊𝑊 consecutive time 
periods across the 𝑇𝑇 total time periods, producing 𝑇𝑇 −𝑊𝑊 + 1 
overlapping windows. For each window, we calculate the 
features shown in Table I. These features are divided into two 
different categories [19]: aggregation-based and entropy-based. 
Aggregation-based features measure the amount of network 
traffic consumed by the application and entropy-based features 
measure the degree of complexity (or predictability) in the 
application's network behavior. For each entropy-based feature, 
we set its values to –1 (i.e., predictable) if they are less than a 
cutoff threshold and to +1 (i.e., unpredictable) otherwise. We 
use another set of Android benign applications to determine the 
cutoff thresholds of all the entropy-based features. In doing so, 
we sort each feature's values in ascending order and then set the 
cutoff thresholds at the 2nd percentile of the values. 

Subsequently, we create 𝐿𝐿 training datasets 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝐿𝐿 of 
feature vectors by choosing 𝐿𝐿 different overlapping subsets of 
features from the entire feature set and projecting all the 
applications' feature values on the feature subsets. Finally, we 
employ the training datasets to construct an ensemble classifier 
𝒞𝒞 consisting of 𝐿𝐿 one-class classifiers 𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝐿𝐿. For each 
one-class classifier 𝐶𝐶𝑖𝑖 ∈ 𝒞𝒞, the decision threshold, denoted by 
𝜃𝜃𝑖𝑖, is determined as 

𝜃𝜃𝑖𝑖 : 
1

|𝑋𝑋𝑖𝑖|
�𝐼𝐼(𝑝𝑝𝑖𝑖(𝐱𝐱𝑖𝑖𝑖𝑖|𝜔𝜔𝐵𝐵) ≥ 𝜃𝜃𝑖𝑖)
|𝑋𝑋𝑖𝑖|

𝑘𝑘=1

= 𝜈𝜈𝑖𝑖  , (12) 

where 𝜔𝜔𝐵𝐵 is the benign class, 𝐱𝐱𝑖𝑖𝑖𝑖 is a feature vector belonging 
to 𝑋𝑋𝑖𝑖, 𝜈𝜈𝑖𝑖 is the training acceptance rate of 𝐶𝐶𝑖𝑖, and 𝐼𝐼 is an indicator 
function defined as 

𝐼𝐼(𝐴𝐴) = �
1 if 𝐴𝐴 is true ,

0 otherwise .
 (13) 

B. Detection Step 
In this step, we continuously capture flows for each un-

labeled Android application and apply a sliding window tech-
nique to extract the features in Table I. Then, we create 𝐿𝐿 dif-
ferent feature vectors per window, similar to that we described 
in the training step. Next, we give each window's feature vec-
tors to the one-class classifiers of the ensemble classifier con-
structed in the training step. Subsequently, we reorder the out-
puts of the classifiers in ascending order and then aggregate 
them using a novel OWA operator, called NOWA, to predict 
the most likely class (“benign” or “suspicious”) the unlabeled 
application belongs to. Finally, we count the number of total 
windows in which the application has been classified as sus-
picious and report the application as malware if this number 
exceeds a predefined threshold. Formally, let 𝐳𝐳1(𝑡𝑡), 𝐳𝐳2(𝑡𝑡), … , 
𝐳𝐳𝐿𝐿(𝑡𝑡) be the feature vectors created in the current window 𝑡𝑡 and 
𝑜𝑜1(𝑡𝑡), 𝑜𝑜2(𝑡𝑡), … , 𝑜𝑜𝐿𝐿(𝑡𝑡) ∈ [0,1] be the outputs of the one-class 
classifiers 𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝐿𝐿 such that 𝑜𝑜𝑖𝑖(𝑡𝑡) = 𝑝𝑝𝑖𝑖(𝐳𝐳𝑖𝑖(𝑡𝑡)|𝜔𝜔𝐵𝐵) for all 
𝑖𝑖 = 1, 2, … , 𝐿𝐿. Using the NOWA operator, the decision rule for 
the application is defined as 
ℓ(𝑡𝑡)

= �
𝜔𝜔𝐵𝐵 if 𝒪𝒪𝐰𝐰(𝑜𝑜1(𝑡𝑡), 𝑜𝑜2(𝑡𝑡), … , 𝑜𝑜𝐿𝐿(𝑡𝑡)) ≥ 𝒪𝒪𝐰𝐰(𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝐿𝐿) ,

𝜔𝜔𝑆𝑆 otherwise ,
 (14) 

where 𝜔𝜔𝑆𝑆 is the suspicious class, 𝒪𝒪𝐰𝐰 is the aggregation function 
given in (10), and 𝐰𝐰 is the associated weighting vector of 
NOWA, whose elements 𝑤𝑤𝑖𝑖, for 𝑖𝑖 = 1, 2, … , 𝐿𝐿, are defined as 

𝑤𝑤𝑖𝑖 =
2𝜂𝜂𝑖𝑖

3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1
 , (15) 

where 𝜂𝜂𝑖𝑖 is given by 

𝜂𝜂𝑖𝑖 = 2𝜂𝜂𝑖𝑖−1 + 𝜂𝜂𝑖𝑖−2 , (16) 

with 𝜂𝜂1 = 1 and 𝜂𝜂2 = 2. The application is reported as malware 
if the total number of suspicious windows among all previous 
windows exceeds a minimum detection threshold 𝛽𝛽: 

� 𝐼𝐼(ℓ(𝜏𝜏) = 𝜔𝜔𝑆𝑆)
𝑡𝑡

𝜏𝜏=𝑡𝑡0

≥ 𝛽𝛽 . (17) 

In the following, we prove that the NOWA weights satisfy 
the condition of summing up to 1. In addition, we prove that the 
orness degree of NOWA is always in the range (0.5,1]. This 
causes it gives more importance to one-class classifiers that are 
more confident in their decision for the given feature vector. 

Lemma 1. The NOWA weights satisfy the condition of sum-
ming up to 1. 

PROOF. To prove this lemma, we compute 

�𝑤𝑤𝑖𝑖

𝐿𝐿

𝑖𝑖=1

= �
2𝜂𝜂𝑖𝑖

3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1

𝐿𝐿

𝑖𝑖=1

 

=
2

3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1
�𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

 . 

(18) 

TABLE I 
FEATURES CALCULATED FROM THE FLOWS OF AN APPLICATION AT EACH 

SLIDING WINDOW 

Group Description 

Aggregation-
based 

The average time difference between consecutive flows 
The average number of bytes per flow 
The average number of packets per flow 
The average flow duration 
The maximum time difference between two consecutive 
flows 

Entropy-based 

The modified sample entropy of time differences be-
tween consecutive flows 
The modified sample entropy of the number of bytes per 
flow 
The modified sample entropy of the number of packets 
per flow 
The modified sample entropy of flow durations 
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Now we need to compute ∑ 𝜂𝜂𝑖𝑖𝐿𝐿
𝑖𝑖=1 . From (16), we have 

�𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

= 𝜂𝜂1 + 𝜂𝜂2 + �(2𝜂𝜂𝑖𝑖−1 + 𝜂𝜂𝑖𝑖−2)
𝐿𝐿

𝑖𝑖=3

 

= 1 + 2𝜂𝜂1 + 2�𝜂𝜂𝑖𝑖−1

𝐿𝐿

𝑖𝑖=3

+ �𝜂𝜂𝑖𝑖−2

𝐿𝐿

𝑖𝑖=3

 

= 1 + 2𝜂𝜂1 + 2�𝜂𝜂𝑖𝑖

𝐿𝐿−1

𝑖𝑖=2

+ �𝜂𝜂𝑖𝑖

𝐿𝐿−2

𝑖𝑖=1

 

= 1 + 2�𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

− 2𝜂𝜂𝐿𝐿 + �𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

− 𝜂𝜂𝐿𝐿 − 𝜂𝜂𝐿𝐿−1 

= 1 + 3�𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

− 3𝜂𝜂𝐿𝐿 − 𝜂𝜂𝐿𝐿−1 . 

(19) 

Thus, we get 

�𝜂𝜂𝑖𝑖

𝐿𝐿

𝑖𝑖=1

=
3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1

2
 . (20) 

By substituting (20) in (18), we find that ∑ 𝑤𝑤𝑖𝑖
𝐿𝐿
𝑖𝑖=1 = 1.  □ 

Recall that orness is a measure of the degree of optimism. 
The larger the orness degree is, the more optimistic the aggrega-
tor is. 

Lemma 2. The orness degree of NOWA is always in the 
range (0.5,1]. 

PROOF. It has already been shown that if the OWA weights 
are in ascending (or descending) order and the input arguments 
are sorted in ascending (or descending) order, then the degree 
of orness is always in the range (0.5,1] [23]. Thus, we only need 
to show the NOWA weights have the property that 𝑤𝑤𝑖𝑖 < 𝑤𝑤𝑖𝑖+1 
for 𝑖𝑖 = 1, 2, … , 𝐿𝐿 − 1. 

From (16), we know that 𝜂𝜂𝑖𝑖 ≤ 𝜂𝜂𝑖𝑖+1 for 𝑖𝑖 = 1, 2, … , 𝐿𝐿 − 1. 
Hence, for 𝑖𝑖 = 1, 2, … , 𝐿𝐿 − 1, we have 

2𝜂𝜂𝑖𝑖
3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1

≤
2𝜂𝜂𝑖𝑖+1

3𝜂𝜂𝐿𝐿 + 𝜂𝜂𝐿𝐿−1 − 1
 (21) 

or 
𝑤𝑤𝑖𝑖 ≤ 𝑤𝑤𝑖𝑖+1 . (22) 

Therefore, we conclude that the NOWA weights are in as-
cending order. □ 

V. EXPERIMENTS 
In this section, we evaluate the detection performance of 

DroidNMD by using a real dataset of Android benign applica-
tions and malware samples. 

A. Dataset 
The dataset used in our experiments consists of 180 and 97 

Android benign applications and malware samples, respec-
tively. The benign applications are selected among the most 
downloaded free applications on Google Play. We suppose the 

applications are not compromised, since they are daily down-
loaded by thousands of users and are frequently analyzed by 
security experts from around the world. The malware samples 
are randomly selected from Drebin [13]. We run each benign 
application and malware sample on a rooted Samsung Galaxy 
S3 running Android 4.4.4 KitKat and use the Android specific 
version of Tcpdump to capture packets. 

We split our dataset into two parts: training and testing. The 
training dataset consists of 50 percent of the whole benign 
applications and is used to construct an ensemble classifier. The 
testing dataset consists of the remaining benign applications 
and all malware samples and is used exclusively for evaluation 
purposes. 

A. Performance Measures 
To evaluate the detection performance of DroidNMD, we use 

three standard measures: detection rate (DR), false alarm rate 
(FAR), and accuracy (ACC). DR is defined as the percentage 
of malware samples that are correctly classified, FAR is defined 
as the percentage of benign samples that are incorrectly classi-
fied, and ACC is defined as the percentage of benign and mal-
ware samples that are correctly classified. Since ACC considers 
both DR and FAR, we use it as the main performance measure 
in our experiments. 

B. Experimental Setup 
To construct an ensemble classifier, we use the traditional 

random subspace method (RSM) [24] with four simple hetero-
geneous one-class classifiers, namely, Gaussian (Gauss), K-
nearest neighbor (KNN), Parzen-window (PW), and principal 
component analysis (PCA), and then build three models from 
each of them with the training acceptance rate of 97%. This 
results in an ensemble classifier of size 𝐿𝐿 = 12. We assume that 
each random feature subset in RSM consists of 60% of the 
whole features in Table I. 

Unless otherwise stated, we use the following parameter set-
tings: the parameters of the sliding window technique are set to 
𝑊𝑊 = 8 and 𝑇𝑇 = 24, resulting in 17 overlapping windows. The 
length of a time period is set to one hour. The parameters of 
mSampEn are set to 𝑚𝑚 = 2 and 𝑟𝑟 = 0.003. Finally, the thresh-
old of the malware detection rule is set to 𝛽𝛽 = 4. 

All experiments are done in MATLAB using PRTools [25] 
and DDTools [26]. All reported results are the average of 30 
independent runs. To compare different algorithms, we use the 
same feature subsets for their corresponding runs and then per-
form the Friedman test [27], with a significance level of 0.05, 
followed with the Nemenyi post-hoc test [27]. Recall that the 
Friedman test is a non-parametric statistical test often used for 
comparing more than two algorithms over multiple datasets. It 
ranks the algorithms for each dataset, and then checks to deter-
mine whether the measured average ranks are significantly dif-
ferent from the mean rank. The null hypothesis being tested is 
that there are no differences between the performances of all the 
algorithms. If the null hypothesis is rejected, then the Nemenyi 
post-hoc test is performed for pairwise comparisons. The results 
for the Nemenyi test are shown in critical difference diagrams, 
where the horizontal axis indicates the average ranks and the 
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groups of algorithms that are not significantly different are con-
nected with a colored line on the top of the axis. 

C. Experimental Results 
We run experiments to analyze how different parameters and 

operators affect the detection performance of DroidNMD. 

In the first set of experiments, we investigate the usefulness 
of the history parameter, 𝛽𝛽. Table II reports the detection per-
formance of DroidNMD in terms of the average DR, FAR, and 
ACC for different values of 𝛽𝛽 over 17 overlapping windows. 
From the table, we observe that by increasing the value of 𝛽𝛽 up 
to 4, we obtain a slightly lower value of DR and a significantly 

TABLE II 
PERFORMANCE MEASURES OF DROIDNMD FOR DIFFERENT VALUES OF 𝛽𝛽 

Window 
Average DR Average FAR Average ACC 

𝜷𝜷 = 1 𝜷𝜷 = 2 𝜷𝜷 = 3 𝜷𝜷 = 4 𝜷𝜷 = 5 𝜷𝜷 = 6 𝜷𝜷 = 1 𝜷𝜷 = 2 𝜷𝜷 = 3 𝜷𝜷 = 4 𝜷𝜷 = 5 𝜷𝜷 = 6 𝜷𝜷 = 1 𝜷𝜷 = 2 𝜷𝜷 = 3 𝜷𝜷 = 4 𝜷𝜷 = 5 𝜷𝜷 = 6 

1 83.13 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 91.19 48.13 48.13 48.13 48.13 48.13 
2 89.86 72.58 0.00 0.00 0.00 0.00 1.33 0.04 0.00 0.00 0.00 0.00 94.10 85.76 48.13 48.13 48.13 48.13 
3 92.51 80.41 67.39 0.00 0.00 0.00 1.33 0.07 0.00 0.00 0.00 0.00 95.47 89.80 83.08 48.13 48.13 48.13 
4 96.56 87.35 78.28 66.19 0.00 0.00 1.37 0.19 0.04 0.00 0.00 0.00 97.56 93.35 88.72 82.46 48.13 48.13 
5 97.84 92.51 83.92 75.26 64.05 0.00 1.59 0.33 0.15 0.04 0.00 0.00 98.11 95.95 91.59 87.15 81.35 48.13 
6 98.97 96.70 89.31 83.78 73.09 57.01 2.81 0.41 0.19 0.15 0.04 0.00 98.11 98.09 94.37 91.52 86.02 77.70 
7 98.97 97.90 95.53 89.21 82.54 69.04 4.07 1.59 0.26 0.19 0.15 0.04 97.50 98.15 97.56 94.31 90.87 83.92 
8 100.00 97.90 97.77 94.47 87.01 78.38 5.52 1.74 1.33 0.19 0.15 0.04 97.34 98.07 98.20 97.04 93.19 88.77 
9 100.00 98.97 97.77 97.63 91.31 84.71 6.78 1.93 1.41 0.22 0.15 0.04 96.74 98.54 98.16 98.66 95.42 92.05 

10 100.00 99.90 98.93 97.73 95.43 89.90 6.85 1.93 1.41 0.22 0.15 0.04 96.70 99.02 98.77 98.72 97.56 94.74 
11 100.00 99.90 99.86 98.76 96.56 94.16 6.89 1.93 1.41 0.22 0.15 0.04 96.68 99.02 99.25 99.25 98.15 96.95 
12 100.00 100.00 99.86 99.73 98.66 95.29 7.19 1.96 1.41 0.22 0.15 0.04 96.54 99.06 99.25 99.75 99.23 97.54 
13 100.00 100.00 99.97 99.76 99.62 97.42 8.41 2.30 1.41 0.22 0.15 0.04 95.95 98.89 99.30 99.77 99.73 98.65 
14 100.00 100.00 100.00 99.90 99.69 98.56 8.41 2.30 1.41 0.22 0.15 0.04 95.95 98.89 99.32 99.84 99.77 99.23 
15 100.00 100.00 100.00 99.97 99.76 98.59 8.70 2.30 1.41 0.22 0.15 0.04 95.81 98.89 99.32 99.88 99.80 99.25 
16 100.00 100.00 100.00 99.97 99.79 98.63 9.85 2.59 1.41 0.22 0.15 0.04 95.26 98.75 99.32 99.88 99.82 99.27 
17 100.00 100.00 100.00 99.97 99.86 99.76 10.00 2.59 1.44 0.22 0.15 0.04 95.19 98.75 99.30 99.88 99.86 99.86 

 
TABLE III 

COMPARISON OF NOWA WITH THREE COMBINATION RULES IN TERMS OF THE AVERAGE DR, FAR, AND ACC 

Window 
Average DR Average FAR Average ACC 

NOWA Majority Mean SOWA NOWA Majority Mean SOWA NOWA Majority Mean SOWA 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 
4 66.19 61.62 63.99 64.40 0.00 0.00 0.00 0.04 82.46 80.09 81.32 81.52 
5 75.26 71.55 73.54 73.99 0.04 0.07 0.11 0.07 87.15 85.20 86.22 86.47 
6 83.78 80.82 82.27 82.68 0.15 0.07 0.22 0.19 91.52 90.02 90.70 90.93 
7 89.21 86.29 87.87 88.11 0.19 0.11 0.22 0.19 94.31 92.83 93.60 93.74 
8 94.47 92.23 93.47 93.75 0.19 0.11 0.22 0.19 97.04 95.92 96.51 96.67 
9 97.63 95.36 96.70 96.94 0.22 0.22 0.37 0.26 98.66 97.49 98.11 98.29 

10 97.73 96.19 97.04 97.32 0.22 0.22 0.37 0.26 98.72 97.91 98.29 98.48 
11 98.76 97.56 98.18 98.42 0.22 0.22 0.37 0.26 99.25 98.63 98.88 99.06 
12 99.73 98.56 99.21 99.35 0.22 0.22 0.37 0.26 99.75 99.14 99.41 99.54 
13 99.76 98.59 99.21 99.35 0.22 0.22 0.37 0.26 99.77 99.16 99.41 99.54 
14 99.90 99.14 99.52 99.59 0.22 0.22 0.37 0.26 99.84 99.45 99.57 99.66 
15 99.97 99.52 99.76 99.79 0.22 0.22 0.37 0.26 99.88 99.64 99.70 99.77 
16 99.97 99.52 99.79 99.79 0.22 0.22 0.37 0.26 99.88 99.64 99.71 99.77 
17 99.97 99.52 99.79 99.79 0.22 0.33 0.41 0.26 99.88 99.59 99.70 99.77 

 
TABLE IV 

RESULTS OF THE FRIEDMAN TEST FOR RANKING THE COMBINATION RULES USING ACC AS THE PERFORMANCE MEASURE 

Statistical Test Average Ranks 
Significance Level P-value Significant Differences NOWA Majority Mean SOWA 

0.05 2.35×10-46 Yes 2.10 2.80 2.64 2.46 
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lower value of FAR, resulting in a higher value of ACC. This 
may be due to the fact that by increasing the value of 𝛽𝛽, 
DroidNMD reports an application as malware if it observes 
more suspicious windows in past in order to prevent making 
hasty decisions, which causes the decrease in the number of 
false positives is much more than the decrease in the number of 
true positives. 

In the second set of experiments, we evaluate the overall 
impact of NOWA on the detection performance of DroidNMD. 
For this purpose, we use two popular combination rules, namely 
Majority and Mean, and a simple OWA operator, proposed in 
[28], to aggregate the outputs of one-class classifiers in the en-
semble classifier constructed by DroidNMD. For convenience, 
we refer to this simple OWA operator as SOWA. Table III 
compares NOWA with these combination rules in terms of the 
average DR, FAR, and ACC. Obviously, NOWA has the best 
detection performance among all the combination rules. We as-
sign ranks to the corresponding runs of the combination rules, 
using ACC as the performance measure. The best combination 
rule is assigned the rank of 1. We apply the Friedman test to 
determine whether the measured average ranks are significantly 
different from the mean rank, which is 2.5 in our case, under 
the null hypothesis. The results, as given in Table IV, show that 
the null hypothesis is rejected at the significance level of 0.05. 
Thus, we apply the Nemenyi post-hoc test for pairwise compar-
isons. Fig. 2 shows the critical difference diagram for the 
Nemenyi test. A significant difference between two combina-
tion rules occurs when the difference in rankings is greater than 

the critical difference, which is 0.20 in this test. From the figure, 
we notice that NOWA has the best average rank, 2.10, which is 
significantly better than that of Majority, Mean, and SOWA. 

 

 
Fig. 2.  Pairwise comparison of the combination rules using the Nemenyi test. 

 

 
Fig. 3.  Pairwise comparison of the one-class classifiers using the Nemenyi test. 

 

In the third set of experiments, we compare the detection per-
formance of DroidNMD with that of four single one-class clas-
sifiers, namely, Gauss, KNN, PW, and PCA. Table V reports 
the obtained results. Obviously, DroidNMD has a much lower 
FAR while having a comparable DR, resulting in a higher ACC. 
Similar to the previous experiment, we perform the Friedman 
test followed with the Nemenyi test to validate the statistical 
significance of ranking differences for pairwise comparisons. 

NOWA

1 2 3 4

SOWA
Majority

Critical Difference: 0.20

Mean

DroidNMD

1 2 3 4

PCA KNN
Gauss

PW
Critical Difference: 0.30

5

TABLE V 
COMPARISON OF DROIDNMD WITH FOUR SINGLE ONE-CLASS CLASSIFIERS IN TERMS OF THE AVERAGE DR, FAR, AND ACC 

Window 
Average DR Average FAR Average ACC 

DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
4 66.19 44.33 69.07 69.07 67.01 0.00 0.00 1.11 0.00 0.00 82.46 71.12 83.42 83.96 82.89 
5 75.26 56.70 77.32 77.32 76.29 0.04 0.00 2.22 1.11 0.00 87.15 77.54 87.17 87.70 87.70 
6 83.78 68.04 85.57 85.57 85.57 0.15 0.00 3.33 1.11 0.00 91.52 83.42 90.91 91.98 92.51 
7 89.21 72.16 91.75 90.72 89.69 0.19 0.00 3.33 1.11 0.00 94.31 85.56 94.12 94.65 94.65 
8 94.47 82.47 94.85 94.85 93.81 0.19 0.00 4.44 1.11 0.00 97.04 90.91 95.19 96.79 96.79 
9 97.63 85.57 97.94 97.94 96.91 0.22 1.11 5.56 2.22 1.11 98.66 91.98 96.26 97.86 97.86 

10 97.73 89.69 97.94 97.94 97.94 0.22 1.11 5.56 2.22 1.11 98.72 94.12 96.26 97.86 98.40 
11 98.76 92.78 98.97 98.97 98.97 0.22 1.11 5.56 2.22 1.11 99.25 95.72 96.79 98.40 98.93 
12 99.73 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.75 96.26 96.79 98.93 99.47 
13 99.76 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.77 96.26 96.79 98.93 99.47 
14 99.90 96.91 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.84 97.86 96.79 98.93 99.47 
15 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 1.11 99.88 98.40 96.26 98.93 99.47 
16 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 2.22 99.88 98.40 96.26 98.93 98.93 
17 99.97 97.94 100.00 100.00 100.00 0.22 2.22 7.78 2.22 2.22 99.88 97.86 96.26 98.93 98.93 

 
TABLE IV 

RESULTS OF THE FRIEDMAN TEST FOR RANKING THE ONE-CLASS CLASSIFIERS USING ACC AS THE PERFORMANCE MEASURE 
Statistical Test Average Ranks 

Significance Level P-value Significant Differences DroidNMD Gauss KNN PW PCA 

0.05 4.05×10-274 Yes 1.88 4.41 3.92 2.55 2.24 
 

TABLE V 
COMPARISON OF DROIDNMD WITH FOUR SINGLE ONE-CLASS CLASSIFIERS IN TERMS OF THE AVERAGE DR, FAR, AND ACC 

Window 
Average DR Average FAR Average ACC 

DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA DroidNMD Gauss KNN PW PCA 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.13 48.13 48.13 48.13 48.13 
4 66.19 44.33 69.07 69.07 67.01 0.00 0.00 1.11 0.00 0.00 82.46 71.12 83.42 83.96 82.89 
5 75.26 56.70 77.32 77.32 76.29 0.04 0.00 2.22 1.11 0.00 87.15 77.54 87.17 87.70 87.70 
6 83.78 68.04 85.57 85.57 85.57 0.15 0.00 3.33 1.11 0.00 91.52 83.42 90.91 91.98 92.51 
7 89.21 72.16 91.75 90.72 89.69 0.19 0.00 3.33 1.11 0.00 94.31 85.56 94.12 94.65 94.65 
8 94.47 82.47 94.85 94.85 93.81 0.19 0.00 4.44 1.11 0.00 97.04 90.91 95.19 96.79 96.79 
9 97.63 85.57 97.94 97.94 96.91 0.22 1.11 5.56 2.22 1.11 98.66 91.98 96.26 97.86 97.86 

10 97.73 89.69 97.94 97.94 97.94 0.22 1.11 5.56 2.22 1.11 98.72 94.12 96.26 97.86 98.40 
11 98.76 92.78 98.97 98.97 98.97 0.22 1.11 5.56 2.22 1.11 99.25 95.72 96.79 98.40 98.93 
12 99.73 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.75 96.26 96.79 98.93 99.47 
13 99.76 93.81 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.77 96.26 96.79 98.93 99.47 
14 99.90 96.91 100.00 100.00 100.00 0.22 1.11 6.67 2.22 1.11 99.84 97.86 96.79 98.93 99.47 
15 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 1.11 99.88 98.40 96.26 98.93 99.47 
16 99.97 97.94 100.00 100.00 100.00 0.22 1.11 7.78 2.22 2.22 99.88 98.40 96.26 98.93 98.93 
17 99.97 97.94 100.00 100.00 100.00 0.22 2.22 7.78 2.22 2.22 99.88 97.86 96.26 98.93 98.93 

 
TABLE VI 

RESULTS OF THE FRIEDMAN TEST FOR RANKING THE ONE-CLASS CLASSIFIERS USING ACC AS THE PERFORMANCE MEASURE 

Statistical Test Average Ranks 
Significance Level P-value Significant Differences DroidNMD Gauss KNN PW PCA 

0.05 4.05×10-274 Yes 1.88 4.41 3.92 2.55 2.24 
 



MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 47 

Table VI and Fig. 3 show the obtained results. Clearly, we 
notice that DroidNMD has the best average rank, 1.88, which is 
significantly better than that of Gauss, KNN, PW, and PCA. 
Therefore, we conclude that ensemble classifiers can be con-
sidered as an effective tool for anomaly malware detection in 
Andriod. 

VI. CONCLUSION 
Given the widespread growth of malware threats on Android, 

there is an urgent need for techniques that can effectively com-
bat these threats. To meet this need, researchers have proposed 
various misuse and anomaly detection techniques. Many of 
these techniques show promising results, but they often fail to 
cope with zero-day malware or produce many false alarms. In 
this paper, we have addressed these shortcomings by presenting 
DroidNMD, a novel network-based anomaly detection tech-
nique that applies ensemble classification to improve the accu-
racy of malware detection in Android. DroidNMD constructs 
an ensemble classifier consisting of multiple one-class classifi-
ers and aggregates the outputs of the classifiers using a novel 
OWA operator, called NOWA. 

We have conducted three experiments to analyze how differ-
ent parameters and operators affect the detection performance 
of DroidNMD. In particular, we have evaluated the overall 
impact of NOWA on the detection performance of DroidNMD. 
Furthermore, we have compared the detection performance of 
DroidNMD with that of four different single one-class classifi-
ers, namely, Gauss, KNN, PW, and PCA. The experimental 
results have shown that NOWA outperforms popular combina-
tion rules in terms of accuracy. In addition, DroidNMD signifi-
cantly increases the accuracy as compared to single one-class 
classifiers. Consequently, DroidNMD classifies Android appli-
cations as either benign or malware, with a high detection rate 
close to 100% and a low false alarm rate close to 0.20%. 
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