MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 4, WINTER 2016 10

An Extended Linear MPC for Nonlinear
Processes

Nima Vaezi, Mahmood Khatibi, Ali Karimpour*

Abstract— Nonlinear behavior is a common feature of all
real-world systems. However, for the sake of simplicity, a linear
model is often used in the controller design procedure.
Nevertheless, the neglected nonlinear dynamics could degrade
the performance of controller drastically. This study presents a
new method of designing a model predictive controller (MPC)
for a class of nonlinear systems. In the proposed method, an
MPC is first designed in state space based on a linear model and
then modified by using modal series to compensate for the effect
of the neglected nonlinear dynamics in the linear model. Because
the proposed controller adjusts a linear controller instead of
designing a new one, it can be easily applied in industries to
modify controllers that have been designed based on linear
models. In addition, its computational burden is much less than
that of nonlinear MPC methods. In this study, the proposed
technique is used to control two real-world systems, and the
results of its application are discussed.

Index Terms—Modal series, Nonlinear dynamics, Predictive
control.

I. INTRODUCTION

BECAUSE of the high performance and simplicity, model
predictive control (MPC) have extended their
application in various industries [1-3]. To apply MPC
methods in control a plant, an appropriate model of the plant,
which is called a predictive model, should first be acquired.
This model should be capable of predicting the system
behavior to provide the designer with the required outputs in
predictive horizon k by using the system information up to
moment t. In mathematical terms, it should be able to
predictive y(t + k|t). The predictive model and other MPC
elements, such as the cost function or optimization method,
determine the control rule. To decrease the computational
burden, it is desirable to find an explicit control rule, which
also helps the designer to determine the effective parameters
on the system behavior.

Real-world systems have a nonlinear behavior; however,
in many cases, their behavior can be estimated around an
operating point by a linear model. As there is no limitation on
the model used in MPC, it can be applied to both linear and
nonlinear models. Although the use of nonlinear models leads
to reasonable accuracy, an explicit and closed-form answer to
the optimization problem usually cannot be determined. Most
nonlinear MPC approaches use iterative and numerical
procedures to solve the optimization problem. It not only
results in a high numerical burden, but also the effective
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parameters on the system’s behavior cannot be determined
obviously. On the other hand, the use of linear models usually
leads the optimization problem to a closed-form solution. The
required computational capacity to implement the controller
is decreased, and the effective parameters on the system
behavior can be recognized clearly.

According to the above discussion, in many cases in which
the process can be estimated by good approximation around
an operating point, the controller is designed based on a linear
model and then applied to the real system. However, as
getting far from the operating point, the validity of the linear
model decreases, and the neglected dynamics in the linear
model result in degrading the controller performance.
Various methods have been proposed to compensate for the
effects of the neglected dynamics; some of them are briefly
reviewed in the following section.

Extended dynamic matrix control (EDMC) is a modified
DMC method that can be used to control nonlinear processes
[4]. In this method, the nonlinear model of a process is
assumed to be available. However, to calculate the control
rule, an instantaneous linear model of the process is used,
which is updated at each sampling time.

EDMC requires an extra optimization problem to
minimize the difference between the instantaneous linear
model and the nonlinear model as much as possible. This
optimization problem is solved iteratively by numerical
methods. As a result, EDMC requires a higher calculation
capacity compared with regular DMC [5]. However, it is less
complicated than nonlinear MPC and has a significantly
decreased calculation burden.

Robust MPC (RMPC) methods are another option to
compensate for the neglected nonlinear dynamics. The main
drawback of RMPC is its conservative nature [6-9]. In
designing an RMPC, the nonlinear continuous-time model is
first converted into a discrete-time model, which is then
separated into two parts: linear and nonlinear terms. The
nonlinear part is treated as an uncertainty in the design
procedure.

The present study deals with the neglected nonlinear
dynamics by using modal series, which is a new method of
studying nonlinear dynamics in state space. Modal series
decomposes a nonlinear system into a set of linear
subsystems. As a result, many linear system concepts can be
extended to nonlinear ones. The method was first proposed
for the analysis of large-scale nonlinear systems, such as
power systems [10-11]. It is so-called because the method
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calculates the system response based on the system natural
modes. In [11], modal series is extended to the analysis of
discrete-time—varying  systems. Depending on the
application, modified forms of modal series can be used. For
instance, in [12], the Kronecker product was used to simplify
the calculations. Extended and modified forms of modal
series have been used in electronics, control, and other fields
[13-17]. In [13], a new form was proposed for the analysis of
an oscillator transient response in the time domain, whereas
in [14], the main idea was to use extended modal series to
solve nonlinear boundary value problems (BVPs). Further,
[15] applied extended modal series to solve a class of infinite-
horizon nonlinear optimal control problems (OCPs). The
proposed method avoided directly solving nonlinear two-
point boundary value problems (TPBVP) and Hamilton-
Jacobi-Bellman (HJB) equations. In [16], a new method for
solving nonlinear optimization problems with a second-order
performance index was suggested. In [17], a new off-line
nonlinear MPC system for continuous-time input-affine
nonlinear systems was suggested.

In the present work, an MPC is first designed in state space
based on a linear model and then modified through an
extended form of modal series such that the effects of the
neglected nonlinear dynamics in the linear model are
compensated for.

Compared with EDMC, the proposed method requires less
computational effort and can be applied to stable and unstable
systems. On the other hand, compared with robust MPC
methods, the suggested technique is less conservative
because it is not designed based on the worst case. It also
works faster because it avoids solving time-consuming LMI
optimization problems.

Moreover, because the proposed controller adjusts a linear
controller instead of designing a new one, it can be easily
applied in industries to modify controllers that have been
designed based on linear models.

The rest of this study is organized as follows. In Section 2,
the main research idea and a new form of modal series that is
used to compensate for the effects of neglected nonlinear
dynamics are introduced. In Section 3, the proposed method
is applied to two case study systems, and the results of its
application are discussed. Finally, section 4 presents the
conclusions.

Il. MPC MODIFICATION THROUGH MODAL SERIES

A. Model predictive control
Consider the following nonlinear system

x(t) = F(x(®),u(®)) , x(0) = x, (1)
y(€) = Cpnx(t) (2)

where x(t) is an n-dimensional state vector, u(t) is an m-
dimensional input vector, and F:RM x RM - RN is an
analytic function.
In MPC applications, the model is usually converted into a
discrete-time one as follows:
x(k+1)= H(x(k),u(k)), x(0) = x, ?3)
y (&) = Cpx(t) (4)
Suppose that the process can be approximated around an
operating point (x,,, u,p ) by the following linear model:
Xm(k + 1) = Ay (k) + Brum (k), x(0) = xo (5)
Ym(k) = mem(k) (6)

where x,,, (k) = x(k) — x,p, and u,, (k) = u(k) — ugp.
Remark 1. Without loss of generality, hereinafter, the origin
is assumed to be the operating point, i.e., £(0,0) = 0.
Remark 2. Model (5-6) is an approximation around the
origin. This approximation is valid as long as the states and
input signals are near it. By getting far away, the validity of
the linear model decreases, and the neglected dynamics in the
linear model result in a degraded performance. The aim of the
current study is to compensate for these effects by using
modal series.

Further, assume that the linear model (5-6) is used as the
predictive model in designing an MPC. As previously stated,
the use of this simple model instead of the nonlinear one
results in a closed-form solution that not only reduces the
computational burden of the algorithm but also provides the
designer with effective parameters in the response. However,
for the sake of performance, the cost function J is defined
based on the nonlinear model as:

] = (Rs - Ynl)T(Rs - Ynl) + Au"RAu (7)
where Au = u(k + 1) —u(k) and Y;,; shows the predicted
outputs of the nonlinear model defined as follows:
y(k; + 11k;) Crx(k; + 1k;)

y(k; + 2|k;) Crnx(k; + 2|k;) (8)

y(k; + Nplk;) Cmx(k; + Nplk;)

Also, R, in (7) denotes a vector consisting of the desired
operating points. Because only the regulation problem is
studied in this work, wesetRT =[0 0 0 0]Ta;Ris
a positive definite diagonal matrix defined as R =
Tolyxn, Ty = 0), where 7, is a parameter used for
performance adjustment.

According to (7), Y, is required to minimize the cost
function. However, because the linear model (5-6) is used as
the predictive model, only Y;,, can be obtained, which is
defined as:

ym(ki + 1|ki) mem(ki + 1|ki)
Yiin = Vm (ki + 2|k;) mem(kgi + 2[k;) (9)
Ym(ki + Np|ki) mem(ki + NPlki)

It is evident that there is a difference between Y;;,, and Y,;;
therefore, Ay is defined as:
Ay =Y — Yiin (10)

In the following, a theorem and two corollaries are
derived to calculate Ay analytically.
Remark 3. A similar idea is used in EDMC, in which vector
Ay is obtained by solving a nonlinear equation with the use
of iterative numerical methods; in the proposed method, Ay
is calculated analytically, thus increasing the speed of the
algorithm. In addition, similarly to DMC, EDMC is
applicable only to open loop stable processes, whereas the
proposed method can be applied to unstable processes as
well.

B. Model predictive control

Theorem. The response of the nonlinear system (1) can be
expressed as:
x(t) = XiZo X0 xi () (11)
Where
[ %00(t) =0
!xw(t) =Ax;0(t) , x10(0) =x
%(t) = Ax;j(t) + Biju;(t)
in,-(o) =0 for:i,j=0&(i,j) & (0,0),(1,0)

(12)
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and A, B;;, and u;;(t) are as defined in [18].
Proof. See [18].

Figure 1 presents the idea of the theorem. Equation (11)
shows that the response of the nonlinear system (1) can be
categorized into three classes: x;o (t), xo;(t), and x;;(t).

- x;0(t) is the response to the initial conditions and is
the zero input response of the system.

- Xg;(t) is the response to the input signals and is the
zero state response of the system.

- x;(t), where i,j # 0, is due to the interaction
between the system input signals and the initial
conditions.

now define

Yo1 = [Cnxo1 (ki + 11k;)
Yio = [Cnx10(k; + 11k;)
Yo2 = [Cnxo2 (ki + 1lk;)
Ya0 = [Cnxao (ki + 1lk;)
Y1y = [Cxy1 (i + 11ky)

CinXo1 (ke + Nplk)]”
Cmx1o(k; + Nplk)]"
CinXoz (e + Nplk)]”

e Cxgo(k; + Nplk)]"
o Cmxyy (ke + Nplk)]"

(13)
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Fig. 1. Modal series concept.

Corollary 1.

Yim = Yo1 + Yo (14)
Proof.
According to linear system theory, the response of a linear
system consists of its response to its initial conditions and to
the input signals. Considering (12), x;, is shown to be the

response of the linear model to the initial conditions. Also

considering By, = B = af;i’u) x=xop N (12) [18], xoy is the
U=Upp
response of the linear model to the input signals.
Consequently, we have
Xm = X10 T Xo1 (15)

Now, by using (9), (13-1), (13-2), and (15), we conclude that
Yiin = Yo1 + Yio.
Corollary 2.
Ay =Yy — Yiin = Yoo + Yoo + Y11 + -
Proof. By using the theorem, (8) can be expressed as:

(16)

I[Z?ioZﬁoxij(ki + 11k;) ]I
Y., =C, Zi=02j:0xi'j(ki +2[ky) (17
Dm0 Xj=o0Xij (ki + Nplk;)
According to the definitions in (13), (17) can be rewritten as:
Yoo =Yo1 + Yo + Yoo + Yoo +¥ig + (18)
Combining (14) and (18), we conclude that the difference
between the outputs of linear and nonlinear models can be
expressed as:
) Ay =Y = Yiin =Yoo + Yoo + Y11 + -
This completes the proof.

C. MPC modification through the proposed corollary

In this subsection, an MPC is first designed in state space
based on a linear model, and then the proposed corollary is
used to compensate for the effects of the neglected nonlinear
dynamics in the linear model. Considering the following
definitions:

Axy, (b +1) = x,(k + 1) — x,, (k)

Au(k) = up (k) — um(k — 1)

xp(k) = [Axp(k + 1) y(K)]"

AU = [Au(k;) Au(k; +1) Au(k; + 2)]T
we derive the augmented state space model as:

xf(k+1) Ag xg (k) Bg
et Bl P o [ o P L
. (19)
Ym(k) = [0 1) [A;’gg ) (20)

Based on the above state-space model (4,, B, C,), the
predicted output variables can be expressed as:

Ym(ki + 1|ki) = CaAaxf(ki) + CaBaAu(ki) (21)
Ym (ki + 2]k;) = CaAzle(ki) + CoAqBaAu(k;)
+ Cy B Au(k; + 1)
N
Ym(kl + Np|kl) = CaAapr(kl-)
+ CoAr? ' Bydu(ky) 23)
+ CL AN 2 Byhu(k; + 1) + -
+ C, AN N Au(k; + Ne — 1)
Now, it is easy to show
Yiin = Fx(k;) + AU (24)
where
[ ¢4
| |
F= I cA3 |
chNPJ
CB 0 0 0
[ CAB CB 0 0 ]
®=| CA?B CAB CB 0 |
CAN;’_lB CAN;"ZB CAN;’_3B CAN’;_NCB

To find the optimal Au, the cost function (7) is used. Because
the purpose of control is regulation, the cost function is
modified into the following form:

J = Wi + 8y)" (Vin + Ay) + AUTRAU (25)
By using (24), the cost function J can be expressed as:
J = (Fx(ky) + Ay)" (Fx(k;) + Ay)
—20UTdT (Fx(k;) + Ay) (26)

+AUT(@T® + R)AU
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Differentiating the cost function J in (26) with respect to AU
and then setting it equal to zero, we obtain

2L = 207 (Fx(k)) + Ay) + 2(@7® + R)AU =0 (27)
Assuming that (d7d + R)™?! exists, the optimized control
signal is obtained as:

AU = (@T® + R)" 10T (Fx(k;) + Ay) (28)
In (28), Ay shows the difference between the responses of
linear and nonlinear models and can be calculated by using
Corollary 2.

I11. CASE STUDIES

In this section, the proposed method is applied to two case
study models, and the results of its application are compared
with those of linear, EDMC, and RMPC (LMI) controllers to
evaluate its capability to compensate for nonlinear effects.
LMI-based optimization problems can be solved by the
polynomial method and can be implemented online. In this
method, the control signal is separated into two ingredients:
feedback and feed-forward. The LMI method requires low
computational effort.

Example 1 — Consider a DC/AC converter with the
following state-space model [19].

i (6) = —X—Eg — 52, (t) — 5u(t)

. _ x3 () x,(t)

x,(t) = _xlz(t) — 7x.(t) + (5 YO) + 2x1(t)>u(t)
() = x,()

The selected sampling time is equal to 0.001 min. Figure 2
shows the simulation results obtained with the proposed
method, assuming the operating point x,; = [0.8234 1] and
initial conditions of x(0) =[0.1 0]7. In the closed loop
system simulation, the following parameters are used.
Np=20, No=3 , a=1, y=0.0025
B =0.01, § =0.01

For comparison, Fig. 2 presents the responses of the linear,
EDMC, and RMPC controllers. As shown in the figure, the
proposed method improves the response of the linear
controller and compensates for For comparison, Fig. 2
presents the responses of the linear, EDMC, and RMPC
controllers. As shown in the figure, the proposed method
improves the response of the linear controller and
compensates for the neglected nonlinear dynamics.
Compared with EDMC, the proposed method has a faster
response but requires a relatively larger control signal. The
settling time is about 0.02 min for the suggested method,
compared with about 0.03 min EDMC. In addition, the
proposed method reduces the necessary time for EDMC
method calculation by 37.9%.
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Fig. 2. Comparison between the proposed method, linear, EDMC and
RMPC controllers for a DC/AC converter.

Example 2 — In this example, the proposed method is
applied to a model of an isothermal reaction in an SRT, with
the following state-space model [20]:

%, (t) = —=50x, (t) — 10x2(t) + (10 — x,.(©))u(t)
%, (t) = 50x,(t) — 100x,(t) — x,(t)u(t)
y(©) = x,(¢)
The selection sampling time is 0.002h. Figure 3 shows the
simulation results obtained with the proposed method,
assuming the operating point y, = 1.117 and initial
conditions of x(0) =[2 1]7. In the closed loop system
simulation, the following parameters are used:
Npo=20 , No=3, a=0, y=0.00069

B =001, §=0.01
For comparison, Fig. 3 plots the responses of the linear,
EDMC controllers. Again, the suggested method is shown to
enhance the response of the linear controller and to properly
compensate for the neglected nonlinear dynamics. Although
its performance is comparable with EDMC, its control signal
is smoother. In addition, the proposed method reduces the
necessary time for EDMC method calculation by 57.5%.
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Fig. 3. Comparison between the proposed method, linear, EDMC and
RMPC controllers for an isothermal reaction in an SRT.

IV. CONCLUSION

The behavior of real-world systems can be estimated
around an operating point by using linear models with good
accuracy. However, by getting far away from the operating
point, the linear estimation accuracy decreases, and the
neglected dynamics in the linear model leads to a degraded
controller performance. In the present study, an MPC is first
designed in state space based on a linear model and then
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adjusted by using modal series to compensate for the effects
of the neglected nonlinear dynamics in the linear model.
Compared with EDMC and RMPC, the proposed method
requires a lower computational capacity and, unlike EDMC,
can be applied to stable and unstable systems. Compared with
robust MPC methods, the suggested technique is less
conservative. Moreover, because the proposed controller
adjusts a linear controller instead of designing a new one, it
can easily be applied in industries to modify controllers that
have been designed based on linear models. In this work, the
proposed method is used to control a DC/AC converter and
an isothermal reaction in an STR. The results show that the
proposed method properly compensates for the effect of the
neglected nonlinear dynamics and that its performance is
comparable with that of EDMC and RMPC. In addition, the
method has a significantly reduced computational burden.
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