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1 

Abstract— Nonlinear behavior is a common feature of all 

real-world systems. However, for the sake of simplicity, a linear 

model is often used in the controller design procedure. 

Nevertheless, the neglected nonlinear dynamics could degrade 

the performance of controller drastically. This study presents a 

new method of designing a model predictive controller (MPC) 

for a class of nonlinear systems. In the proposed method, an 

MPC is first designed in state space based on a linear model and 

then modified by using modal series to compensate for the effect 

of the neglected nonlinear dynamics in the linear model. Because 

the proposed controller adjusts a linear controller instead of 

designing a new one, it can be easily applied in industries to 

modify controllers that have been designed based on linear 

models. In addition, its computational burden is much less than 

that of nonlinear MPC methods. In this study, the proposed 

technique is used to control two real-world systems, and the 

results of its application are discussed. 

 
Index Terms—Modal series, Nonlinear dynamics, Predictive 

control.  

I. INTRODUCTION 

ECAUSE of the high performance and simplicity, model 

predictive control (MPC) have extended their 

application in various industries [1-3]. To apply MPC 

methods in control a plant, an appropriate model of the plant, 

which is called a predictive model, should first be acquired. 

This model should be capable of predicting the system 

behavior to provide the designer with the required outputs in 

predictive horizon 𝑘 by using the system information up to 

moment 𝑡. In mathematical terms, it should be able to 

predictive 𝑦̂(𝑡 + 𝑘|𝑡). The predictive model and other MPC 

elements, such as the cost function or optimization method, 

determine the control rule. To decrease the computational 

burden, it is desirable to find an explicit control rule, which 

also helps the designer to determine the effective parameters 

on the system behavior. 

Real-world systems have a nonlinear behavior; however, 

in many cases, their behavior can be estimated around an 

operating point by a linear model. As there is no limitation on 

the model used in MPC, it can be applied to both linear and 

nonlinear models. Although the use of nonlinear models leads 

to reasonable accuracy, an explicit and closed-form answer to 

the optimization problem usually cannot be determined. Most 

nonlinear MPC approaches use iterative and numerical 

procedures to solve the optimization problem. It not only 

results in a high numerical burden, but also the effective 
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parameters on the system’s behavior cannot be determined 

obviously. On the other hand, the use of linear models usually 

leads the optimization problem to a closed-form solution. The 

required computational capacity to implement the controller 

is decreased, and the effective parameters on the system 

behavior can be recognized clearly. 

According to the above discussion, in many cases in which 

the process can be estimated by good approximation around 

an operating point, the controller is designed based on a linear 

model and then applied to the real system. However, as 

getting far from the operating point, the validity of the linear 

model decreases, and the neglected dynamics in the linear 

model result in degrading the controller performance. 

Various methods have been proposed to compensate for the 

effects of the neglected dynamics; some of them are briefly 

reviewed in the following section. 

Extended dynamic matrix control (EDMC) is a modified 

DMC method that can be used to control nonlinear processes 

[4]. In this method, the nonlinear model of a process is 

assumed to be available. However, to calculate the control 

rule, an instantaneous linear model of the process is used, 

which is updated at each sampling time. 

EDMC requires an extra optimization problem to 

minimize the difference between the instantaneous linear 

model and the nonlinear model as much as possible. This 

optimization problem is solved iteratively by numerical 

methods. As a result, EDMC requires a higher calculation 

capacity compared with regular DMC [5]. However, it is less 

complicated than nonlinear MPC and has a significantly 

decreased calculation burden. 

Robust MPC (RMPC) methods are another option to 

compensate for the neglected nonlinear dynamics. The main 

drawback of RMPC is its conservative nature [6-9]. In 

designing an RMPC, the nonlinear continuous-time model is 

first converted into a discrete-time model, which is then 

separated into two parts: linear and nonlinear terms. The 

nonlinear part is treated as an uncertainty in the design 

procedure. 

The present study deals with the neglected nonlinear 

dynamics by using modal series, which is a new method of 

studying nonlinear dynamics in state space. Modal series 

decomposes a nonlinear system into a set of linear 

subsystems. As a result, many linear system concepts can be 

extended to nonlinear ones. The method was first proposed 

for the analysis of large-scale nonlinear systems, such as 

power systems [10-11]. It is so-called because the method 
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calculates the system response based on the system natural 

modes. In [11], modal series is extended to the analysis of 

discrete-time–varying systems. Depending on the 

application, modified forms of modal series can be used. For 

instance, in [12], the Kronecker product was used to simplify 

the calculations. Extended and modified forms of modal 

series have been used in electronics, control, and other fields 

[13-17]. In [13], a new form was proposed for the analysis of 

an oscillator transient response in the time domain, whereas 

in [14], the main idea was to use extended modal series to 

solve nonlinear boundary value problems (BVPs). Further, 

[15] applied extended modal series to solve a class of infinite-

horizon nonlinear optimal control problems (OCPs). The 

proposed method avoided directly solving nonlinear two-

point boundary value problems (TPBVP) and Hamilton-

Jacobi-Bellman (HJB) equations. In [16], a new method for 

solving nonlinear optimization problems with a second-order 

performance index was suggested. In [17], a new off-line 

nonlinear MPC system for continuous-time input-affine 

nonlinear systems was suggested. 

In the present work, an MPC is first designed in state space 

based on a linear model and then modified through an 

extended form of modal series such that the effects of the 

neglected nonlinear dynamics in the linear model are 

compensated for. 

Compared with EDMC, the proposed method requires less 

computational effort and can be applied to stable and unstable 

systems. On the other hand, compared with robust MPC 

methods, the suggested technique is less conservative 

because it is not designed based on the worst case. It also 

works faster because it avoids solving time-consuming LMI 

optimization problems. 

Moreover, because the proposed controller adjusts a linear 

controller instead of designing a new one, it can be easily 

applied in industries to modify controllers that have been 

designed based on linear models. 

The rest of this study is organized as follows. In Section 2, 

the main research idea and a new form of modal series that is 

used to compensate for the effects of neglected nonlinear 

dynamics are introduced. In Section 3, the proposed method 

is applied to two case study systems, and the results of its 

application are discussed. Finally, section 4 presents the 

conclusions. 

II. MPC MODIFICATION THROUGH MODAL SERIES 

A. Model predictive control  

Consider the following nonlinear system 

 

𝑥̇(𝑡) = 𝐹(𝑥(𝑡), 𝑢(𝑡))   ,   𝑥(0) = 𝑥0                                       (1) 

                              𝑦(𝑡) = 𝐶𝑚𝑥(𝑡)                                              (2) 
 

where 𝑥(𝑡) is an n-dimensional state vector, 𝑢(𝑡) is an m-

dimensional input vector, and 𝐹:𝑅𝑁 × 𝑅𝑀 → 𝑅𝑁 is an 

analytic function. 

In MPC applications, the model is usually converted into a 

discrete-time one as follows: 

         𝑥(𝑘 + 1) = 𝐻(𝑥(𝑘), 𝑢(𝑘)) ,    𝑥(0) = 𝑥0                (3) 

          𝑦 (𝑡) = 𝐶𝑚𝑥(𝑡)                                                             (4) 

Suppose that the process can be approximated around an 

operating point (𝑥𝑜𝑝 , 𝑢𝑜𝑝) by the following linear model: 

    𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢𝑚(𝑘), 𝑥(0) = 𝑥0            (5) 
     𝑦𝑚(𝑘) = 𝐶𝑚𝑥𝑚(𝑘)                                                                (6) 

where 𝑥𝑚(𝑘) ≈ 𝑥(𝑘) − 𝑥𝑜𝑝 and 𝑢𝑚(𝑘) ≈ 𝑢(𝑘) − 𝑢𝑜𝑝. 

Remark 1. Without loss of generality, hereinafter, the origin 

is assumed to be the operating point, i.e., 𝐹(0,0) = 0. 

Remark 2. Model (5-6) is an approximation around the 

origin. This approximation is valid as long as the states and 

input signals are near it. By getting far away, the validity of 

the linear model decreases, and the neglected dynamics in the 

linear model result in a degraded performance. The aim of the 

current study is to compensate for these effects by using 

modal series. 

Further, assume that the linear model (5-6) is used as the 

predictive model in designing an MPC. As previously stated, 

the use of this simple model instead of the nonlinear one 

results in a closed-form solution that not only reduces the 

computational burden of the algorithm but also provides the 

designer with effective parameters in the response. However, 

for the sake of performance, the cost function 𝐽 is defined 

based on the nonlinear model as: 

           𝐽 = (𝑅𝑠 − 𝑌𝑛𝑙)
𝑇(𝑅𝑠 − 𝑌𝑛𝑙) + ∆𝑢

𝑇𝑅̅∆𝑢                            (7) 

where ∆𝑢 = 𝑢(𝑘 + 1) − 𝑢(𝑘) and 𝑌𝑛𝑙 shows the predicted 

outputs of the nonlinear model defined as follows: 

𝑌𝑛𝑙 = [

𝑦(𝑘𝑖 + 1|𝑘𝑖)

𝑦(𝑘𝑖 + 2|𝑘𝑖)
⋮

𝑦(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)

] = [

𝐶𝑚𝑥(𝑘𝑖 + 1|𝑘𝑖)

𝐶𝑚𝑥(𝑘𝑖 + 2|𝑘𝑖)
⋮

𝐶𝑚𝑥(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)

] (8) 

Also, 𝑅𝑠 in (7) denotes a vector consisting of the desired 

operating points. Because only the regulation problem is 

studied in this work, we set 𝑅𝑠
𝑇 = [0 0 0 … 0]𝑇 a; 𝑅̅ is 

a positive definite diagonal matrix defined as 𝑅̅ =
𝑟𝜔𝐼𝑁𝑐×𝑁𝑐  (𝑟𝜔 ≥ 0), where 𝑟𝜔 is a parameter used for 

performance adjustment. 

According to (7), 𝑌𝑛𝑙 is required to minimize the cost 

function. However, because the linear model (5-6) is used as 

the predictive model, only 𝑌𝑙𝑖𝑛  can be obtained, which is 

defined as: 

         𝑌𝑙𝑖𝑛 =

[
 
 
 
𝑦𝑚(𝑘𝑖 + 1|𝑘𝑖)

𝑦𝑚(𝑘𝑖 + 2|𝑘𝑖)
⋮

𝑦𝑚(𝑘𝑖 + 𝑁𝑝|𝑘𝑖)]
 
 
 

= [

𝐶𝑚𝑥𝑚(𝑘𝑖 + 1|𝑘𝑖)

𝐶𝑚𝑥𝑚(𝑘𝑖 + 2|𝑘𝑖)
⋮

𝐶𝑚𝑥𝑚(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)

]  (9) 

It is evident that there is a difference between 𝑌𝑙𝑖𝑛  and 𝑌𝑛𝑙; 
therefore, ∆𝑦 is defined as: 

          ∆𝑦 = 𝑌𝑛𝑙 − 𝑌𝑙𝑖𝑛                                                             (10) 

 In the following, a theorem and two corollaries are 

derived to calculate ∆𝑦 analytically. 

Remark 3. A similar idea is used in EDMC, in which vector 

∆𝑦 is obtained by solving a nonlinear equation with the use 

of iterative numerical methods; in the proposed method, ∆𝑦 

is calculated analytically, thus increasing the speed of the 

algorithm. In addition, similarly to DMC, EDMC is 

applicable only to open loop stable processes, whereas the 

proposed method can be applied to unstable processes as 

well. 

B. Model predictive control 

Theorem. The response of the nonlinear system (1) can be 

expressed as: 
              𝑥(𝑡) =  ∑ ∑ 𝑥𝑖𝑗(𝑡)

∞
𝑗=0

∞
𝑖=0                                                                (11) 

Where 

          

{
 
 

 
 𝑥00(𝑡) = 0                                              

𝑥̇10(𝑡) = 𝐴𝑥10(𝑡)       ,      𝑥10(0) = 𝑥0
                    

𝑥̇𝑖𝑗(𝑡) = 𝐴𝑥𝑖𝑗(𝑡) + 𝐵𝑖𝑗𝑢𝑖𝑗(𝑡)                                  

𝑥𝑖𝑗(0) = 0    𝑓𝑜𝑟: 𝑖, 𝑗 ≥ 0 & (𝑖, 𝑗) ∉ (0,0), (1,0)

            (12) 



VAEZI et al. AN EXTENDED LINEAR MPC FOR NONLINEAR PROCESSES                                                                 12 

 

and 𝐴, 𝐵𝑖𝑗, and 𝑢𝑖𝑗(𝑡) are as defined in [18]. 

Proof. See [18]. 

Figure 1 presents the idea of the theorem. Equation (11) 

shows that the response of the nonlinear system (1) can be 

categorized into three classes: 𝑥𝑖0(𝑡), 𝑥0𝑗(𝑡), and 𝑥𝑖𝑗(𝑡).  

- 𝑥𝑖0(𝑡) is the response to the initial conditions and is 

the zero input response of the system. 

- 𝑥0𝑗(𝑡) is the response to the input signals and is the 

zero state response of the system. 

- 𝑥𝑖𝑗(𝑡), where 𝑖, 𝑗 ≠ 0, is due to the interaction 

between the system input signals and the initial 

conditions. 

now define 
𝑌01 = [𝐶𝑚𝑥01(𝑘𝑖 + 1|𝑘𝑖) … 𝐶𝑚𝑥01(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)]

𝑇  
𝑌10 = [𝐶𝑚𝑥10(𝑘𝑖 + 1|𝑘𝑖) … 𝐶𝑚𝑥10(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)]

𝑇  
𝑌02 = [𝐶𝑚𝑥02(𝑘𝑖 + 1|𝑘𝑖) … 𝐶𝑚𝑥02(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)]

𝑇  (13) 
𝑌20 = [𝐶𝑚𝑥20(𝑘𝑖 + 1|𝑘𝑖) … 𝐶𝑚𝑥20(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)]

𝑇  
𝑌11 = [𝐶𝑚𝑥11(𝑘𝑖 + 1|𝑘𝑖) … 𝐶𝑚𝑥11(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)]

𝑇  
⋮  
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Fig. 1. Modal series concept. 

 

Corollary 1. 

               𝑌𝑙𝑖𝑛 = 𝑌01 + 𝑌10                                                        (14) 

Proof. 

According to linear system theory, the response of a linear 

system consists of its response to its initial conditions and to 

the input signals. Considering (12), 𝑥10 is shown to be the 

response of the linear model to the initial conditions. Also 

considering 𝐵01 = 𝐵 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑢
|𝑥=𝑥𝑜𝑝
𝑢=𝑢𝑜𝑝

 in (12) [18], 𝑥01 is the 

response of the linear model to the input signals. 

Consequently, we have 

          𝑥𝑚 = 𝑥10 + 𝑥01                                                              (15) 

Now, by using (9), (13-1), (13-2), and (15), we conclude that 

𝑌𝑙𝑖𝑛 = 𝑌01 + 𝑌10. 
 

Corollary 2. 

           ∆𝑦 = 𝑌𝑛𝑙 − 𝑌𝑙𝑖𝑛 = 𝑌02 + 𝑌20 + 𝑌11 +⋯                       (16) 

Proof. By using the theorem, (8) can be expressed as: 

𝑌𝑛𝑙 = 𝐶𝑚

[
 
 
 
 
∑ ∑ 𝑥𝑖𝑗(𝑘𝑖 + 1|𝑘𝑖)

∞
𝑗=0

∞
𝑖=0

∑ ∑ 𝑥𝑖𝑗(𝑘𝑖 + 2|𝑘𝑖)
∞
𝑗=0

∞
𝑖=0

⋮
∑ ∑ 𝑥𝑖𝑗(𝑘𝑖 + 𝑁𝑃|𝑘𝑖)

∞
𝑗=0

∞
𝑖=0 ]

 
 
 
 

                                   (17) 

According to the definitions in (13), (17) can be rewritten as: 

       𝑌𝑛𝑙 = 𝑌01 + 𝑌10 + 𝑌02 + 𝑌20 + 𝑌11 +⋯                      (18) 
Combining (14) and (18), we conclude that the difference 

between the outputs of linear and nonlinear models can be 

expressed as: 

∆𝑦 = 𝑌𝑛𝑙 − 𝑌𝑙𝑖𝑛 = 𝑌02 + 𝑌20 + 𝑌11 +⋯ 
This completes the proof. 

C. MPC modification through the proposed corollary 

In this subsection, an MPC is first designed in state space 

based on a linear model, and then the proposed corollary is 

used to compensate for the effects of the neglected nonlinear 

dynamics in the linear model. Considering the following 

definitions: 

∆𝑥𝑚(𝑘 + 1) = 𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘) 
∆𝑢(𝑘) = 𝑢𝑚(𝑘) − 𝑢𝑚(𝑘 − 1) 
𝑥𝑓(𝑘) = [∆𝑥𝑚(𝑘 + 1) 𝑦(𝑘)]𝑇 

∆𝑈 = [∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ⋯ ∆𝑢(𝑘𝑖 + 2)]
𝑇 

we derive the augmented state space model as: 

[
∆𝑥𝑚(𝑘 + 1)
𝑦𝑚(𝑘 + 1)

]
⏞        

𝑥𝑓(𝑘+1)

= [
𝐴𝑚 0𝑚

𝑇

𝐶𝑚𝐴𝑚 1
]

⏞        
𝐴𝑎

[
∆𝑥𝑚(𝑘)
𝑦𝑚(𝑘)

]
⏞      

𝑥𝑓(𝑘)

+ [
𝐵𝑚
𝐶𝑚𝐵𝑚

]
⏞    

𝐵𝑎

∆𝑢(𝑘)                                                           

(19) 

𝑦𝑚(𝑘) =  [0 𝐼]⏞  
𝐶𝑎

[
∆𝑥𝑚(𝑘)
𝑦(𝑘)

]                                              (20) 

Based on the above state-space model (𝐴𝑎, 𝐵𝑎 , 𝐶𝑎), the 

predicted output variables can be expressed as: 

𝑦𝑚(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝑎𝐴𝑎𝑥𝑓(𝑘𝑖) + 𝐶𝑎𝐵𝑎∆𝑢(𝑘𝑖)                    (21) 

𝑦𝑚(𝑘𝑖 + 2|𝑘𝑖) = 𝐶𝑎𝐴𝑎
2𝑥𝑓(𝑘𝑖) + 𝐶𝑎𝐴𝑎𝐵𝑎∆𝑢(𝑘𝑖)

+ 𝐶𝑎𝐵𝑎∆𝑢(𝑘𝑖 + 1) 

𝑦𝑚(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐶𝑎𝐴𝑎
𝑁𝑝𝑥𝑓(𝑘𝑖)

+ 𝐶𝑎𝐴𝑎
𝑁𝑝−1𝐵𝑎∆𝑢(𝑘𝑖)

+ 𝐶𝑎𝐴𝑎
𝑁𝑝−2𝐵𝑎∆𝑢(𝑘𝑖 + 1) + ⋯

+ 𝐶𝑎𝐴𝑎
𝑁𝑝−𝑁𝐶𝐵𝑎∆𝑢(𝑘𝑖 + 𝑁𝐶 − 1) 

(23) 

Now, it is easy to show 

     𝑌𝑙𝑖𝑛 = 𝐹𝑥(𝑘𝑖) + 𝛷∆𝑈                                                            (24) 

where 

𝐹 =

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑃]

 
 
 
 

    

Φ =

[
 
 
 
 

𝐶𝐵           0
𝐶𝐴𝐵           𝐶𝐵

0        ⋯        0
0   ⋯    0

𝐶𝐴2𝐵 𝐶𝐴𝐵
⋮ ⋮

𝐶𝐴𝑁𝑃−1𝐵 𝐶𝐴𝑁𝑃−2𝐵

𝐶𝐵 ⋯ 0
⋮ ⋱ ⋮

𝐶𝐴𝑁𝑃−3𝐵 ⋯ 𝐶𝐴𝑁𝑃−𝑁𝐶𝐵]
 
 
 
 

 

To find the optimal ∆𝑢, the cost function (7) is used. Because 

the purpose of control is regulation, the cost function is 

modified into the following form: 

 

𝐽 = (𝑌𝑙𝑖𝑛 + ∆𝑦)
𝑇(𝑌𝑙𝑖𝑛 + ∆𝑦) + ∆𝑈

𝑇𝑅̅∆𝑈                                 (25) 

 

By using (24), the cost function 𝐽 can be expressed as: 

𝐽 = (𝐹𝑥(𝑘𝑖) + ∆𝑦)
𝑇(𝐹𝑥(𝑘𝑖) + ∆𝑦)
− 2∆𝑈𝑇𝛷𝑇(𝐹𝑥(𝑘𝑖) + ∆𝑦)
+ ∆𝑈𝑇(𝛷𝑇𝛷 + 𝑅̅)∆𝑈 

(26) 
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Differentiating the cost function 𝐽 in (26) with respect to ∆𝑈 

and then setting it equal to zero, we obtain 
𝜕𝐽

𝜕∆𝑈
= −2𝛷𝑇(𝐹𝑥(𝑘𝑖) + ∆𝑦) + 2(𝛷

𝑇𝛷 + 𝑅̅)∆𝑈 = 0         (27) 

Assuming that (Φ𝑇Φ+ 𝑅̅)−1 exists, the optimized control 

signal is obtained as: 

∆𝑈 = (𝛷𝑇𝛷 + 𝑅̅)−1𝛷𝑇(𝐹𝑥(𝑘𝑖) + ∆𝑦)                               (28) 

In (28), ∆𝑦 shows the difference between the responses of 

linear and nonlinear models and can be calculated by using 

Corollary 2. 

III. CASE STUDIES 

In this section, the proposed method is applied to two case 

study models, and the results of its application are compared 

with those of linear, EDMC, and RMPC (LMI) controllers to 

evaluate its capability to compensate for nonlinear effects. 

LMI-based optimization problems can be solved by the 

polynomial method and can be implemented online. In this 

method, the control signal is separated into two ingredients: 

feedback and feed-forward. The LMI method requires low 

computational effort. 
 

 Example 1 – Consider a DC/AC converter with the 

following state-space model [19]. 

𝑥̇1(𝑡) = −
𝑥2
2(𝑡)

𝑥1(𝑡)
− 5𝑥1(𝑡) − 5𝑢(𝑡) 

𝑥̇2(𝑡) = −
𝑥2
3(𝑡)

𝑥1
2(𝑡)

− 7𝑥1(𝑡) + (5
𝑥2(𝑡)

𝑥1(𝑡)
+ 2𝑥1(𝑡))𝑢(𝑡) 

𝑦(𝑡) = 𝑥2(𝑡) 
The selected sampling time is equal to 0.001 min. Figure 2 

shows the simulation results obtained with the proposed 

method, assuming the operating point 𝑥𝑠𝑠 = [0.8234    1] and 

initial conditions of 𝑥(0) = [0.1 0]𝑇. In the closed loop 

system simulation, the following parameters are used. 

𝑁𝑃 = 20   ,   𝑁𝐶 = 3   ,   𝛼 = 1   ,   𝛾 = 0.0025 

𝛽 = 0.01   ,   𝛿 = 0.01 
For comparison, Fig. 2 presents the responses of the linear, 

EDMC, and RMPC controllers. As shown in the figure, the 

proposed method improves the response of the linear 

controller and compensates for For comparison, Fig. 2 

presents the responses of the linear, EDMC, and RMPC 

controllers. As shown in the figure, the proposed method 

improves the response of the linear controller and 

compensates for the neglected nonlinear dynamics. 

Compared with EDMC, the proposed method has a faster 

response but requires a relatively larger control signal. The 

settling time is about 0.02 min for the suggested method, 

compared with about 0.03 min EDMC. In addition, the 

proposed method reduces the necessary time for EDMC 

method calculation by 37.9%. 

 

 
Fig. 2. Comparison between the proposed method, linear, EDMC and 

RMPC controllers for a DC/AC converter. 
 

Example 2 – In this example, the proposed method is 

applied to a model of an isothermal reaction in an SRT, with 

the following state-space model [20]: 

𝑥̇1(𝑡) = −50𝑥1(𝑡) − 10𝑥1
2(𝑡) + (10 − 𝑥1(𝑡))𝑢(𝑡) 

𝑥̇2(𝑡) = 50𝑥1(𝑡) − 100𝑥2(𝑡) − 𝑥2(𝑡)𝑢(𝑡) 
𝑦(𝑡) = 𝑥2(𝑡) 
The selection sampling time is 0.002h. Figure 3 shows the 

simulation results obtained with the proposed method, 

assuming the operating point 𝑦𝑠𝑠 = 1.117 and initial 

conditions of 𝑥(0) = [2 1]𝑇. In the closed loop system 

simulation, the following parameters are used: 

𝑁𝑃 = 20   ,   𝑁𝐶 = 3   ,   𝛼 = 0   ,   𝛾 = 0.00069 

𝛽 = 0.01   ,   𝛿 = 0.01 

For comparison, Fig. 3 plots the responses of the linear, 

EDMC controllers. Again, the suggested method is shown to 

enhance the response of the linear controller and to properly 

compensate for the neglected nonlinear dynamics. Although 

its performance is comparable with EDMC, its control signal 

is smoother. In addition, the proposed method reduces the 

necessary time for EDMC method calculation by 57.5%. 

 

 

 
Fig. 3. Comparison between the proposed method, linear, EDMC and 

RMPC controllers for an isothermal reaction in an SRT. 

IV. CONCLUSION 

 The behavior of real-world systems can be estimated 

around an operating point by using linear models with good 

accuracy. However, by getting far away from the operating 

point, the linear estimation accuracy decreases, and the 

neglected dynamics in the linear model leads to a degraded 

controller performance. In the present study, an MPC is first 

designed in state space based on a linear model and then 
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adjusted by using modal series to compensate for the effects 

of the neglected nonlinear dynamics in the linear model. 

 Compared with EDMC and RMPC, the proposed method 

requires a lower computational capacity and, unlike EDMC, 

can be applied to stable and unstable systems. Compared with 

robust MPC methods, the suggested technique is less 

conservative. Moreover, because the proposed controller 

adjusts a linear controller instead of designing a new one, it 

can easily be applied in industries to modify controllers that 

have been designed based on linear models. In this work, the 

proposed method is used to control a DC/AC converter and 

an isothermal reaction in an STR. The results show that the 

proposed method properly compensates for the effect of the 

neglected nonlinear dynamics and that its performance is 

comparable with that of EDMC and RMPC. In addition, the 

method has a significantly reduced computational burden. 

REFERENCES 

[1] A. Yetendje, M.M. Seron, J. A De Doná, “Robust multiactuator fault-

tolerant MPC design for constrained systems”. International Journal of 

Robust and Nonlinear Control. vol. 23, pp. 1828–1845, November 
2013.  

[2] M. Cannon, W. Liao, B. Kouvaritakis, “Efficient MPC optimization 

using Pontryagin’s minimum principle”. International Journal of 
Robust and Nonlinear Control. vol. 18, no. 8, pp. 831–844, May 2008.  

[3] E. F. Camacho, C. Bordons, “Model Predictive Control in the Process 

Industry”, Springer, 1995. 
[4] M. Haeri, “Improved EDMC for the processes with high variations 

and/or sign changes in steady-state gain”, The Internationa Journal for 

Computation and Mathematics in electrical and Electronic 
Engineering, vol. 23, no. 2, pp. 361–380, 2004. 

[5] T. Peterson, E. Hernandez, Y. Arkun, F. J. Schork, “A nonlinear DMC 

algorithm and its application to a semibatch polymerization reactor”, In 
Chemical Eng. Sci; vol. 47, no. 4, pp. 737–742, 1992. 

[6] V. Ghaffari, S. V.  Naghavi, A. A. Safavi, “Robust model predictive 

control of a class of uncertain nonlinear systems with application to 
typical CSTR problems”, In Journal of Process Control, vol. 23, no. 4, 

pp. 493-499, April 2013. 

[7] N. Poursafar, H. D. Taghirad, M. Haeri, “Model predictive control of 
non-linear discrete time systems: a linear matrix inequality approach”, 

In IET Control Theory and Applications, vol. 4, no. 10, pp. 1922-1932, 

October 2010. 
[8] S. Shamaghdari, S. K. Y. Nikravesh, M. Haeri, “Integrated guidance 

and control of elastic flight vehicle based on robust MPC”, 

International Journal of Robust and Nonlinear Control, vol. 25, no. 15, 
pp. 2608-2630, October 2014. 

[9] H. M. Shanechi, N. Pariz, E. Vaahedi, “General nonlinear modal 

representation of large scale power systems”, In IEEE Transactions on 
Power Systems, vol. 18, no. 3, pp. 1103-1109, July 2003. 

[10] N. Pariz, H. M. Shanechi, E. Vaahedi, “Explaining and Validating 
Stressed Power Systems Behavior Using Modal Series”. In IEEE 

Transactions on Power Systems, vol. 18, no. 2, pp. 778-785, May 2003. 

[11] A. Abdollahi, N. Pariz, H. M. Shanechi, “Modal Series Method for 
Nonautonomous Nonlinear Systems”, In IEEE Multi-conference on 

Systems and Control, pp. 759-764, November 2007. 

[12] M. Khatibi, H. M. Shanechi, “Using modal series to analyze the 
transient response of oscillators”, International journal of circuit theory 

and applications, vol. 39, no. 2, pp. 127-134, August 2011. 

[13] A. Jajarmi, H. Ramezanpour, N. Pariz, A. V. Kamyad, “A Novel 
Computational Approach to Solve Nonlinear Boundary Value 

Problems Using Extended Modal Series Method”. 19th Iranian 

Conference on Electrical Engeneering, pp. 1-5, July 2011. 
[14] A. Jajarmi, N. Pariz, S. Effati, A. V. Kamyad, “Solving infinite horizon 

nonlinear optimal control problems using an extended modal series 

method”, Journal of Zhejiang University-SCIENCE, vol. 12, no. 8, 
August 2011. 

[15] A. Jajarmi, N. Pariz, A. V. Kamyad, S. Efati, “A novel modal series 

representation approach to solve a class of nonlinear optimal control 
problems”, International Journal of Innovative, Computing, 

Information and Control, vol. 7, no. 2, pp. 501-510, March 2011. 

[16] S. S. Sajjadi, N. Pariz, A. Karimpour, A. Jajarmi, “An off-line NMPC 
strategy for continuous-time nonlinear systems using an extended 

modal series method”, Nonlinear Dynamics, vol. 78, No. 4, pp. 2651-

2674, December 2014. 
[17] K. Yang, Y. Kang, S. Sukkarieh, “Adaptive Nonlinear Model 

Predictive Path-Following Control for a Fixed-wing Unmanned Aerial 

Vehicle”, International Journal of Control, Automation, and Systems, 
vol. 11, No. 1, pp. 65-74, February 2013. 

[18] M. Khatibi, H. M. Shanechi, “Using a Modified Modal Series to 

Analyze Weakly Nonlinear Circuits”, International Journal of 
Electronics, vol. 102, no. 9, pp. 1457-1474, November 2014. 

[19] K. M. Passino, “Disturbance rejection in nonlinear systems: example”, 

Proceedings of IEE-D 1989, vol. 136, No. 6, pp. 317-323, November 
1989. 

[20] C. Kravaris, P. Daoutidis, “Nonlinear state feedback control of second 

order nonminimum phase systems”, Computers and Chemical 
Engineering, vol. 14, No. 4, pp. 439-449, May 1990. 


