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Design and evaluation of offline/online
controller for series hybrid electric vehicles

Behzad Zabihi ", Seyed Mohammad Ali Mohammadi and Adib Barshan

Abstract_ This study is aimed at designing offline and online
controller for energy management of series hybrid electric
vehicles (SHEV). Where besides decreasing fuel consumption
and keeping BATTERY state of charge within acceptable range,
reduces air pollution. In this paper two energy management
strategies of SHEV are designed. In first strategy based on
known driving cycle, a fuzzy logic controller (FLC) is designed
to control power of Electric battery (EB) and internal
combustion engine (ICE). In the second control strategy, width
of Gaussian membership functions in FLCs of first strategy are
optimized. Preliminarily optimization of Gaussian membership
functions widths is done by ant colony optimization (ACO)
algorithm, then according to four representative driving cycles,
four optimized FLCs are designed. In contrast with first strategy
the four FLCs can control and manage power of EB and ICM
for an unknown driving cycle. Recognition of deriving cycle is
based on features extraction of each driving cycle. A learning
vector quantization (LVQ) neural network is used to recognized
pattern of unknown driving cycle. Finally after recognition of
driving cycle, driving cycle recognition (DCR) network
algorithm is used to manage switching between optimized FLCs.
To verify performance and efficiency of proposed method
simulation performed due to Matlab/Advisor environment.

Keywords— Series Hybrid Electric vehicle (SHEV), Energy
Management, Fuzzy Logic controller (FLC), Ant colony
optimization, Driving cycle, Pattern recognition

I. INTRODUCTION

Today’s growing oil price and environmental protection
made automotive industry to focus on economic vehicles
with low air pollution and high performance [1]. Automotive
industry is aiming at developing new generation of vehicles
to reduce dependency on fossil fuels without sacrificing
vehicle performance [2, 3].Thus Hybrid electric vehicles
(HEVS) based on hybrid technology seems to be the most
economical solution so far [3].

HEVs are generally known as vehicles with two types of
energy sources, internal combustion engine (ICE) and electric
Battery (EB). Three main structures for hybrid drivetrains are
series, parallel and series-parallel structure. In series hybrid
electric vehicle (SHEV) a generator first convert mechanical
output of engine to electricity. Converted electricity is used
to charge battery or propel the wheel via electric motor and
mechanical transmission [4, 5]. Fig 1 shows the four
operating modes needed to illustrate power flow control in
SHEVs. During start up, acceleration or normal driving, both
power sources deliver electrical energy to power converter by
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generator. At light load since engine output is greater than
required for mechanical power, generated electrical energy is
used to charge battery. During barking and deceleration,
Electric motor (EM) works as generator and kinetic energy of
wheels is transformed to electricity, hence battery is charged
via power converter [5].
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Fig.1. Series Hybrid operating modes (a) startup/ normal driving/
acceleration (b) light load (c) deceleration/ braking (d) Battery charging [3]
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B: Battery, E: Engine, F: Fuel tank, G: Generator, M:
Electric Motor, P: Power convertor, T: Transmission system
s Electrical Link Hydraulic Link == Mechanical
link.

Because of power flow control for both mechanical and
electrical path, Coordination between energy sources in
HEVs is the main challenge. Many control approaches have
been proposed to manage energy between EB and ICE [6].
The main proposed approaches to the energy management
problem and control power sources in HEVs are rule based
energy management and optimization based control strategies

[7].

Control rules in Rule based control strategies are designed
based on intuition and expertise of designer. Deterministic
and fuzzy rule based methods are the main classification of
rule based strategies. Nonlinear dynamic, parameter
sensitivity to ambient factors, load complexity and
uncertainty of system made the fuzzy based control methods
to be the hot direction in HEVs [8, 9]. Different control
strategies have been proposed to control and manage power
sources in HEVs. Antonio Piccolo et al, proposed an energy
management methodology that starts from desired vehicle on
road performance. Genetic algorithm is employed to identify
value of the energy flows management parameters that
minimize a cost function descriptive of the design objectives
in terms of fuel consumption and emissions [10]. JohnT.B.A
Kessels et al, proposed an online energy management strategy
that can mimic optimal solution without using a priori road
information. Instead of solving a mathematical optimization
problem, the methodology concentrates on a physical
explanation about when to produce, consume, and store
electric power [11]. In research by Vanessa Paladini et al,
numerical optimization of vehicle configuration and control
strategy of the hybrid electric vehicle is introduced.
Optimization is carried out with multi objective genetic
algorithm and the goal of optimization is to reduce fuel
consumption [12]. This paper is organized as follows; section
2 discusses pattern recognition of unknown driving cycle and
consists of feature extraction, DCR network structure and
simulation results of pattern recognition procedure. First
proposed control strategy is explained in section 3. Section 4
provides discussion about second control strategy that can
control power sources of HEVs for an unknown driving
cycle. Finally in section 5 simulation results of both control
strategies are discussed.

Il. PATTERN RECOGNITION OF UNKNOWN DRIVING CYCLE

Pattern recognition of driving cycle can be divided to three
steps:

1) Features extraction: in this step large number of features in
driving cycle are measured to be classified later.

2) Feature selection: in first step large number of features
have been extracted. But generally it is emphasized to have
low number of features [13]. Because of large number and
correlation of features, principal component analysis (PCA)
method has been used to reduce dimension of feature space
[14].

3) Classification of patterns: in this step selected features are
applied to a classifier structure. According to the features of

input, this structure determines the most similarity between
input and one of the classes. Hence the input is belonged to
the most similar class according to common features.
Similarity level is usually measured by a distance criterion.
For example hamming distance, Euclidean distance, and
square distance are most common criterions. Classification is
almost done according to a set of input features that is called
feature vector. Classification methods are divided in to two
parts: numerical and non-numerical. Numerical method is
based on deterministic and statistical measurement in
geometric space. Non-numerical method is based on sing
processing by fuzzy approach, genetic algorithm and some
other algorithms [15, 16].

In HEVS driving cycles play great role in fuel economic and
air pollution. In the next part, driving cycle recognition by
drive cycle recognition (DCR) algorithm is explained that is
based on LVQ neural network.

A. Feature extraction from driving cycle

In this part DCR algorithm is used to assign unknown driving
cycles in to four standard determined driving cycles. Fig 2
shows mechanism of DCR algorithm. The four standard
driving cycles are shown in Fig 3. Name, type and class
number of the four standard driving cycles are listed in table
1.

Standard
Driving cycle(4)

Unknown Feature
cycle Extraction(7)

LVQ Neural Training Feature
Network Samples Extraction(7)
Class Index

Fig.2. Mechanism of DCR algorithm

Each driving pattern mainly depends on traffic load of city,
road type and road condition [14, 16]. In this study for pattern
recognition, four standard driving cycles:

- CYC New York Bus

- CYC-INDIA URBAN-SAMPLE

- CYC-Nuremberg R36

- CYC-SCo3
Are used, which include all road types and conditions

TABLE1
NAME, TYPE AND CLASS NUMBER OF THE FOUR STANDARD
DRIVING CYCLES

Type of drive Drive cycle name Drive cycle
cycle Number
CYC-
SnG road NewY orkBus .
CYC-Nuemberg
Urban road R36 2
CYC-INDIA -
Suburb road URBAN- 3
SAMPLE
Highway CYC-SC03 4
road
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Fig3: Four representative driving cycles

To recognize pattern of driving cycles the seven selected
features are as follows.

e  Maximum speed (V,ax)

e Average speed (Vppg)

e  Maximum acceleration (a,;q)

e  Maximum deceleration (decy, )

e Average acceleration (a,yg)

e speed standard deviation (V;4)

e percentage of idle time (ldle percent)

Viax = max(V(teyr), V(tcur — A), .V (Ecur —
(n—1).At) 1)
ffeur yyae— [feur-awygyqae
Vg = b @
Apax = max(a(teyr), alteyr — At), .. a(toyr — (0 —
1).At) 3)
decyqyx = min(a(teyr), altey, — AL), .. alteyr — (n —
1).At) 4)
(ang = ;™" a(t). (a(t) > 0)dt —
[, a(t)dt. (a(t) > 0)dt. (5)
[P VimV_avg)"2
Vsta = % (6)
n—1 _;
Idle—percent _ Zizo [V(tcur)~L.At)<eps] «100 )

n
In Fig 4 recognition period is shown, Aw is recognition cycle
and At is prediction period. In fact extracted features of
unknown driving cycle are measured by experimental
methods. In this study due to the absence of measurement
tools, data are calculated via equations (1) to (7). Since
feature extraction from huge amount of data is time
consuming, recognition period is divided in to equal time
intervals, since t.,,. Aw = At represents current time. In Fig
5 extracted features of CYC-CSHVR driving cycle resultant

of related equations are shown.
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Fig5. Extracted features of CYC- CSHVR driving cycle

B. DCR network structure

In this part an LVQ neural network is used as classifier set.
LVQ is supervised version of SOM neural network
introduced by Kohonen [17]. Simplicity of this neural
network make it a popular solution for recognition and
identification of patterns in control systems.

Structure of LVQ network is shown in Fig 6. Where I, O, C
are input layer, output layer and competitive layer
respectively, also H represents neurons. Features vector is
defined as X = [Xy, X,, ..., X,] and is applied to input layer.
w;; Shows weight between ith neuron and jth neuron. In
competitive layer the winner is a layer with smallest
Euclidian norm and most similar to one of the four
representative classes. The winner layer is coded by binary
value of 1 and other layers are 0. Therefore four driving
cycles are coded 0001,0010,0100,1000 respectively and
winner layer is considered as output of neural network.
Competitive layer Output layer

Input layer

Drive cycle 1

Fig6. LVQ neural network structure

For designing LVQ neural network, seventy percent, fifteen
percent and fifteen percent of the four selected driving cycle’s
data are used respectively to train, evaluate and test of neural
network. In this study input of neural network is a vector
consist of seven features of unknown driving cycle, where is
resultant of equations (1) to (7). In Fig 7 the interaction
matrixes of training, evaluation and test data are shown.
Interaction matrix shows that ninety percent of data are
classified correctly and this fact confirms a correct
classification. The target and neural network output are
shown in Fig 8.
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Fig7. Interaction matrixes

C. Simulation

In this part DCR network is used to classify driving cycles of
CYC- WVUSUB. The seven features of each unknown cycle
is extracted via equations (1) to (7). According to the features
of unknown driving cycle, LVQ network recognizes the class
which each part of cycle is belonged to. Classification
procedure of unknown driving cycle to the four representative
cycles is shown in Fig 9.

lll. FIRST PROPOSED CONTROL STRATEGY

Since energy management is important is HEVSs, therefore a
fuzzy logic controller is designed to control power and
energy between energy sources. Characteristics of studied
SHEV in this research are listed in table 2. In first proposed
control strategy a designed Mamdani type fuzzy logic
controller (FLC) is used. In this strategy driving cycle is
considered to be known so that Performance of proposed
FLC as an offline controller is compared with default
controller of Advisor software. In Fig 10 and 11, box of
vehicle model and Structure of fuzzy controller are shown
respectively. Since FLC is not based on precise
mathematical model, requested power from ICE is lower.
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Fig9. Classification of Unknown driving cycle
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TABLE2
CHARACTERISTICS OF STUDIED SHEV

Components Parameters Values
Maximum power 41 kw

Engine Peak efficiency 0.34
Energy Storage Capacity 12 An
(Battery) Normal coltage 184V
Maximum power 75 kw

Motor Peak efficiency 0.92
Maximum power 75 kw

Generator Peak efficiency 0.95

Drive type Front-wheel drive
Vehicle Mass 1373 kg

Fig10. Box of vehicle model in Advisor

Two inputs of fuzzy logic controller are the chain of hybrid
power (P1) and state of charge (SOC). In Fig 12 to 14
membership functions of first input, second input and output
of FLC are shown respectively
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Fig.11. Structure of proposed FLC
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The cost function J is in fact is a weighted summation of fuel
consumption and SOC changes. At the end of driving cycle,
minimization of cost function leads to minimum changes of
SOC and fuel consumption. The value of weight W is
considered properly to highlight importance of fuel
consumption and SOC. In this study W is equal to 0.02.
Width of input and output Gaussian membership functions
are considered as optimization parameters. In first proposed
control strategy for POWER REQ’D BY BUS as first input
and SOC as the second input, four and three Gaussian
membership functions used respectively. Also four
membership functions are used for the output P2 and total
optimization parameters are eleven. In order to design sub
optimal energy management strategy based on pattern
recognition, it is necessary to classify unknown driving cycle
by LVQ neural network. Then an optimal FLC is used in that
class. Hence according to the four representative driving
cycles that explained before, four FLCs are needed.
Optimization of FLCs is done by continues ACO algorithm
and table 3 shows optimization parameters.

TABLE3
CHARACTERISTIC OF CONTINUES ACO ALGORITHM

19

Degree of membership

o
N
T
\

0 02 04 06 08 1 12 14 16 18 2
Fig 14. Output of FLC

IV. SECOND PROPOSED CONTROL STRATEGY

In first control strategy of SHEV, data of known driving cycle
were used. In this part since driving cycle is considered to be
unknown, in order to manage power sources of HEV, online
controller is proposed. Second control strategy is consist of
three parts.

A. Optimization: to reduce air pollution and also keeping
SOC within acceptable range at the end of driving cycle,
performance of controller is optimized by continues ant
colony optimization (ACO) algorithm.

B. Pattern recognition and classification: classification of
different driving cycles is done by proposed LVQ neural
network.

C. Neural fuzzy controller: in this part by
combining results of the last two parts, a sub
optimal FLC controller is designed.

Optimization:To optimize performance of first proposed
FLC, Continues ACO algorithm is used which leads to
reducing air pollution and also keeping SOC within
acceptable rang. To perform optimization, target function and
tuning parameters are defined and specified. Equation 8
defines Target function

J@xex = Yy E1 ASOC? +w x FC (8)

Where X is parameter optimization space, N is number of
samples, W is weight of fuel consumption and FC represents
amount of fuel consumption in driving cycle period according
to one liter per 100 kilometer. Also ASOC; is defined as below

Maximum iteration 60
Population size 10
Selection pressure 0.5
Difference rate - distance 1

Fig 15 to 18 show the optimal membership functions and
target functions of representative driving cycles after
optimization process.

Designing sub optimal Neural-fuzzy controller:In this part
a Neural-fuzzy energy management based on pattern
recognition by LVQ neural network is presented. The
proposed controller is combination of optimal fuzzy
controller and LVQ neural network. Since driving cycle is
unknown, the data are applied to LVVQ neural network and
then are classified to four classes based on four representative
driving cycles. After recognition of driving cycle the related
designed optimal FLC start energy managing of SHEV. In
Fig 19 structure of second proposed control strategy is shown.
In the next part performance of controller is evaluated by a
simulation example.
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Fig.15. First input of sub optimal FLC
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Fig.19. Structure of second proposed control strategy

V. SIMULATION

In this part performance of proposed Neural- Fuzzy controller
on reducing fuel consumption, air pollution and also keeping
SOC within acceptable range, is simulated. First the features
of CYC- HLO7 driving cycle as unknown driving cycle are
extracted. Feature vector as input is applied to LVQ neural
network. After pattern recognition and classification, the
designed optimal Neural-Fuzzy controller of that class is
switch on to control energy sources of SHEV.

A. Controller effect on fuel consumption

In Fig 20 effect of default Advisor software controller, first
proposed FLC and proposed Neural-Fuzzy controller on fuel
consumption are shown. It is clear that total fuel consumption
curve of Neural-Fuzzy controller is below of other curves.
This fact shows better performance of neural-fuzzy controller
on reducing fuel consumption.

B. Controller effect on pollutants emission

HC pollutan:In Fig 21 effect of default Advisor software
controller, first proposed FLC and proposed Neural-Fuzzy
controller on HC pollutant emission is shown. The results of
simulation are listed in table 4 and show that neural-fuzzy
controller has better effect on HC pollutant emission.
Second control strategy decreases HC pollutant emission
85% and 75% better than advisor software default controller
and first FLC respectively.
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CO pollutant: Fig 22 shows the effect of default Advisor
software controller, first proposed FLC and proposed Neural-
Fuzzy controller on emission of CO pollutant. The results of
simulation are listed in table 5. The results show that neural-
fuzzy controller has better effect on CO pollutant emission.
Second proposed control strategy decreases CO pollutant
emission 94% and 82% better than Advisor software default
controller and first FLC, respectively.

Nox pollutant: In Fig 23 effect of default Advisor
software controller, first proposed FLC and proposed Neural-
Fuzzy controller on emission of Nox pollutant is shown. The
results of simulation are listed in table 6, and it is clear that
neural-fuzzy controller has better effect on Nox pollutant
emission. Hence second proposed control strategy decreases
Nox pollutant emission 97% and 95% better than advisor
software default controller and first FLC, respectively.

45— g - : -

CO-Advisor
ar | —— CO- Fuzzy I
CO- Neural Fuzzy |

351 |

3+ -

emissions
N
N ol
T T
. .

=

a1
T
1

[y
T
1

05 | \ ,

o .
0 100 200 300

Fig.22. Controller effect on CO pollutant emission
0.16 T T T T
NOx- Neural Fuzzy
-NOx-Advisor |
""""" NOx-Fuzzy

400 500

0.14 -

0.12-

0.1 N

0.08 - ‘ E

emissions

0061 | || 1

0.04 -

0.02|- u .

0t
0 100 200 300 400
Fig23. Controller effect on NOx pollutant emission

500

Controller effect on SOC: Fig 24 shows the effect of default
Advisor software controller, first proposed FLC and proposed
Neural-Fuzzy controller on SOC. According to simulation
results, SOC at the end of driving cycle is kept within
acceptable range by all three controllers. Since structure of
Neural fuzzy controller is based on pattern recognition of
unknown driving cycle, classification and switching of
optimal designed FLCs. Therefore neural fuzzy controller
kept SOC within the best range.

CYC-HLO7

21

TABLE 4
CONTROLLER EFFECT ON HC POLLUTANT EMISSION
Area under the .
Controller type curve [H| Hc (grams/mile)
Advisor default
controller 1.0216 2.25
FLC of first 06132 1354
strategy
neural-fuzzy
controller 0.1387 0.352
TABLES:

CONTROLLER EFFECT ON CO POLLUTANT EMISSION

Area under the ]
Controller type curve [Col Co (grams/mile)
Advisor default
controller 6.91 15.179
FLC of first 198 438
strategy
neural-fuzzy 03 0762
controller
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Fig. 24. Controller effect on SOC
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TABLE 6
CONTROLLER EFFECT ON NOX POLLUTANT EMISSION
Area under the .
Controller type curve INOX]| NOXx (grams/mile)
Advisor default 05904 13
controller
FLC of first 03022 0667
strategy
neural-fuzzy 00116 003
controller
VI. CONCLUSION

In this study two control strategy for energy management of
SHEV are studied. In first control strategy a fuzzy logic
controller, as an offline controller is designed and replaced
with default Advisor software controller. Simulation results
show that proposed controller has better performance on
reducing fuel consumption, air pollution and keeping battery
charge level within acceptable range. The second proposed
strategy is focused on unknown driving cycle where in the
first strategy it is assumed that driving cycle is known.
Therefore in second control strategy a designed LVQ neural
network is used for pattern recognition of driving cycle, and
DCR algorithm classifies unknown driving cycle to four
representative cycles. For each representative cycles an
optimal FLC is designed which optimization of FLCs is done
by continues ACO algorithm. Finally after identification of
driving cycle class, the FLC of identified class is switch on to
control energy management of SHEV. In comparison with
first strategy second proposed controller is more complex and
0.358 sec slower than first one. But simulation results show
better performance of proposed controller than other
controllers of SHEVSs. The last proposed control strategy is
simulated for SEKELTON driving cycle. The results show
that neural fuzzy controller has the best performance on
reducing fuel consumption, air pollution and keeping battery
charge level within acceptable range than other controllers.
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