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Abstract_ This study is aimed at designing offline and online 

controller for energy management of series hybrid electric 

vehicles (SHEV). Where besides decreasing fuel consumption 

and keeping BATTERY state of charge within acceptable range, 

reduces air pollution. In this paper two energy management 

strategies of SHEV are designed. In first strategy based on 

known driving cycle, a fuzzy logic controller (FLC) is designed 

to control power of Electric battery (EB) and internal 

combustion engine (ICE). In the second control strategy, width 

of Gaussian membership functions in FLCs of first strategy are 

optimized. Preliminarily optimization of Gaussian membership 

functions widths is done by ant colony optimization (ACO) 

algorithm, then according to four representative driving cycles, 

four optimized FLCs are designed. In contrast with first strategy 

the four FLCs can control and manage power of EB and ICM 

for an unknown driving cycle. Recognition of deriving cycle is 

based on features extraction of each driving cycle. A learning 

vector quantization (LVQ) neural network is used to recognized 

pattern of unknown driving cycle. Finally after recognition of 

driving cycle, driving cycle recognition (DCR) network 

algorithm is used to manage switching between optimized FLCs. 

To verify performance and efficiency of proposed method 

simulation performed due to Matlab/Advisor environment.  
 

Keywords— Series Hybrid Electric vehicle (SHEV), Energy 

Management, Fuzzy Logic controller (FLC), Ant colony 

optimization, Driving cycle, Pattern recognition 

 

I. INTRODUCTION 

oday’s growing oil price and environmental protection 

made automotive industry to focus on economic vehicles 

with low air pollution and high performance [1]. Automotive 

industry is aiming at developing new generation of vehicles 

to reduce dependency on fossil fuels without sacrificing 

vehicle performance [2, 3].Thus Hybrid electric vehicles 

(HEVs) based on hybrid technology seems to be the most 

economical solution so far [3]. 

HEVs are generally known as vehicles with two types of 

energy sources, internal combustion engine (ICE) and electric 

Battery (EB). Three main structures for hybrid drivetrains are 

series, parallel and series-parallel structure. In series hybrid 

electric vehicle (SHEV) a generator first convert mechanical 

output of engine to electricity. Converted electricity is used 

to charge battery or propel the wheel via electric motor and  

mechanical transmission [4, 5]. Fig 1 shows the four 

operating modes needed to illustrate power flow control in 

SHEVs. During start up, acceleration or normal driving, both 

power sources deliver electrical energy to power converter by 
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generator. At light load since engine output is greater than 

required for mechanical power, generated electrical energy is 

used to charge battery. During barking and deceleration, 

Electric motor (EM) works as generator and kinetic energy of 

wheels is transformed to electricity, hence battery is charged 

via power converter [5]. 
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Fig.1. Series Hybrid operating modes (a) startup/ normal driving/ 

acceleration (b) light load (c) deceleration/ braking (d) Battery charging [3] 
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B: Battery, E: Engine, F: Fuel tank, G: Generator, M: 

Electric Motor, P: Power convertor,T: Transmission system 

          Electrical Link          Hydraulic Link          Mechanical 

link. 

Because of power flow control for both mechanical and 

electrical path, Coordination between energy sources in 

HEVs is the main challenge. Many control approaches have 

been proposed to manage energy between EB and ICE [6]. 

The main proposed approaches to the energy management 

problem and control power sources in HEVs are rule based 

energy management and optimization based control strategies 

[7].  

Control rules in Rule based control strategies are designed 

based on intuition and expertise of designer. Deterministic 

and fuzzy rule based methods are the main classification of 

rule based strategies. Nonlinear dynamic, parameter 

sensitivity to ambient factors, load complexity and 

uncertainty of system made the fuzzy based control methods 

to be the hot direction in HEVs [8, 9]. Different control 

strategies have been proposed to control and manage power 

sources in HEVs. Antonio Piccolo et al, proposed an energy 

management methodology that starts from desired vehicle on 

road performance. Genetic algorithm is employed to identify 

value of the energy flows management parameters that 

minimize a cost function descriptive of the design objectives 

in terms of fuel consumption and emissions [10]. JohnT.B.A 

Kessels et al, proposed an online energy management strategy 

that can mimic optimal solution without using a priori road 

information. Instead of solving a mathematical optimization 

problem, the methodology concentrates on a physical 

explanation about when to produce, consume, and store 

electric power [11]. In research by Vanessa Paladini et al, 

numerical optimization of vehicle configuration and control 

strategy of the hybrid electric vehicle is introduced. 

Optimization is carried out with multi objective genetic 

algorithm and the goal of optimization is to reduce fuel 

consumption [12]. This paper is organized as follows; section 

2 discusses pattern recognition of unknown driving cycle and 

consists of feature extraction, DCR network structure and 

simulation results of pattern recognition procedure. First 

proposed control strategy is explained in section 3. Section 4 

provides discussion about second control strategy that can 

control power sources of HEVs for an unknown driving 

cycle. Finally in section 5 simulation results of both control 

strategies are discussed. 

II. PATTERN RECOGNITION OF UNKNOWN DRIVING CYCLE 

Pattern recognition of driving cycle can be divided to three 

steps: 

1) Features extraction: in this step large number of features in 

driving cycle are measured to be classified later. 

2) Feature selection: in first step large number of features 

have been extracted. But generally it is emphasized to have 

low number of features [13]. Because of large number and 

correlation of features, principal component analysis (PCA) 

method has been used to reduce dimension of feature space 

[14]. 

3) Classification of patterns: in this step selected features are 

applied to a classifier structure. According to the features of 

input, this structure determines the most similarity between 

input and one of the classes. Hence the input is belonged to 

the most similar class according to common features. 

Similarity level is usually measured by a distance criterion. 

For example hamming distance, Euclidean distance, and 

square distance are most common criterions. Classification is 

almost done according to a set of input features that is called 

feature vector. Classification methods are divided in to two 

parts: numerical and non-numerical. Numerical method is 

based on deterministic and statistical measurement in 

geometric space. Non-numerical method is based on sing 

processing by fuzzy approach, genetic algorithm and some 

other algorithms [15, 16]. 

In HEVS driving cycles play great role in fuel economic and 

air pollution. In the next part, driving cycle recognition by 

drive cycle recognition (DCR) algorithm is explained that is 

based on LVQ neural network. 

A. Feature extraction from driving cycle 

In this part DCR algorithm is used to assign unknown driving 

cycles in to four standard determined driving cycles. Fig 2 

shows mechanism of DCR algorithm. The four standard 

driving cycles are shown in Fig 3. Name, type and class 

number of the four standard driving cycles are listed in table 

1. 

 
Fig.2. Mechanism of DCR algorithm 

 

Each driving pattern mainly depends on traffic load of city, 

road type and road condition [14, 16]. In this study for pattern 

recognition, four standard driving cycles: 

- CYC New York Bus  

- CYC-INDIA URBAN-SAMPLE 

- CYC-Nuremberg R36  

- CYC-SCO3 

Are used, which include all road types and conditions 

 
TABLE1 

 NAME, TYPE AND CLASS NUMBER OF THE FOUR STANDARD 

DRIVING CYCLES 

Drive cycle 

Number 
Drive cycle name 

Type of drive 

cycle 

1 
CYC-

NewYorkBus 
SnG road 

2 
CYC-Nuemberg 

R36 
Urban road 

3 

CYC-INDIA -   

URBAN-

SAMPLE 

Suburb road 

4 CYC-SC03 
Highway 

road 
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Fig3: Four representative driving cycles 
 

To recognize pattern of driving cycles the seven selected 

features are as follows. 

 Maximum speed (𝑉𝑚𝑎𝑥) 

 Average speed (𝑉𝑎𝑣𝑔) 

 Maximum acceleration (𝑎𝑚𝑎𝑥) 

 Maximum deceleration (𝑑𝑒𝑐𝑚𝑎𝑥) 

 Average acceleration (𝑎𝑎𝑣𝑔) 

 speed standard deviation (𝑉𝑠𝑡𝑑) 

 percentage of idle time (Idle percent) 

𝑉𝑀𝑎𝑥 = max⁡(𝑉(𝑡𝑐𝑢𝑟), 𝑉(𝑡𝑐𝑢𝑟 − ∆𝑡), …𝑉(𝑡𝑐𝑢𝑟 −
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑛 − 1). ∆𝑡)                                                            (1) 

𝑉𝑎𝑣𝑔 =
∫ 𝑉(𝑡)𝑑𝑡−∫ 𝑉(𝑡)𝑑𝑡

𝑡𝑐𝑢𝑟−∆𝑤
0

𝑡𝑐𝑢𝑟
0

∆𝑤
                                       (2) 

𝑎𝑀𝑎𝑥 = max⁡(𝑎(𝑡𝑐𝑢𝑟), 𝑎(𝑡𝑐𝑢𝑟 − ∆𝑡), … 𝑎(𝑡𝑐𝑢𝑟 − (𝑛 −
1). ∆𝑡)                                                                                   (3) 

𝑑𝑒𝑐𝑀𝑎𝑥 = min(𝑎(𝑡𝑐𝑢𝑟), 𝑎(𝑡𝑐𝑢𝑟 − ∆𝑡), …𝑎(𝑡𝑐𝑢𝑟 − (𝑛 −
1). ∆𝑡)                                                                                         (4) 

𝑎𝑎𝑣𝑔 = ∫ 𝑎(𝑡). (𝑎(𝑡) > 0)𝑑𝑡 −
𝑡𝑐𝑢𝑟
0

∫ 𝑎(𝑡)𝑑𝑡. (𝑎(𝑡) > 0)𝑑𝑡.
𝑡𝑐𝑢𝑟−∆𝑤
0

                                                   (5) 

𝑉𝑆𝑡𝑑 =
√∑ (𝑉𝑖−𝑉−𝑎𝑣𝑔)^2

𝑛−1
𝑖=0

𝑛
                                                             (6) 

𝐼𝑑𝑙𝑒−𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
∑ [𝑉(𝑡𝑐𝑢𝑟)−𝑖.∆𝑡)<𝑒𝑝𝑠]
𝑛−1
𝑖=0

𝑛
∗ 100                      (7) 

In Fig 4 recognition period is shown, ∆𝜔 is recognition cycle 

and ∆𝑡 is prediction period. In fact extracted features of 

unknown driving cycle are measured by experimental 

methods. In this study due to the absence of measurement 

tools, data are calculated via equations (1) to (7). Since 

feature extraction from huge amount of data is time 

consuming, recognition period is divided in to equal time 

intervals, since 𝑡𝑐𝑢𝑟 . ∆𝜔 = ∆𝑡 represents current time. In Fig 

5 extracted features of CYC-CSHVR driving cycle resultant 

of related equations are shown. 

 
Fig.4.Period of driving cycle recognition 

 
Fig5. Extracted features of CYC- CSHVR driving cycle 

B. DCR network structure 

In this part an LVQ neural network is used as classifier set. 

LVQ is supervised version of SOM neural network 

introduced by Kohonen [17]. Simplicity of this neural 

network make it a popular solution for recognition and 

identification of patterns in control systems. 

Structure of LVQ network is shown in Fig 6. Where I, O, C 

are input layer, output layer and competitive layer 

respectively, also H represents neurons. Features vector is 

defined as 𝑋 = [𝑋1, 𝑋2, … , 𝑋7] and is applied to input layer. 

𝜔𝑖𝑗  Shows weight between ith neuron and jth neuron. In 

competitive layer the winner is a layer with smallest 

Euclidian norm and most similar to one of the four 

representative classes. The winner layer is coded by binary 

value of 1 and other layers are 0. Therefore four driving 

cycles are coded 0001,0010,0100,1000 respectively and 

winner layer is considered as output of neural network. 

 
Fig6. LVQ neural network structure 

 

For designing LVQ neural network, seventy percent, fifteen 

percent and fifteen percent of the four selected driving cycle’s 

data are used respectively to train, evaluate and test of neural 

network. In this study input of neural network is a vector 

consist of seven features of unknown driving cycle, where is 

resultant of equations (1) to (7). In Fig 7 the interaction 

matrixes of training, evaluation and test data are shown. 

Interaction matrix shows that ninety percent of data are 

classified correctly and this fact confirms a correct 

classification. The target and neural network output are 

shown in Fig 8. 
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Fig7. Interaction matrixes 

C. Simulation 

In this part DCR network is used to classify driving cycles of 

CYC- WVUSUB. The seven features of each unknown cycle 

is extracted via equations (1) to (7). According to the features 

of unknown driving cycle, LVQ network recognizes the class 

which each part of cycle is belonged to. Classification 

procedure of unknown driving cycle to the four representative 

cycles is shown in Fig 9. 

III. FIRST PROPOSED CONTROL STRATEGY 

Since energy management is important is HEVs, therefore a 

fuzzy logic controller is designed to control power and 

energy between energy sources. Characteristics of studied 

SHEV in this research are listed in table 2. In first proposed 

control strategy a designed Mamdani type fuzzy logic 

controller (FLC) is used. In this strategy driving cycle is 

considered to be known so that Performance of proposed 

FLC as an offline controller is compared with default 

controller of Advisor software. In Fig 10 and 11, box of 

vehicle model and Structure of fuzzy controller are shown 

respectively. Since FLC is not based on precise 

mathematical model, requested power from ICE is lower.  

 
Fig8. Target and neural network output 

 
Fig9. Classification of Unknown driving cycle 

TABLE2 

 CHARACTERISTICS OF STUDIED SHEV 
Values Parameters Components 

41 kw Maximum power 

Engine 
0.34 Peak efficiency 

12 Ah Capacity 
Energy Storage 

(Battery) 184 V Normal coltage 

75 kw Maximum power 

Motor 
0.92 Peak efficiency 

75 kw Maximum power 

Generator 
0.95 Peak efficiency 

Front-wheel drive Drive type 

Vehicle 
1373 kg Mass 

 

 
Fig10. Box of vehicle model in Advisor 

 

Two inputs of fuzzy logic controller are the chain of hybrid 

power (P1) and state of charge (SOC). In Fig 12 to 14 

membership functions of first input, second input and output 

of FLC are shown respectively 

 
Fig.11. Structure of proposed FLC 

 

Fig 12. First input of FLC, P1 
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Fig 13. Second input of FLC, SOC 

 

Fig 14. Output of FLC 

IV.  SECOND PROPOSED CONTROL STRATEGY 

In first control strategy of SHEV, data of known driving cycle 

were used. In this part since driving cycle is considered to be 

unknown, in order to manage power sources of HEV, online 

controller is proposed. Second control strategy is consist of 

three parts. 

A. Optimization: to reduce air pollution and also keeping 

SOC within acceptable range at the end of driving cycle, 

performance of controller is optimized by continues ant 

colony optimization (ACO) algorithm. 

B. Pattern recognition and classification: classification of 

different driving cycles is done by proposed LVQ neural 

network. 

C. Neural fuzzy controller: in this part by 

combining results of the last two parts, a sub 

optimal FLC controller is designed. 

Optimization:To optimize performance of first proposed 

FLC, Continues ACO algorithm is used which leads to 

reducing air pollution and also keeping SOC within 

acceptable rang. To perform optimization, target function and 

tuning parameters are defined and specified. Equation 8 

defines Target function 

𝐽(𝑥)𝑥𝜖⁡𝑋 = √1 𝑁⁄ ∑ ∆𝑆𝑂𝐶𝑖
2𝑁

𝑖=1 + 𝑤 × 𝐹𝐶                              (8) 

Where X is parameter optimization space, N is number of 

samples, W is weight of fuel consumption and FC represents 

amount of fuel consumption in driving cycle period according 

to one liter per 100 kilometer. Also ∆𝑆𝑂𝐶𝑖 is defined as below 

∆𝑆𝑂𝐶𝑖 = ∆𝑆𝑂𝐶𝑖 − 0.7                                                         (9) 

The cost function J is in fact is a weighted summation of fuel 

consumption and SOC changes. At the end of driving cycle, 

minimization of cost function leads to minimum changes of 

SOC and fuel consumption. The value of weight W is 

considered properly to highlight importance of fuel 

consumption and SOC. In this study W is equal to 0.02. 

Width of input and output Gaussian membership functions 

are considered as optimization parameters. In first proposed 

control strategy for POWER REQ’D BY BUS as first input 

and SOC as the second input, four and three Gaussian 

membership functions used respectively. Also four 

membership functions are used for the output P2 and total 

optimization parameters are eleven. In order to design sub 

optimal energy management strategy based on pattern 

recognition, it is necessary to classify unknown driving cycle 

by LVQ neural network. Then an optimal FLC is used in that 

class. Hence according to the four representative driving 

cycles that explained before, four FLCs are needed. 

Optimization of FLCs is done by continues ACO algorithm 

and table 3 shows optimization parameters. 

  
TABLE3 

 CHARACTERISTIC OF CONTINUES ACO ALGORITHM 

60 Maximum iteration 

10 Population size 

0.5 Selection pressure 

1 Difference rate - distance 

 

Fig 15 to 18 show the optimal membership functions and 

target functions of representative driving cycles after 

optimization process.  

 

Designing sub optimal Neural-fuzzy controller:In this part 

a Neural-fuzzy energy management based on pattern 

recognition by LVQ neural network is presented. The 

proposed controller is combination of optimal fuzzy 

controller and LVQ neural network. Since driving cycle is 

unknown, the data are applied to LVQ neural network and 

then are classified to four classes based on four representative 

driving cycles. After recognition of driving cycle the related 

designed optimal FLC start energy managing of SHEV. In 

Fig 19 structure of second proposed control strategy is shown. 

In the next part performance of controller is evaluated by a 

simulation example. 

 
Fig.15. First input of sub optimal FLC 
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Fig.16. Second input of sub optimal FLC 

 
Fig.17. Output of sub optimal FLC 

 

 
Fig.18. Target Function of representative driving cycle 

 

Fuzzy Logic 
Controler 

In Out

          

LVQ   

Fig.19. Structure of second proposed control strategy 

V. SIMULATION 

In this part performance of proposed Neural- Fuzzy controller 

on reducing fuel consumption, air pollution and also keeping 

SOC within acceptable range, is simulated. First the features 

of CYC- HL07 driving cycle as unknown driving cycle are 

extracted. Feature vector as input is applied to LVQ neural 

network. After pattern recognition and classification, the 

designed optimal Neural-Fuzzy controller of that class is 

switch on to control energy sources of SHEV.  

A. Controller effect on fuel consumption 

In Fig 20 effect of default Advisor software controller, first 

proposed FLC and proposed Neural-Fuzzy controller on fuel 

consumption are shown. It is clear that total fuel consumption 

curve of Neural-Fuzzy controller is below of other curves. 

This fact shows better performance of neural-fuzzy controller 

on reducing fuel consumption. 

B. Controller effect on pollutants emission 

HC pollutan:In Fig 21 effect of default Advisor software 

controller, first proposed FLC and proposed Neural-Fuzzy 

controller on HC pollutant emission is shown. The results of 

simulation are listed in table 4 and show that neural-fuzzy 

controller has better effect on HC pollutant emission. 

Second control strategy decreases HC pollutant emission 

85% and 75% better than advisor software default controller 

and first FLC respectively. 
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Fig.20. Controller effect on fuel consumption 

 
Fig.21. Controller effect on HC pollutant emission 

 

CO pollutant: Fig 22 shows the effect of default Advisor 

software controller, first proposed FLC and proposed Neural-

Fuzzy controller on emission of CO pollutant. The results of 

simulation are listed in table 5. The results show that neural-

fuzzy controller has better effect on CO pollutant emission. 

Second proposed control strategy decreases CO pollutant 

emission 94% and 82% better than Advisor software default 

controller and first FLC, respectively. 
 

TABLE 4 

 CONTROLLER EFFECT ON HC POLLUTANT EMISSION 

Controller type 
Area under the 

curve |Hc| 
Hc (grams/mile) 

Advisor default 
controller 

1.0216 2.25 

FLC of first 
strategy 

0.6132 1.354 

neural-fuzzy 
controller 

0.1387 0.352 

 

TABLE5: 
 CONTROLLER EFFECT ON CO POLLUTANT EMISSION 

Controller type 
Area under the 

curve |Co| 
Co (grams/mile) 

Advisor default 

controller 
6.91 15.179 

FLC of first 
strategy 

1.98 4.38 

neural-fuzzy 

controller 
0.3 0.762 

 

Nox pollutant: In Fig 23 effect of default Advisor 

software controller, first proposed FLC and proposed Neural-

Fuzzy controller on emission of Nox pollutant is shown. The 

results of simulation are listed in table 6, and it is clear that 

neural-fuzzy controller has better effect on Nox pollutant 

emission. Hence second proposed control strategy decreases 

Nox pollutant emission 97% and 95% better than advisor 

software default controller and first FLC, respectively. 

 
Fig.22. Controller effect on CO pollutant emission 

 
Fig23. Controller effect on NOx pollutant emission 
 

Controller effect on SOC: Fig 24 shows the effect of default 

Advisor software controller, first proposed FLC and proposed 

Neural-Fuzzy controller on SOC. According to simulation 

results, SOC at the end of driving cycle is kept within 

acceptable range by all three controllers. Since structure of 

Neural fuzzy controller is based on pattern recognition of 

unknown driving cycle, classification and switching of 

optimal designed FLCs. Therefore neural fuzzy controller 

kept SOC within the best range. 

 

Fig. 24. Controller effect on SOC  
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TABLE 6 

 CONTROLLER EFFECT ON NOX POLLUTANT EMISSION 

Controller type 
Area under the 

curve |NOx| 
NOx (grams/mile) 

Advisor default 
controller 

0.5904 1.3 

FLC of first 

strategy 
0.3022 0.667 

neural-fuzzy 
controller 

0.0116 0.03 

 

VI. CONCLUSION 

In this study two control strategy for energy management of 

SHEV are studied. In first control strategy a fuzzy logic 

controller, as an offline controller is designed and replaced 

with default Advisor software controller. Simulation results 

show that proposed controller has better performance on 

reducing fuel consumption, air pollution and keeping battery 

charge level within acceptable range. The second proposed 

strategy is focused on unknown driving cycle where in the 

first strategy it is assumed that driving cycle is known. 

Therefore in second control strategy a designed LVQ neural 

network is used for pattern recognition of driving cycle, and 

DCR algorithm classifies unknown driving cycle to four 

representative cycles. For each representative cycles an 

optimal FLC is designed which optimization of FLCs is done 

by continues ACO algorithm. Finally after identification of 

driving cycle class, the FLC of identified class is switch on to 

control energy management of SHEV. In comparison with 

first strategy second proposed controller is more complex and 

0.358 sec slower than first one. But simulation results show 

better performance of proposed controller than other 

controllers of SHEVs. The last proposed control strategy is 

simulated for SEKELTON driving cycle. The results show 

that neural fuzzy controller has the best performance on 

reducing fuel consumption, air pollution and keeping battery 

charge level within acceptable range than other controllers. 
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