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Robust Optimal Control of Uncertain Nonlinear
Switched System using Approximate Dynamic
Programmin

Maryam Baluchzadeh, Ali Karimpour* and Naser Pariz

Abstract— This paper presents robust optimal control of an
uncertain nonlinear switched system with forced subsystems.
The uncertainties include external disturbance and parametric
uncertainties. Switching signal and control input are designed to
minimize a given cost function. Approximate dynamic
programming (ADP) has been efficiently applied to certain
switched systems as an optimal control strategy. Since
approximate dynamic programming method is model based,
there would seem to be some difficulties to apply approximate
dynamic programming to uncertain switched system. To
overcome these mentioned problems, this paper presents an
appropriate model. In order to apply proposed control
approach, robust time-delay controller is added with ADP
control. At first uncertainties are compensated by robust time-
delay controller. Then the switching signal and the control input
are design by approximate dynamic programming that provides
a feedback solution for unspecified initial conditions. The
discussing boundedness of states and simulation results verify
the effectiveness of the proposed control approach.

Index Terms—Approximate dynamic programming, Robust
time-delay controller, Uncertain switched system.

I. INTRODUCTION

Aswitched system is a type of hybrid system, that includes
of a group of continuous-time or discrete-time
subsystems, a switching rule that organizes the switching
between them, and the states that show the active subsystem.
It is well known that a broad range of engineering problems
such as in robotics, in industrial systems, and in power
systems can be modeled as a switched system [1-2]. Due to
their significance in the engineering applications, the optimal
control of switched systems has attracted much attention from
many researchers in the control field [3-5].

In some papers, the mode sequence is selected as priori [6-
8]. Some other Authors designed the mode sequence in order
to achieve optimal control.

Optimal control of nonlinear switched system by using a
constructive parallel algorithm is presented in [9]. By using
an improved conjugate gradient algorithm and a discrete
filled function method, an improved bi-level algorithm is
proposed to solve optimal control of nonlinear switched
system in [10].
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Authors in [11] developed optimal control of nonlinear
switched system by applying optimistic planning (OP)
algorithms that can solve general optimal control with
discrete inputs such as switches.

The optimal control is studied in [12], [13] by using
dynamic programming and genetic algorithm, respectively.
Switching time sequence is designed in [14] by evaluating the
cost function for randomly selected switching sequence.

All the methods in cited papers are presented for a specific
initial condition. In the recent researches, approximate
dynamic programming (ADP) has been used to provide
comprehensive solutions to achieve optimal control [15-17].
ADP is commonly applied utilizing two neural networks
(NN) [18]. The authors of [19-22] also investigated the ADP-
based approaches to optimal switching.

The approximate dynamic programming control
performance is a desired control in switched systems with no
uncertainties. Since approximate dynamic programming
method is model based, there are difficulties to apply
approximate dynamic programming to uncertain switched
systems.

This paper introduces a nonlinear discrete model with
lumped uncertainty of uncertain nonlinear switched system.
The difference between the model and an actual system are
considered as a lumped uncertainty. A two term control law
is proposed; in this, the first term is an approximate dynamic
programming and the second term is a robust time-delay
estimator to compensate the uncertainties.

The rest of this paper is organized as follows: the modeling
of the uncertain nonlinear switched system with forced
subsystems is presented in section2. Section 3 develops the
robust optimal control of uncertain nonlinear switched system
using approximate dynamic programming and time delay
controller. Discussing boundedness of states is presented in
section4. Section 5 illustrates simulation results. Finally
section 6 concludes the paper.

Il. THE MODELING OF UNCERTAIN NONLINEAR SWITCHED
SYSTEM WITH FORCED SUBSYSTEMS

Consider a class of uncertain nonlinear switched systems
described by
n n-1
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where i,x, u,b< d and f; are the active subsystem, the

state, the control input, the ith subsystem input coefficient,
the random disturbance and the ith subsystem nonlinear
function includes state and its derivatives.

Using nominal terms in (1), the following can be derived:

d'x s, odx  d"'x,

—=f(X,—,.,.——)+bu+¢ 2

dt" ) dt dt”’l) 7 @
where ﬂ and b, are the nominal terms for the real terms f,
and b, , respectively.

Here, the lumped uncertainty ¢, is expressed as follows:

dx  d"'x, ., dx d"'x
o=t g g T WG )
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The Lumped uncertainty ¢, includes the parametric

uncertainty and the external disturbance.
From (2), we derive the state-space model

: ;oodx o d"x
X=Ax+af (X,—,..,—

dt dt™
where X, U, A, a, b, and g are state vector, control input,

the state coefficient matrix, nonlinear function coefficient
matrix, the input gain matrix in the ith subsystem and
uncertainty coefficient matrix, respectively.
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From (4), one can obtain a discrete switched system using a
sampling period sampling period & which is a small positive
constant. Substituting ko into t for approximating X as
X=(X(t+0o)—x(t))/ o in (4), we obtain a discrete switched
system

X = AX +8y fAik +b; U +9,2 (6)
A =1+0A, b,, =ob;,

where x, =x(ko), a, =oa, ;

u, =u(ok), g, =09, fik :aﬁ(xk) and o =¢ ko).

I1l. RoBUST OPTIMAL CONTROL OF UNCERTAIN
NONLINEAR SWITCHED SYSTEM

To apply the robust optimal control of uncertain nonlinear
switched system, a two-term control law is proposed. The
first term is an approximate dynamic programming controller
and the second term is a robust time-delay controller.

The uncertainties are compensated by robust time-delay
controller. The switching signal and the control input are

design by approximate dynamic programming that provides
a feedback solution for unspecified initial conditions.
The system (6) is thus presented as

Xk+1 = Akxk +ak fik +bi,ku1,k +bi,ku2,k +gk¢i,k (7)
where u,, and u,, are the first and the second terms of the
control input.

A. Robust Time Delay Control

In order to apply approximate dynamic programming to
uncertain nonlinear switched system, the uncertainties are
compensated by robust time delay control. The basic idea
behind overcoming the uncertainty problem is the use of a
procedure that successfully estimates the uncertainty in the
robust impedance control of a hydraulic suspension system
[23], the control of flexible-joint robots [24] and the optimal
control for a robot manipulators [25,26].

To create the dynamics of the tracking error well-defined
such that the switched system can track the desired trajectory,
we make the following assumptions.

Assumption 1: The desired trajectory x, must be smooth

in the sense that x and its derivatives up to a necessary order
are available and all uniformly bounded.

The smoothness of the desired trajectory can be guaranteed
by proper trajectory planning.

As a necessary condition to design a robust controller, the
matching condition, outlined below, must be satisfied:
Matching condition: the uncertainty must enter the system
through the same channel as the control input. Then, the
uncertainty is said to satisfy the matching condition [27] or
equivalently, it is said to be matched. We ensure the matching
condition since in the system (6), the lumped uncertainty ¢, ,

enters the system by the same channel as the control input u

As a necessary condition to design a robust control, the
external disturbance d in (1) must be bounded.

Assumption 2: The external disturbance d is bounded as:
o] < A ®
where d_,, is a positive constant.
n-1
Assumption 3: The function fi(x,%,...,d—n_i(
dt dt
globally Lipschitz or there is a positive definite lyapunov
dx  d"'x

function V(x) for the x=f (X,—,...,———
( ) |( dt dtn—l

) in (1) is

) where the

V(x) is negative.

A two term control law is proposed in equation (7). The
Performance of the proposed control is improved if the
lumped uncertainty ¢, , is compensated. The uncertainty is
perfectly compensated if

B; Uz = =04 ©)

Since ¢, is not known, the control law (9) cannot be
defined. To estimate the uncertainty, we obtain from (8)

i (10)

Since x,,, is not available in the kth step, g, ¢, , cannot be
calculated. Instead, the previous value of g, ¢, is used as

9Pk =X —AX —a fiy =by U, —by U,
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=X A X, —a, T, -

GyaPika =% k-18k-1 ~ A1 Tiga (11)
bi,k—lul,k—l - bi,k—luz,k—l

The term g, ¢, can be calculated since all the terms in

the right hand side of (11) are known and available. The
proposed robust control law is thus defined as:
bi,kuz,k =—0y1P«a (12)
we express the second term in the control law by
substituting (11) into (12) to yield
bi,kuz,k =X +ALX g fik—l +

(13)
B aliis + 05Uz
B. Approximate Dynamic programming
The approximate dynamic programming (ADP) controller
has been efficiently used as an optimal controller in certain
nonlinear switched system. Substituting (12) into (8) yields
Xea =AX +a, fi +b, U 40,0 — 00,004 (14)
In order to apply the ADP, a nominal model in the form of
discrete switched system is suggested from (14) as follows
Xisa = AX +8y fik +bi,kul,k (15)
Once the NNs' weights are trained using Algorithm2 in
[22], one may use them for online optimal control/scheduling
of the system. This is done in real-time through feeding the
current state ¢ and time k to equation in [22]:
i; (x,) =argmin;_ (o(X, )Tvki RVkiT o(x)

! (16)
+Wk+1¢(xk+1)), vk eK
U; = uE(Xk)v* EVki;(Xk )TO_(Xk ) (17)
where
VS = U (%) (18)
W g0x) = 3¢ (x,) (19)
N (20)

J=w(x, )+Z(Q(xk)+u[ Ruk)

Calculate the optimal mode b (%) and the optimal control
input Uy by using (16) and (17). Where Vector Valued

. TN p . N q
functions ¢ X PRY ang PRI O R enrecent the
selected smooth basis functions, where p and q are the
respective number of (linearity independent) neurons.

P q
Matrices Y €7 and Wi € R are the unknown weights of
the actor and the critic networks at time step k, respectively.
Hence the optimal solution can be found online in a feedback
form.

I\VV. BOUNDEDNESS OF STATES

The final control law is obtained by using (13), (16) and
(17). The states and control input are bounded in
predetermined domain by using approximate dynamic
programming. Under bounded state and control input,
assumption 1-2 and matching conditions, the lumped
uncertainty is bounded.

Under assumption 3, there are two possibilities as follows:

1. Since switched system (14) is globally Lipschitz in

(gkgoi'k —gkfl(pi,kfl,u)under first condition in assumption 3
and theorem (global existence and uniqueness) presented by

[28], the solution of the switched system (14) exists for all
times. So solutions of the switched system (14) do not present
finite escape time [29]. As a result, solution of the switched
system (14) is bounded due to known initial and final times.

2. According theorem given in chapter 5 in [30] and under
second condition in assumption 3, solution of the switched
system (14) is bounded.

According to the reasoning given above, the discrete
nonlinear switched system (14) provides a bounded output
X,,, under the bounded input g,@, -9, .@ ;-

The robust time-delay control law (13) has the main role in
compensating the uncertainty. If there exists a much
difference between the nominal model (15) and the actual
system (6), the closed-loop system (6) is subject to a large
uncertainty. The residual uncertainty in the closed-loop
system (14) is reduced from a large value of g, ¢, , to a small

value of g, ¢, —0,.,¢ ., dueto the use of robust time-delay

control law (13). As a result, the performance of the control
system is improved by reducing the residual uncertainty. The
residual uncertainty g.@, —9,,¢,, Will be very small

when the uncertainty is smooth and the sampling time is very
short.

V. THE SIMULATION RESULTS

The performance of the proposed method is evaluated
through the following two simulations.

Consider one example of the scalar switching system with
two modes given in [22] that satisfies second condition in

_y2
assumption 3 with lyapunov functionv(x) =X

The nominal model is

f.(X)+9g,(X)u=—-x+u
_[ 109+ g, 00u=x o
,()+g,(Xu=—x"+u
The actual model is
.| ()+9,(x)u=-0.8x+0.8u+d 2
| f,(X)+9,(X)u=-0.8x° +0.8u+d (22)
The selected cost function is
tf
2 2
J =50 .
(x(tF)+2) + [0.5u(t)dt C 1
0 where f , hence, the

objective is directing the final state toward value -2. In this
example the following basis functions are used as follows:
#(X) =[1 x x* X x* x X6:|T ,
(23)
E(x) =[1 x x2 x* xt xs]T

The horizon is discretized to time steps, i.e., o=0005 s
.The NNs are utilized for controlling initial condition

X(0)=2 , once the networks are trained.

The uncertainty may include the external disturbances and
parametric uncertainty. To consider the parametric
uncertainty, all parameters of the nominal model used in the
control law are given as %25 larger than the real ones. The
external disturbance is a random signal with the mean=0 and
standard deviation=2 with a period of 0.25 second as shown
in Fig. 1.

The uncertainty is unknown; however, this example
considers a bounded uncertainty to check the performance of

25
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the proposed control system.
3

disturbance
(=Y
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iteration

Fig.1. Random disturbance

200

Simulationl. The final law includes (13), (16) and (17) for
optimal controlling of uncertain nonlinear switched system
(22) with nominal model (21) is simulated. The results,
including the histories of the state, the active mode, and the
first control input, second control input, cost function are
shown in Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6, respectively.
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Fig. 2. Performance of proposed control
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Fig. 3. Active subsystem in first simulation
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Fig. 4. First control input of proposed control
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Fig. 5. second control input of proposed control
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Fig. 6. Cost function of proposed control in first simulation

The state history shows that the controller has successfully
driven the initial state to close to the desired terminal point in
the given time. The final error is 0.0432. Second control input
Jumps as shown in fig.5 that it is due to compensate random
disturbance with sudden changes as in fig.1.

Simulation2. The effect of the robust time-delay controller
in compensating the uncertainty is evaluated in this
simulation. For this purpose, the time-delay controller is
removed. The final law includes (16) and (17) without
compensating uncertainties for optimal controlling of
uncertain nonlinear switched system (22) with nominal model
(21) is simulated. The results, including the histories of the
state, the active mode, and the control input, cost function are
shown in Fig.7, Fig.8, Fig.9 and Fig.10, respectively. The
state history shows that final error is 0.2593.

Compared to Simulation 1, the final error and final cost
function are increased than the ones in simulatonl.

2
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iteration

Fig. 7. Performance of ADP control
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g. 8. Active subsystem in second simulation
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Fig. 9. Control efforts of ADP control
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Fig. 10. Cost function of ADP control in second simulation

VI. CONCLUSIONS

This paper presented optimal control of uncertain nonlinear
switched systems that includes external disturbance and
parametric uncertainties. Challenges to apply approximate
dynamic programming to optimal control of mentioned
system are resolved by using robust time-delay controller.
The model uncertainty was efficiently compensated using a
discrete robust time-delay controller. Then switching signal
and control input were designed by using approximate
dynamic programming. The robust controller estimated and
compensated the uncertainty such that the use of nominal
model became efficient. The robust controller has played an
important role to improve the performance of the control
system by reducing the residual uncertainty in the closed-loop
system. The control system can overcome a wide range of
uncertainty including external disturbances, parametric
uncertainty. Simulation results are shown effectiveness of the
proposed control approach.
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