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Reducing the Supervisory Control of Discrete-
Event Systems under Partial Observation

Vahid Saeidi, Ali A. Afzalian, and Davood Gharavian

Abstract—Supervisor reduction procedure can be used to construct
the reduced supervisor with a reduced number of states in discrete-event
systems. However, it was proved that the reduced supervisor is control
equivalent to the original supervisor with respect to the plant; it has not
been guaranteed that the reduced supervisor and the original one are
control equivalent under partial observation. In this paper, we extend
the supervisor reduction procedure by considering partial observation;
namely not all events are observable. A feasible supervisor which is
constructed under partial observation becomes reduced based on
control consistency of uncertainty sets of states, instead of the original
supervisor. In order to construct a partial observation reduced
supervisor, a partial observation control cover is constructed based on
control consistency of uncertainty sets in the supervisor. Four basic
functions are defined in order to capture the control and marking
information on the uncertainty sets. In the resulting reduced supervisor,
only observable events can cause state changes. The results are
illustrated by some examples.

Index Terms—control consistency, control cover, discrete-event
systems, partial observation, supervisor reduction.

I. INTRODUCTION

The state size and the computational complexity of a
monolithic supervisor increase with state sizes of the plant and
the specification [1], and may lead to state explosion [2].
However, the application of this theory is restricted, some works
are reported on application of this theory in practice, e.g. [3, 4].
Although modular [5, 6] and incremental [7, 8] approaches try
to overcome the complexity of the supervisor synthesis, other
approaches tend to reduce a supervisor for simple
implementation. The supervisor reduction procedure, given by
[9], is an evolution of the proposed method in [10]. This
procedure reduces the redundant information in the supervisor
synthesis without any effect on controlled behavior. A reduced
supervisor has some advantages comparing to the original
supervisor, such as simplicity. Although this procedure is a
heuristic method, it has been extended to other applications, e.g.
coordination planning for distributed agents [11], supervisor
localization procedure with full observation [12], and supervisor
localization procedure under partial observation [13]. In [13],
the authors employed the concept of relative observability to
compute a partial-observation monolithic supervisor, and then
they designed a localization procedure using (feasible) partial-
observation supervisor to decompose the supervisor into a set of
local controllers.

In this paper, we extend supervisor reduction procedure [9],
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to address the issue of partial observation. At first, we synthesize
a partial-observation monolithic supervisor using the concept of
relative observability [14]. Relative observability is stronger
than observability [15, 16], weaker than normality [15, 16], and
the supremal relative observable (and controllable) sublanguage
of a given language exists. The supremal sublanguage may be
effectively computed, and then implemented by a partial-
observation (feasible and non-blocking) supervisor [13, 17].
Then, we suitably extend the supervisor reduction procedure in
[9] to reduce a supervisor under partial observation.

In this paper, the partial-observation control cover is
introduced. In particular, it is defined on the state set of the
partial-observation supervisor; roughly speaking the latter
corresponds to the power set of the full-observation supervisor’s
state set. As a result, a partial-observation reduced supervisor
contains only observable state transitions.

The rest of the paper is organized as follows: In Section I,
the necessary preliminaries are reviewed. Reducing the
supervisory control under partial observation is proposed in
Section I11. In Section 1V, five examples are given to clarify the
proposed method. Finally, concluding remarks are given in
Section V.

Il. PRELIMINARIES

A discrete-event system (DES) is represented by an
automaton G = (Q, %, 8, qo, Qm), Where Q is a finite set of states,
with g, € Q as the initial state and Q,, < Q being the marked
states; X is a finite set of events (¢) which is partitioned as a set
of controllable events X, and a set of uncontrollable events X,
where ¥ =2X.UUZX,. & is a transition mapping 6:Q x X —
Q,68(q,0) = q' gives the next state g’ is reached from q by the
occurrence of g. G is discrete-event model of the plant. In this
context 6(q,,s)! means that § is defined for s at q,. L(G) :=
{s € 2*|6(qy, s)'} is the closed behavior of G and L,,(G) :=
{s € L(G)|6(qq,s) € Q,,}isthe marked behaviour of G[17, 18].

A set of all control patterns is denoted with I' =
{y € Pwr(2)|y 2 2,.}. A supervisory control for G is any map
V:L(G) » I', where V(s) represents the set of enabled events
after the occurrence of the string s € L(G). The pair (G, V) is
written V /G, to suggest " G under the supervision of V". A
behavioral constraint on G is given by specification language
EcX*. Let K< L,(G)nE be the supremal controllable
sublanguage of E w.r.t. L(G) and %, i.e. K = supC(L,,,(G) N
E) [17]. If K+ @, it can be shown as a DES, SUP =
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(X,2,&,x0,X,,), which is the recognizer for K. If G and E are
finite-state DES, then K is regular language. Write | .| for the
state size of DES. Then |SUP| < |G||E|. In applications,
engineers want to employ RSUP, which has a fewer number of
states ( i.e. [IRSUP| « [SUPJ) and is control equivalent to SUP

w.r.t. G [9], i.e.
L, (G) n L, (RSUP) = L,,(SUP), 1)
L(G) n L(RSUP) = L(SUP). (2)

The natural projection is a mapping P:X* — X where
(1) P(€): = € (¢ is the empty string), (2)fors € 2*, 0 € X,
P(so):= P(s)P(o), and (3) P(0): =g ifc € X, and P(0): =
eif o ¢ X,. The effect of an arbitrary natural projection P on a
string s € X* is to erase the events in s that do not belong to
observable events set, X,. The natural projection P can be
extended and denoted with P: Pwr(XZ*) —» Pwr(Z;). For any
L <X P(L) :={P(s)|s € L}. The inverse image function of P
is denoted with P~1: Pwr(Zs) —» Pwr(Z*) for any L € 55,
P7Y(L) :={s € Z*|P(s) € L}. The synchronous product of
languages L; € X and L, € X3 is defined by LIl L, =
PrY(Ly) N PyY(Ly) € 2%, where P 3% — XF, i = 1,2 for the
union 2 = X, U X, [19].

Let SUP = (X, 2, ¢, x, X,,,) be the recognizer of K, X, € ¥
and P:X* - X; be the natural projection. For s € X
observation of P(s) results in uncertainty as to the state of SUP
given by the "uncertainty set" U(s) =
{6(q0,s)IP(s") = P(s),s € 2*} € Q. Uncertainty sets can be
used to obtain a recognizer for the projected language P(K). By
definition of uncertainty set, each pair of states x,x' € X,
reachable by s, s’, are control consistent, if there exists a non-
blocking supervisor V such that P(s") = P(s) = V(s') =
V(s). V is called a feasible supervisor [17]. Each pair of states
x,x" € X ina monolithic supervisor can be considered one state
in the feasible supervisor by self-looping an unobservable event
a, which occurs between states x , x’.

It was defined in [14], that K is relative observable w.r.t.
C,Gand P (or (C, G, P)-observable) for K € C < L,,(G), where
K and C are prefix closed languages, if for every pair of strings
s,s' € X* such that P(s) = P(s"), the following two conditions
hold,

(VoeX)sceK,s'eC,s'c €L(G) = s'og €K, (4)

SEK,s'€CNLy(G) = s €EK. (5)

In the special case, if C = K, then the relative observability
property is tighten to the observability property. An observation
property called normality was defined in [16], that is stronger
than the relative observability. K is said to be normal w.r.t.
(L(G),P), if P7P(K)nL(G) = K, where L(G) is a prefix
closed language and P is a natural projection.

I11. REDUCING THE SUPERVISORY CONTROL UNDER PARTIAL
OBSERVATION

Similar to the procedure, proposed in [9], to reduce the state
size of the supervisory control with full observation, we propose
a method to reduce the state size of the supervisory control under
partial observation.

Let G = (Q,Z, 5,90, Q). be the plant, Z, € X be the subset
of observable events, and P:X* — X} be the corresponding
natural projection. Also let SUP = (X,2,¢, xo, X,,) be the
recognizer of supervisor K. Under partial observation, if s €
L(SUP) occurs, then P(s) is observed. Let U(s) be the subset of
states that may be reached by some s’that looks like s, i.e.

U(s) = {x € X|@3s' € Z*)P(s) = P(s"),x = &(x,5)}.

Let U(X) be the set of uncertainty sets of all states in X,
associated with strings in L(SUP), i.e.

UX) = {U(s) S X|s € L(SUP)}

The transition function associated with U(X) is & UX) x
2o = UX). € is given by

éU,0) = U{f(x,ulauzﬂx € U,uy,u; € 230}

Where X, = 2 — X,. If there exist u,,u, € X7, such that
&(x,u ouy)! then E(U, 0)is defined and denoted as (U, o)!.
Having U(X) and &, partial observation monolithic supervisor
SUPO can be defined. It is a feasible supervisor, and its
synchronization by the plant is control equivalent to the original
supervisor w.r.t. the plant. SUPO is defined as follows,

SUPO = (U(X), £y, &, Uy, Up)

Where Uy, = U(€) and U,,, = {U € UX)|U N X, # @}. Itis
known [13], that L(SUPO) = P(L(SUP)) and L,,(SUPO) =
P(L,,(SUP)).

Let U € U(X),x € U be any state in SUP and a € X be a
controllable event. We know that 1. « is enabled at x € U, if
E(x,a)!, or 2. a is disabled at x € U, ~&(x,a)! and
(3s e 2*)[§(x0,s) =x & &(U,, Ps) = U]& 6(qg,so)! or 3. a
is not defined at x € U, if =&(x,a)! and —&é(x,a)! and
(3s € 29)[€(xq, 5) = x & E(Uy, Ps) = U] = —8(qq, so).
Under partial observation, the control actions after string s €
L(SUP) depend on the uncertainty set U(s) € U(X), i.e. the state
of SUPO. It was proved that, if a is enabled at x € U, then for
all x" € U, either a is also enabled at x" € U, or « is not defined
at x' € U. On the other hand, if « is disabled at x € U, then for
all x' € U, either a is also disabled at x" € U, or « is not defined
at x' € U [13].

In order to propose a supervisor reduction procedure under
partial observation, consider the following four functions which
capture the control and marking information on the uncertainty
sets. Define E: U(X) - Pwr(Z,) according to

EWU) ={o € 2,|(3x € U)é(x,0)!}

E(U) denotes the set of events enabled at state U. Also define
D: U(X) - Pwr(X,) according to
D(U) = {0 € Z,| (Ax € U)¢(x,0)! &(3s € £%)[¢(x0, 5)
= x & 5(qo, 50)!]}
D(U) is the set of events, which are disabled at state U. Next,
define M:U(X) - {0,1} according to

_(1,if (U € Uy),
M) = {0, otherwise.

M(U) = 1if Uismarked in SUPO, i.e. U contains a marked state
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of SUP. Finally define T: U(X) — {0,1} according to
1, if (s € 2*)é&(xy,5) €U

é(UO'PS) = U'5(%,S) € Qm

0, otherwise.

T(U) = 1if U contains some states that correspond to a marked
state of G, i.e. U contains a marked state of G. Now, the control
consistency relation Ry, € U(X) X U(X) can be defined.
U,U" € U(X) are control consistent, i.e. (U,U") € Ry, if
EW)NDWU)=EWUYNDWU) =0, (6)
TW)=TW)=>MU)=MU". (7
Thus a pair of uncertainty sets (U, U") satisfies (U,U") € Ry, if
(i) each event is enabled at least at one state of U, but is not
disabled at any state of U’, and vice versa; (ii) U, U’ both contain
marked states of SUP (both do not contain) provided that they
both contain states corresponding to some marked states of G
(both do not contain). It is easily verified that R is generally
not transitive, thus it is not an equivalence relation. This leads to
the partial-observation control cover. Let I be some index set,
and Gy = {U; € UX)|i € I} beacoveronU(X). Cy isa partial
observation control cover, if

()(vi € D(YU,U' € U)U,U") € Ry,

(i) (Vi€ D(Vo € £,)(AU € UDEU,0)! = [3j € D(VU' €
UNEW',0)! = E(U',0) € Uy, (8)

A partial observation control cover C;; lumps the uncertainty
sets U € UX) into cells U; € Cy,i €1 such that (i) the
uncertainty sets U that reside in the same cell U; must be
pairwise control consistent, (ii) for every observable event o €
X4, the uncertainty set that is reached from any uncertainty set
U’ € ‘U; by one-step transition o, must be covered by the same
cell U;. Obviously, two uncertainty sets U and U’ belong to a
common cell of ¢, if and only if U and U’ are control consistent,
and two future uncertainty sets that can be reached respectively
from U and U’ by a given observable string are again control
consistent. Cy, is called a partial-observation control congruence
if C, happens to be a partition on U(X), namely its cells are
pairwise disjoint. Having Cy, U, =U(e) and x, € Uy, a
generator ] = (1, %,,{, iy, I) canbe defined over X, as follows,

iy € I such that U, € Uy,

I, ={i €1l(AU € UDX,, N U # @}

(I x2Xy—Iwith{(i,0) =j

if QU € U, €U, 0) € Uj; 9)

Note that, overlapping of some states results that i, and ¢ may
not be uniquely determined, and ] may not be unique. If Cy is
partition on U(X), J can be determined uniquely and it can be
selected as the reduced supervisor, RSUPp.

We prove in Theorem 1, RSUP; is control equivalent to SUP
w.r.t. G.

Theorem 1: RSUPp is control equivalent to SUP w.r.t. G, i.e.

L(G) n L(RSUP) = L(SUP),

L, (G) N L,,(RSUPp) = L,,(SUP).

Proof: We prove the claim in two steps, a. <, b. 2.
a. As it was assumed that L,,, (SUP) is not empty, it follows that
L(G) and L(RSUPp) are not empty, and as they are closed, the

TW) =

(10)
(11)

empty string € belongs to each. Now, suppose that s € L(G) n
L(RSUP;p) implies that s € L(SUP) and so € L(G) n L(RSUPp)
such that ¢ € ~. We must prove that sg € L(SUP). If 0 € X —
(2. U ZXy), then so € L(SUP), because L(SUP) is controllable
and observable. Now, assume o € X, N X, and so € L(G) N
L(RSUPp). Since U and U’ belong to the same cell U;, by
definition of partial-observation control cover, they must be
control consistent, i.e. (U,U") € Ry. Thus, ECU)NDU") =@
which implies that D(U") = @. It means that all controllable and
observable o that is enabled at U, cannot be disabled at U’. Thus,
vx e U, either &(x,0)! or  (Vt €ZX)[E(x,t) =
x & =8(q,, to)!]. Note that, s € L(G). Thus =8(q,, ta)! is not
true. Therefore, &(x, o)! is true, i.e. so € L(SUP).

Now, assume s € L,,(G) N L,,,(RSUPp). It means that {(i,, s) €
I,. From (9), it is obvious & (x,, s) € X,,,, i.e. s € L,,,(SUP).

b. Suppose that s € L(SUP) implies that s € L(G) n L(RSUPp).
Assume so € L(SUP). If 0 € X — X, then it is a self-loop
transition at some states in RSUP,. thus, s € L(G)nN
L(RSUPp) = so € L(G) N L(RSUPp). If o €X, then (9)
implies that {(i,a) = j. Thus, s € L(G) N L(RSUPp).

Now, assume s € L., (SUP). It means that &(x,,s) € X,,,. From
(9), we can write {(iys) €1I,. Namely, s€L,(G)n
L., (RSUPp). The proof is complete.

Corollary 1: Let G be a non-blocking plant, described by
closed and marked languages L(G),L,,(G) € 2*, and SUP =
(X,2,&,x4,X,,) be the recognizer of the supervisor K, i.e. K =
L,,(SUP). Let RSUP, be the reduced supervisor under partial
observation. If K is relatively observable w.r.t. (C, G, P), where
P:Y* - X, and K € C € L,(G), then P(RSUPp) is control
equivalent to P(SUP) w.r.t. G, i.e.

Ln(G) NP7 (L (P(RSUP,))) = Ly (G) N P~ (L, (P(SUP))),
L(G) n P1(L(P(RSUPy))) = L(G) N P~1(L(P(SUP))).
In order to clarify the proposed method for reducing a

supervisor under partial observation, some examples are
illustrated in the next section.

IV. EXAMPLES

In this section, we consider examples in order to verify the
extended theory in Section Ill. The model construction and
supervisor synthesis are carried out by TCT software [20]. A
brief description of TCT procedures, which are used in this
paper, is given in the Appendix.

Example 1: Let ¥ = {1,2,3} and G, SUP be the plant and the
recognizer of supervisor, respectively (Fig. 1). Obviously, we
can find C; and C, such that K = L,,(SUP) is relatively
observable w.r.t. (C;,G, P;), where P;: £* — X7 and XZ; = {1,3}
and K is relatively observable w.r.t. (C,, G, P,), where P,: 5* —
25 and X, = {2,3}. But, we cannot find any C such that K is
relatively observable w.r.t. (C,G,P,), where Py:X* — X and
Xy ={3}. We can find uncertainty sets U,(X) and U,(X)
corresponding to P; and P,, respectively.
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a.G b. SUP
Fig. 1. The plant G and the corresponding supervisor, SUP
3 3
[y [
= -
a. RSUP, b. RSUP,

Fig. 2. Feasible reduced supervisors RSUP; and RSUP,

Uy (X) = {{0,1},{2}} and U,(X) = {{0,2},{1}} can be
constructed. The partial observation control covers can be
constructed as ¢; = U, (X) and C, = U, (X). Thus, RSUP, and
RSUP, are both feasible reduced supervisors, corresponding to
P; and P,, respectively (Fig. 2). Since states 1 and 2 are not
control consistent, states 0, 1 and 2 in SUP cannot be lumped into
one state, in order to construct a reduced supervisor. It is obvious
that, RSUP; is control equivalent to SUP w.r.t. G, under natural
projection P,, but it is not control equivalent to SUP under P,.
Also, RSUP, is control equivalent to SUP w.r.t. G, under natural
projection P,, but it is not control equivalent to SUP under P;
w.rt. G.

Example 2: Let ¥ = {10,11,12,13} and G, SUP be the plant
and the recognizer of supervisor, respectively (Fig. 3). We can
find C;,C, and C; such that K = L,,(SUP) is relatively
observable w.rt. (C;,G,P;), where P;:X*—> X7 and X, =
{10,12,13} and is relatively observable w.r.t. (C,, G, P,), where
P,:X* - X5 and X, ={11,12,13}. Also, it is relatively
observable w.rt. (Cs;,G,P;), where P;:X* - X; and X; =
{10,11,12}. Moreover, we can find C such that K is relatively
observable w.r.t. (C, G, P,), where Py: £* — 55 and X, = {12}.

We can find the uncertainty set U(X) = {{0,1,2,4},{3}}
corresponding to P,. Note that RSUP, is the partial observation
reduced supervisor, corresponding to control cover C =
{{0,1,2,4}, {3}} (Fig. 4). Since other control covers can be found
corresponding to other uncertainty sets relevant to P;,i = 1,2,3,
the reduced supervisor is not unique. But, other feasible reduced
supervisor seems have more number of states. Obviously, we
can check that RSUP, is control equivalent to SUP under natural
projection Py w.r.t. G.

Example 3: Supervisory control of transfer line under partial
observation

Industrial transfer line consists of two machines M, M, and a
test unit TU, which are linked by buffers B, and B, (Fig. 5). The
capacities of B; and B; are assumed to be 3 and 1, respectively.
If a work piece is accepted by TU, it is released from the system;
if rejected, it is returned to B: for reprocessing by M,. The
specification is based on protecting B1 and B; against underflow
and overflow [17].

Fig. 3. The plant G and the corresponding supervisor SUP

Fig. 4. The partial observation reduced supervisor RSUP,

1 2 3 4 5 6
OB @D,
8

Fig. 5. Transfer Line

3
a. M1 b. M2 C. TU
Fig. 6. DES models of My, M, and TU

0000
a. B b. B

Fig. 7. Specifications of buffers

Fig. 8. The supremal relative observable
supervisor for transfer line, (SUP)

Fig. 9.
SUPO and RSUP,

All events involved in the DES model are ~ = {1,2,3,4,5,6,8},
where controllable events are odd-numbered. State transition
diagrams of Mi, My, TU and specifications of buffers are
displayed in Figs. 6, 7, respectively. The recognizer of relative
observable supervisor, SUP and the partial observation reduced
supervisor, corresponding to Py: 2" — X5, Xy =2 —{1,3,5},
are shown in Figs. 8, 9, respectively. We see that, events 1, 3, 5
appear just as self-loop transitions, each one at one state of the
reduced supervisor, RSUP, (Fig. 9). Since the recognizer of
partial observation supervisor, SUPO cannot be further reduced,
RSUP, and SUPO are the same.

Example 4: Supervisory control of guide way under partial
observation

Consider a guide way with two stations A and B, which are
connected by a single one-way track from A to B on a guide way,
as shown in Fig. 10. The track consists of 4 sections, with
stoplights (*) and detectors (1) installed at various section
junctions [17]. Two vehicles V;,V, use the guide way
simultaneously. V;,i = 1,2 may be in state 0 (at A), state j
(while travelling in section j =1, ....,4), or state 5 (at B). The
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generator of V;,i = 1,2 are shown in Fig. 11.
The plant to be controlled is G = sync(V;,V,). To prevent
collision, control of the stoplights must ensure that V, and V,

Station A |— - — . — - — . —— . —Station B

Fig. '10. Schemati'c of a guide Way
Vl . 11 . 13 . 10 . 15 . 12 .
v, . 21 . 23 . 20 . 25 . 22 .

Fig. 11. DES model of each vehicle

SUP

SUPO

Fig. 14. The partial observation reduced supervisor for the guide way, RSUP,

never travel on the same section of track simultaneously.
Namely, V;,i = 1,2 are mutual exclusion of the state pairs (i, i),
i=1,..,4. Controllable events are odd-numbered and the
unobservable events 13, 23 are considered to synthesize the
supremal relative observable supervisor, i.e. Py: X* = X, Xy =
X — {13, 23}. The supremal relative observable supervisor, SUP
is shown in Fig. 12, and its corresponding partial observation
supervisor SUPO is shown in Fig. 13. The reduced supervisor, in
which unobservable events 13, 23 are self-looped at state 1, is
shown in Fig. 14.

Moreover, events 15, 25 are self-looped at all states of the
reduced supervisor (hence, they are not shown). Thus, the
supervisor is normal w.rt. (L,,(G),Py), where Py:X* —
2y, 2y =X —{15,25}. It can be checked that P,(RSUP,) and
P,(SUP) are isomorph. Moreover, if the supervisor does not
observe events 13, 23, they cannot be disabled at states 0, 2 in
RSUP,. It means that, they appear as self-loop transitions at

states 0, 2. But the state size of the reduced supervisor does not
change.

Example 5: Supervisory control
observation

of AGV under partial

A work cell consists of two machines Mi;, M, and an
automated guided vehicle AGV as shown in Fig. 15. AGV can
be loaded with a work piece either from My (event 10) or from
M (event 22), which it transfers respectively to M, (event 21)
or to an output conveyor (event 30) [17]. Let
CELL=sync(M1,M,,AGV). We can see CELL is blocking in
state 9, i.e. the sequence of events reaches to a state from which
no further transitions are possible (Fig. 16). To prevent blocking,
we define SPEC=trim(CELL), as an appropriate specification
(Fig. 17). The supremal relative observable supervisor, SUP is
shown in Fig. 18, and its corresponding partial observation
supervisor SUPO is shown in Fig. 19. In Fig. 19, states 0, 3 and
states 1, 2 are control consistent, respectively. Thus, the partial
observation based reduced supervisor, RSUP, is as shown in Fig.
20. Assume Py: 2" = X5, X, = X — {11}, we can easily check
that Corollary 1 is satisfied for SUP and RSUP,.

V. CONCLUSIONS

This paper addresses an extension to supervisor reduction
procedure, proposed in [9], by considering partial observation;
namely not all events are observable. We reduced a feasible
partial observation supervisor instead of the original one. In the
resulting reduced supervisor, only observable events can cause
state changes. We finally clarified the extended theory by some
examples.

050

a. M1 b. Mz
Fig. 15. DES model of each machine and AGV

Fig. 18. The relative observable supervisor of AGV 2, = {11}, SUP
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Fig. 19. The feasible supervisor of AGV X, = {11}, SUPO
11

0570
Fig. 20. The partial observation reduced supervisor for AGV, RSUP,
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Appendix

In this appendix, a quick review of TCT commands is presented.
DES=sync(DES1,DES2,...,DESK) is the synchronous product of
DES1,DES2,...,DESK.

DES3= supcon(DES1, DES?2) for a controlled generator DES1,
forms a trim recognizer for the supremal controllable
sublanguage of the marked (“legal”) language generated by
DES2 to create DES3. This structure provides a proper
supervisor for DES1.
DES3=supconrobs(DES1,DES2,[NULL/IMAGE/IMAGE_DE
S]) is a trim DES which represents the supremal controllable
and relatively observable sublanguage of the legal language
represented by DES2, with respect to the plant DES1 and
natural projection specified by the listed Null or Image events,
or the latter’s allevents representation.

DAT3= condat(DES1, DES?2) returns control data DAT3 for the
supervisor DES2 of the controlled system DES1. If DES2
represents a controllable language (with respect to DES1),as
when DES2 has been previously computed with supcon, then
condat will display the events that are disabled at each state of
DES2. In general, condat can be used to test whether a given
language DES2 is controllable: just check that the disabled
events tabled by condatare themselves controllable (have odd-
numbered labels).

DES3=supreduce(DES1, DES2, DAT?2) is a reduced supervisor
for plant DES1 which is control-equivalent to DES2, where
DES2 and control data DAT2 were previously computed using
supcon and condat. Also returned is an estimated lower bound
slb for the state size of a strictly state-minimal reduced
supervisor. DES3 is strictly minimal if its reported state size
happens to equal the sib.

DES2=project(DES1, NULL/IMAGE EVENTS) is a generator
of the projected closed and marked languages of DES1, under
the natural projection specified by the listed Null or Image
events.

True/False= isomorph(DES1, DES2) tests whether DES1 and
DES2 are identical up to renumbering of states; if so, their state
correspondence is displayed.
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