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 

Abstract—This research aims to describe a novel model, namely 

Hybrid Adaptive-Neuro Fuzzy Inference System-Particle Swarm 

Optimization (ANFIS-PSO), for predicting corrosion rate of 3C 

steel considering different marine environment factors. In the 

present research, five parameters (temperature, dissolved oxygen, 

salinity, pH, and oxidation–reduction potential) were used as input 

variables, with corrosion rate being the only output variable. In 

the proposed hybrid ANFIS-PSO model, the PSO served as a tool 

to automatically search for and update optimal parameters for the 

ANFIS, so as to improve generalizability of the model. 

Effectiveness of the hybrid model was then compared those to two 

other models, namely Adaptive-Neuro Fuzzy Inference System–

Genetic Algorithm (ANFIS-GA) and Support Vector Regression 

(SVR) models, by evaluating their results against the same 

experimental data. The results showed that the proposed hybrid 

model tends to produce a lower prediction error than those of 

ANFIS-GA and SVR with the same training and testing datasets. 

Indeed, the hybrid ANFIS-PSO model provides engineers with an 

applicable and reliable tool to conduct real-time corrosion 

prediction of 3C steel considering different marine environment 

factors.  

 
Keywords: corrosion prediction, Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Particle Swarm Optimization (PSO), Support 

Vector Regression (SVR), steel  

 

I. INTRODUCTION 

One of the most important metallic materials used across 

various industries is 3C steel. It has various chemical 

compositions. Since 3C steel is made from different materials 

of a wide spectrum of chemical compositions, it is subjected to 

several types of defect when exposed to seawater environment. 

Corrosion, indeed, is the leading cause of the defects; it 

involves degradation of materials (e.g. steel, reinforced 

concrete and hybrid structures) via chemical or electrochemical 

alterations, and can proceed via a wide variety of mechanisms. 

Corrosion mechanism is complicated, but it is generally agreed 

that most of corrosion mechanisms involve an electrochemical 
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reaction. Limitations on corrosion-related measurements (e.g. 

experimental cost and large number of environmental variables 

which makes it practically impossible to model all of them at 

the same time) have led to a situation where only limited 

number of experimental datasets on corrosion are available. 

These facts has set the scene for the available corrosion data to 

be typically acquired from small number of samples with large 

dimensions, with their factors being strongly correlated to one 

another. Interacting factors affecting corrosion make it a 

challenge to undertake an accurate analysis of the corrosion. 

Prediction of corrosion rate is essential for decision-making on 

the design, maintenance, and management of industrial 

processes and operations.  

As such, a large deal of research has been focused on the subject 

matter of corrosion, with some of the research being conducted 

on real corrosion data and corresponding environmental 

parameters [1-5]. Due to the non-linear relationship between 

corrosion rate and contributing parameters (that interact with 

one another as well), it is difficult to set up a descriptive model 

of corrosion rate using ordinary mathematic modeling [6, 7]. To 

study the corrosion behavior and corrosion-induced damages, 

researchers have proposed many models and kinetic equations 

employing multiple linear regression techniques [8, 9].  

Several models have been proposed to predict corrosion in 

carbon steel, such as the empirical formulae proposed in Refs. 

[10, 11]. Feliu et al. [8] proposed a general equation to describe 

corrosion phenomenon: 𝐶 = 𝐴𝑡𝑛, where 𝐴 is the corrosion in 

the first year, 𝑡 is the time for which the model is exposed to 

corrosive environment (in years), 𝐶 is the corrosion after 𝑡 

years, and 𝑛 is a material-dependent constant which was 

proposed to be 0.44 for steel. Aiming at evaluating the damage 

of carbon steel as a function of some environmental variables, 

Diaz and Lopez [12] used an artificial neural network (ANN) 

model. Following another neural network model-based 

approach, El-Abbasy et al. applied ANN models to simulate 

(and therby predict) the conditions to which offshore oil and gas 

pipelines are exposed [2]. Furthermore, Fuzzy Logic (FL) 

approach was proposed to estimate corrosion failures along oil 
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and gas pipelines [13, 14]. Ling and Dong-Mei [15] proposed 

support vector regression (SVR) for predicting corrosion rate. 

Wen et al. [10] applied a PSO-based SVR model for optimizing 

SVR parameters and integrating leave-one-out cross-validation 

into it (SVR–LOOCV) to predict corrosion rate of 3C steel. 

They presented a comparison between experimentally 

measured and predicted corrosion rates by SVR–LOOCV and 

Back-Propagation Neural Network (BPNN) modeling on the 

same dataset. Accordingly, they suggested that BPNN is not an 

appropriate and reliable method for predicting the rate of 

corrosion due to lack of a unified mathematical theory, its 

adverse effect on global optimization, and its tendency toward 

over-fitting. In addition, they found that the limited 

extrapolation capability is an important disadvantage of the 

SVR model. 

Therefore, this paper aims to find an alternative method for 

updating the center and spread of the membership functions in 

ANFIS. Establishing an ANFIS model is a required step when 

choosing a proper set of Gaussian-function parameters is aimed. 

To prevent the problems mentioned in previous works, a smart 

integrated method is used to estimate corrosion rate of 3C steel 

at a higher accuracy. The choice of the smart integrated method 

is a key step in finding optimal ANFIS parameters. 

In this paper, applying a modern regression algorithm, namely 

ANFIS, a small set of factors with the largest contributions into 

the corrosion rate is extracted, based on which reliable 

corrosion models can be created. Next, a hybrid model 

generally referred to as ANFIS-PSO (which is based on 

simulated corrosion experiments) is used to predict corrosion 

rate of 3C steel. Here, PSO is used as tool for selecting optimal 

ANFIS parameters accurately. Following with the research, 

produced prediction errors by the proposed ANFIS- PSO model 

are compared to those of other models (e.g. ANFIS-GA and 

SVR). The results will show superior accuracy (with reference 

to experimental data) of the proposed ANFIS-PSO model over 

SVR [16] when applied to unseen data. 

 

II. METHOD AND MATERIAL 

A.  Theory of adaptive neuro-fuzzy inference system (ANFIS) 

To determine optimal parameters of Gaussian functions, 

ANFIS presents a relation for mapping input dataset to output 

dataset following a hybrid learning approach. As a conventional 

mathematical tool, ANFIS was first introduced by Jang [17], 

based on the first-order Sugeno system [18]. ANFIS combines 

the ideas of Fuzzy Logic (FL) with Neural Network (NN) to 

form a hybrid intelligent system which is of enhanced automatic 

learning and adapting capabilities. It represents one of the best 

trade-offs between (NN) and fuzzy systems, providing 

smoothness by fuzzy interpolation and adaptability by BPNN 

[19, 20]. ANFIS networks utilize five layers to create a fuzzy 

inference system (FIS). Each layer consists of several nodes 

described by the node function. Inputs into current layers are 

outputs from the nodes in preceding layer(s). Fig. 1 shows the 

inference approach followed by a first-order Sugeno fuzzy 

model which involves two inputs (x and y) and one output 

 ( 𝑓(x, y) = 𝑓𝑜𝑢𝑡), such that it contains two fuzzy ‘‘if-then’’ 

rules simply developed as follows: 

 

Rule 1. If x is 𝐴1 and y is 𝐵1; then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1. 

Rule 2. If x is 𝐴2 and y is 𝐵2; then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2. 

 

where 𝐴𝑖 and 𝐵𝑖  (𝑖 = 1, 2) are the fuzzy sets corresponding to 

input membership functions (MFs) x and y, respectively, and 𝑝𝑖 , 

𝑞𝑖 and 𝑟𝑖 (𝑖 = 1, 2) are parameters of the output MFs. The 

Gaussian MFs of the input parameters x and y are: 

 

µ𝐴𝑖
(𝑥) = exp (−

(𝑥−𝑐𝑎𝑖
)

𝜎𝑎𝑖
2

2

) i = 1, 2 (1) 

 

µ𝐵𝑖
(𝑦) = exp (−

(𝑦−𝑐𝑏𝑖
)

𝜎𝑏𝑖
2

2

) i = 1, 2 (2) 

 

where { 𝑐𝑎𝑖 , 𝜎𝑎𝑖
 } and {𝑐𝑏𝑖

 , 𝜎𝑏𝑖
} are sets of centers and 

spreads of MFs, respectively. Fig. 2 represents ANFIS structure 

which is equivalent to the inference process. ANFIS 

feedforward equations are simply developed as follows: 

  

𝑤𝑖=µ𝐴𝑖
(𝑥) µ𝐵𝑖

(𝑦) i = 1, 2 
  

(3) 

 

𝑤𝑖 =
𝑤𝑖

𝑤1+𝑤2
 i = 1, 2 

    

(4) 

 

𝑓𝑜𝑢𝑡 = 𝑤1𝑓1+𝑤2𝑓2=
𝑤1

𝑤1+𝑤2
𝑓1+

𝑤2

𝑤1+𝑤2
𝑓2 

 

(5) 

 

𝑓𝑜𝑢𝑡 = 𝑤1𝑓1+𝑤2𝑓2=
𝑤1

𝑤1+𝑤2
𝑓1+

𝑤2

𝑤1+𝑤2
𝑓2=

𝑤1

𝑤1+𝑤2
(𝑝1𝑥 +

𝑞1𝑦 + 𝑟1)+
𝑤2

𝑤1+𝑤2
(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2) 

  

(6) 

 

From Fig. 1 and according to Eq. (7), the final output, 𝑓𝑜𝑢𝑡, 

can be expressed as a linear combination of the corresponding 

parameters. 

 

𝑓𝑜𝑢𝑡 = 𝑤1𝑓1+𝑤2𝑓2=𝑤1(𝑝1𝑥 + 𝑞1𝑦 +
𝑟1)+𝑤2 (𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)  = 𝑤1(𝑝1𝑥)+ 𝑤1(𝑞1𝑦)+𝑤1 

(𝑟1) + 𝑤2(𝑝2𝑥) + 𝑤2(𝑞2𝑦) + 𝑤2(𝑟2)  

   

(7) 

 

From Eqs. (1)-(6), it can be seen that, as the performance of 

ANFIS depends on such parameters as center and spread of 

each MF, the parameters shall be set appropriately. 

      ANFIS employs a combination of least-squares and BPNN 

methods to train MF parameters based on a given training 

dataset. Formally speaking, such an estimation function is 

defined as one used to estimate a function 𝑓 = 𝑓𝑜𝑢𝑡  in such a 

way that it can be applied to reasonably approximate the actual 

function, f. However, the system tends to predict the output y ̂ 

for a given input vector (𝑋1 , 𝑋2, 𝑋3, … 𝑋𝑛) in such a way that  

The rest of this paper is arranged as follows: Section 2 describes 

the theory of ANFIS and PSO briefly; an introduction on the 

dataset used in this paper is presented in Section 3; Section 4 

gives computational results of the proposed ANFIS-PSO model 

along with a detailed discussion on the results, with the final 

conclusions drawn in Section 5.  
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The ANFIS structure is shown in Fig. 3a. Further, more 

details of a fuzzy inference system is depicted in Fig. 3b. 

ANFIS has four major components including a knowledge-

based module (which defines the MFs used as the fuzzy rule 

base) consisting of a set of fuzzy rules and a database. An 

inference mechanism, that applies the reasoning process to 

derive outputs of the fuzzification and defuzzification modules 

while converting the inferred fuzzy sets into crisp output(s), 

converts crisp inputs into appropriate fuzzy sets.  

 In its basic form, a FIS consists of a set of fuzzy IF–THEN 

rules describing input–output pairs.  

 

 
 

Fig. 3a. ANFIS model structure. 

  

 

Fig. 3b. Fuzzy inference system diagram.  

B. PSO algorithm 

Evolutionary algorithms are often used to solve optimization 

problems in complex, discontinuous, non-linear, and highly 

constrained search spaces, with no need to neither gradient 

information nor a comprehensive knowledge of model 

characteristics, in presence of a wide spectrum of uncertainties. 

Kennedy and Eberhart [21, 22] introduced PSO as an 

evolutionary algorithm based on social behavior and swarm 

intelligence. The main benefit of PSO is that, rather than a 

single solution, it provides a family of near-optimal solutions 

with a small variation in performance index. PSO algorithms 

are based on swarm intelligence which represents a system’s 

ability to get a level of intelligence (i.e. complex behavior 

patterns) beyond that of other members in the society. However, 

these complex behavior patterns are created via simple and 

repetitive tasks performed on each and any member of the 

society. To find the optimum solution, each particle has its 

position and velocity information, and hence fitness value, 

iteratively updated. Behavior of the particles are then altered to 

improve the probability of having the particles shifted to 

regions of high fitness value, i.e. meeting optimal solution. 

Particles can be tuned by tracking their local best values, global 

best values, present position, and/or velocity information. In 

PSO, each particle has its particular velocity and position 

 
 

Fig. 1. Inference process of first-order Sugeno. 
 

 

 

Fig. 2. ANFIS structure.  
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evolved based on the following equations: 

 

𝑣𝑖𝑑
𝑘+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑘  + 𝑐1 ∗ 𝑟1
𝑘 ∗(𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) +𝑐2 ∗

𝑟2
𝑘 ∗(𝑔𝑏𝑒𝑠𝑡𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 )                       

(9) 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 (10) 

In Eqs. (9) and (10), 𝑥𝑖𝑑
𝑘  , 𝑥𝑖𝑑

𝑘+1, 𝑣𝑖𝑑
𝑘 , 𝑣𝑖𝑑

𝑘+1 represent the 𝑑-

dimension values of positions and velocities of the particle 𝑖 at 

the 𝑘th and (𝑘 + 1)th iterations, respectively. 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘  

represents optimal 𝑑-dimension value of the individual 𝑖 at 𝑘th 

iteration. 𝑔𝑏𝑒𝑠𝑡𝑑
𝑘 is the 𝑑-dimension value of the swarm at its 

most optimal position. Velocities of the particles in different 

directions are confined between 𝑣𝑑𝑚𝑖𝑛 and 𝑣𝑑𝑚𝑎𝑥, so as to 

avoid particles from getting too far from the state space of the 

problem. Parameters 𝑐1 and 𝑐2 are referred to as learning factors 

and normally set to 2. Parameters 𝑟1 and 𝑟2 are random fictions, 

with their values defined to be randomly fall within [0-1]. In 

Eq. (9), 𝑤 represents inertia weight to speed up the rate of 

convergence which is defined as: 

 

𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) ∗ 𝐼𝑡𝑒𝑟 (11) 

where 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 represent maximum and minimum 

inertia weights, respectively. Also 𝐼𝑡𝑒𝑟 and 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 stand for 

current and maximum number of iterations, respectively. PSO 

resembles other population-based evolutionary algorithms (e.g. 

differential evolution DE, genetic algorithm GA, etc.) in that it 

is initialized with random solutions. Subsequently, according to 

properties of the swarm intelligence and evolution (fitness 

function), optimal solution is looked for. Each particle is 

initialized with a random velocity that is then iteratively 

approached through the state space of the problem toward the 

best fitness value. The solution evolution process is essentially 

an iterative process, thereby necessitating a stopping criterion 

to be met when the learning process is completed. In this 

research, maximum number of generations is used as the 

stopping criterion  

C. Choosing the best parameters for ANFIS using PSO 

A main challenge in optimizing all parameters of ANFIS is 

different spans within which various parameters should be 

optimized. In an ANFIS modeling, the values of key parameters 

can determine the performance of prediction results, as 

compared to actual values. Training ANFIS parameters 

presents an optimization problem, so that metaheuristics and 

evolutionary algorithms can be employed to set ANFIS 

parameters. In MATLAB implementation of the evolutionary 

ANFIS training, firstly, a set initial values are generated and 

considered as ANFIS parameters; these are then optimized by 

PSO.  Performance of an ANFIS model depends on parameters 

such as center and spread of each membership function {𝑐𝑖 ,𝜎𝑖}, 

which should be set appropriately. Actually, ANFIS parameters 

selection optimizes the search process in the ANFIS model to 

minimize overall error. As such, in this research, PSO is 

employed to seek optimal parameters for ANFIS, so as to 

promote the prediction efficiency. Being directly related to 

regression performance of ANFIS, root mean square error 

(RMSE) was used as fitness function in this paper: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (12) 

where n denotes the number of training samples and 𝑦𝑖 and 

𝑦𝑖̂ represent actually measured and estimated values of the ith 

training sample. In the present research, 240 parameters were 

required to be optimized since the case study had six variables 

(total number of input and output variables) and 20 Gaussian 

functions, with each Gaussian function having two parameters 

to be optimized (6 × 2 × 20 = 240). The parameters of the 

ANFIS-PSO model for predicting corrosion rate are listed in 

Table 1. 
TABLE 1 

 ANFIS-PSO PARAMETERS TO PREDICT CORROSION RATE. 

PARAMETERS VALUES 

Maximum number of iteration 400 

Population size 50 

Personal learning coefficient 1 

Global learning coefficient 2 

Inertia weight damping ratio 0.99 

Inertia weight 1 

Number of Gaussian functions 20 

Number of optimized parameters  240 

III. DATASET 

Originally compiled in Ref. [23], the dataset used to train and 

test the proposed ANFIS-PSO model in this study included 

measured values of 6 variables on 46 samples using an 

electrochemical technique. Input and output variables and 

system type are indicated in Fig. 4. 

 

 
Fig. 4. Input and output variables of ANFIS model. 

A. Data preprocessing 

Coming from real engineering applications, raw data are 

usually of unequal ranges. So all data in a dataset need to be 

preprocessed. The primary purpose of data preprocessing is to 

simplify calculations and improve efficency of the model 

before the ANFIS model is trained. In order to attain this 

purpose, all data are normalized (mapped) to [-0.5, +0.5]: 

 

𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

− 0.5                                                    (13) 

 
In Eq. (13), X is actual value of the variable under 

consideration, 𝑋𝑛 is normalized value of X, and 𝑋𝑚𝑎𝑥 and 
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𝑋𝑚𝑖𝑛 are the maximum and minimum values of X, 

respectively. 

3.2. Partitioning the dataset  

Partitioning the dataset is performed by dividing the whole set 

of samples into two distinct sets, namely training and testing 

sets. The training samples are employed to determine the set of 

optimal parameters for ANFIS model, whereas the testing 

samples are utilized to demonstrate the model performance in 

terms of associated prediction errors, and hence the extent to 

which the model can be generalized. In order to appropriately 

compare performances of ANFIS-PSO, ANFIS-GA and SVR 

models, training and testing samples were randomly selected 

according to Liu et al. [23, 24]. According to the result of Ref. 

[23], five samples (Samples #7, 10, 14, 19 and 21) were selected 

as testing data, with the other 41 samples selected as training 

samples.  

 3.3. Model evaluation criteria 

Model assessment is the main step when it comes to 

appropriately comparing a model to others. Accordingly, to 

consider the efficiency of our proposed hybrid model, six 

criteria (mean square error (MSE), root mean square error 

(RMSE), correlation coefficients (R2), average percentage 

relative error (APRE), mean absolute error (MAE) and mean 

absolute percentage error (MAPE)) were used to evaluate 

different models’ generalizability properties. Table 2 indicates 

these performance metrics and associated formulae. RMSE and 

MSE measure the difference between actual and predicted 

values. R2 is a simple statistical parameter showing how well a 

model matches corresponding actual data and, consequently, 

represents a measure of the utility of the model. APRE 

measures relative deviation from experimental data. MAE and 

MAPE are used to measure absolute deviation and mean 

absolute deviation from actual values, respectively. Table 3 

indicates these performance indexes and associated 

calculations, respectively, for the training set, while Table 4 

shows the corresponding information to the testing samples. 

 
TABLE 2 

PERFORMANCE METRICS AND CALCULATION FORMULA. (𝒂𝒊 , 𝒑𝒊 

AND 𝒂𝒊 ARE THE ACTUAL, PREDICTED, AND MEAN OF ACTUAL 
VALUES, RESPECTIVELY) 

Metrics Calculation formula 

MSE 1

𝑛
∑(𝑎𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 

RMSE 

√
1

𝑛
∑(𝑎𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 

R2 

 

 

1 −
∑ (𝑎𝑖 − 𝑝𝑖)2𝑛

𝑖=1

∑ (𝑝𝑖 − 𝑎𝑖
𝑛
𝑖=1 )2

 

APRE                                                                      

 

1

𝑛
∑

(𝑎𝑖−𝑝𝑖)

𝑎𝑖

𝑛
𝑖=1 ∗100% 

 

MAE 

 

 

1

𝑛
∑ |𝑎𝑖 − 𝑝𝑖|

𝑛

𝑖=1

 

MAPE 1

𝑛
∑

|𝑎𝑖−𝑝𝑖|

|𝑎𝑖|

𝑛
𝑖=1 *100% 

IV. RESULT AND DISCUSSION 

In this research, the ANFIS was applied to construct a 

predictive model to forecast corrosion rate of 3C steel. Both 

PSO and GA were used to optimize the ANFIS parameters. 

MATLAB was employed to compare the proposed ANFIS-PSO 

model to ANFIS-GA and SVR [16] models. The efficiency of 

the ANFIS-PSO model was assessed using published datasets 

for corrosion rate of 3C steel in different seawater environments 

[23, 24]. Fig. 5 shows a comparison between experimentally 

measured and predicted corrosion rates by the ANFIS-PSO and 

ANFIS-GA models when applied on the same testing dataset. 

Prediction errors are also shown in Fig. 5 where it can be seen 

that ANFIS-PSO tends to provide lower prediction errors than 

those of ANFIS-GA. Indeed, PSO appears to provide superior 

results over GA when it comes to the search for optimal 

parameters of Gaussian functions. The results illustrate better 

generalizability of the ANFIS-PSO model rather than ANFIS-

GA one, mostly due to the followings. First, unlike GA, PSO 

does not go through such evolutionary operators as selection, 

crossover and mutation; in PSO, potential solutions travel 

through the state space of the problem and this simplifies the 

implementation process. Second, to find optimal solution, PSO 

needs just few parameters to be tuned. The major drawback of 

ANFIS-GA method is that it can be very time-consuming. 

 

 

Fig. 5. Comparison between electrochemically measured and predicted values 

by ANFIS-PSO and ANFIS-GA models. 

 

Fig. 6 illustrates that most of the data points lie either on or 

very close to the straight-line at the slope of 1. This shows that 

the predicted corrosion rates by the ANFIS-PSO model are in 

good agreement with the measured values. Fig. 6 indicates that 

the proposed hybrid model possesses good interpolation and 

extrapolation capabilities. From Fig. 7, SVR [16] model is seen 

to have good interpolation ability; it is further evident that the 

data point at right-end of the spectrum is seriously deviated 

from the straight-line, confirming the weak ability of SVR 

model when it comes to extrapolation; however the hybrid 

model in this research could overcome the weakness of the SVR 

model [16]. 
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Fig. 6. Actual corrosion rate vs. predicted values by ANFIS-PSO 

 

 

Fig. 7. Real corrosion rate vs. predicted values by SVR [16]. 

 

Table 3 compares ANFIS-PSO and ANFIS-GA models based 

on the obtained values of MSE, RMSE, R2, APRE, MAE and 

MAPE for the same training dataset. Table 3 indicates that, the 

proposed ANFIS-PSO algorithm outperforms the ANFIS-GA 

model. 

 
TABLE 3 

PERFORMANCE INDEXES AND ASSOCIATED CALCULATIONS 

(TRAINING PHASE). 

Hybrid 

model 

MSE RMSE R2 APRE MAE MAPE 

ANFIS-

PSO 

0.0429 0.2072 0.9958 -0.0742 0.1081 0.9920 

ANFIS-

GA 

0.1094 0.3307 0.9891 -0.0511 0.2118 1.8843 

 
 Fig. 8 shows a comparison between experimentally measured 

and predicted corrosion rates by ANFIS-PSO, ANFIS-GA, and 

SVR [16] models on the same testing dataset. Testing phase was 

implemented to illustrate whether the proposed ANFIS-PSO 

model is associated with an error any smaller than that of the 

SVR model [16]. As shown in Fig. 8, when compared to 

measured values, the results of the ANFIS-PSO model show 

good precision of this model. Fig. 8 also indicates that ANFIS-

PSO outperforms the other two models (SVR [16] and ANFIS-

GA) in predicting corrosion rate of 3C steel under different 

marine environment conditions, when tested on the same testing 

dataset.  

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8. Comparison between actual and predicted values by ANFIS-PSO,   

ANFIS-GA, and SVR (testing phase). 

 

Table 4 compares different models on the basis of MSE, 

RMSE, R2, APRE, MAE and MAPE values for the same testing 

dataset. According to this table, RMSE, R2, MAE and MAPE 

values of the proposed ANFIS-PSO model are superior over 

those of SVR [16] and ANFIS-GA models, for the same testing 

dataset. 
TABLE 4 

PERFORMANCE INDEXES AND ASSOCIATED CALCULATIONS 
(TESTING PHASE). 

Hybrid 

model 

MSE RMSE R2 APRE MAE MAPE 

ANFIS-

PSO 

0.2336 0.4833 0.9525 -0.2828 0.3403 2.9214 

ANFIS-

GA 

0.7087 0.8418 0.7372 -2.3763 0.7384 5.8974 

SVR ----- 0.675 0.942 --------- 0.485 3.84 

V. CONCLUSION 

This research aimed at predicting the corrosion rate of 3C steel 

under the effects of five marine environment factors including 

temperature, dissolved oxygen, salinity, oxidation–reduction 

potential, and pH values. For this purpose, PSO algorithm was 

used to tune optimal parameters for the ANFIS model. 

Prediction results were compared to those of ANFIS-GA and 

SVR models. The proposed hybrid model was found to provide 

smaller prediction errors than those of SVR and ANFIS-GA 

models, due to not only the use of a combination of neural 

network with fuzzy logic, but also the advantage of embedding 

PSO, as an evolutionary algorithm, into ANFIS to converge a 

globally optimal solution. The PSO appeared to be superior 

over GA when it came to the optimization of ANFIS 

parameters. The proposed model for predicting corrosion rate 

has many advantages over the traditional methods used in the 

industry, such as empirical, semi-empirical and intelligent 

models. It has the capability to account for some of essential 
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factors in seawater environment, which are not considered in 

SVR and ANFIS-GA models. Comparisons showed that, 

compared to SVR and ANFIS-GA models, the proposed hybrid 

model can predict 3C steel corrosion rate more accurately. 

Finally, the SVR model was found to suffer from limited 

extrapolation capability, while ANFIS-PSO was seen to be of 

strong extrapolation capability and generalizability.  
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