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A Hybrid Adaptive Neuro-Fuzzy Inference
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Abstract—This research aims to describe a novel model, namely
Hybrid Adaptive-Neuro Fuzzy Inference System-Particle Swarm
Optimization (ANFIS-PSO), for predicting corrosion rate of 3C
steel considering different marine environment factors. In the
present research, five parameters (temperature, dissolved oxygen,
salinity, pH, and oxidation—reduction potential) were used as input
variables, with corrosion rate being the only output variable. In
the proposed hybrid ANFIS-PSO model, the PSO served as a tool
to automatically search for and update optimal parameters for the
ANFIS, so as to improve generalizability of the model.
Effectiveness of the hybrid model was then compared those to two
other models, namely Adaptive-Neuro Fuzzy Inference System-—
Genetic Algorithm (ANFIS-GA) and Support Vector Regression
(SVR) models, by evaluating their results against the same
experimental data. The results showed that the proposed hybrid
model tends to produce a lower prediction error than those of
ANFIS-GA and SVR with the same training and testing datasets.
Indeed, the hybrid ANFIS-PSO model provides engineers with an
applicable and reliable tool to conduct real-time corrosion
prediction of 3C steel considering different marine environment
factors.
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I. INTRODUCTION

One of the most important metallic materials used across
various industries is 3C steel. It has various chemical
compositions. Since 3C steel is made from different materials
of a wide spectrum of chemical compositions, it is subjected to
several types of defect when exposed to seawater environment.
Corrosion, indeed, is the leading cause of the defects; it
involves degradation of materials (e.g. steel, reinforced
concrete and hybrid structures) via chemical or electrochemical
alterations, and can proceed via a wide variety of mechanisms.
Corrosion mechanism is complicated, but it is generally agreed
that most of corrosion mechanisms involve an electrochemical
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reaction. Limitations on corrosion-related measurements (e.g.
experimental cost and large number of environmental variables
which makes it practically impossible to model all of them at
the same time) have led to a situation where only limited
number of experimental datasets on corrosion are available.
These facts has set the scene for the available corrosion data to
be typically acquired from small number of samples with large
dimensions, with their factors being strongly correlated to one
another. Interacting factors affecting corrosion make it a
challenge to undertake an accurate analysis of the corrosion.
Prediction of corrosion rate is essential for decision-making on
the design, maintenance, and management of industrial
processes and operations.

As such, a large deal of research has been focused on the subject
matter of corrosion, with some of the research being conducted
on real corrosion data and corresponding environmental
parameters [1-5]. Due to the non-linear relationship between
corrosion rate and contributing parameters (that interact with
one another as well), it is difficult to set up a descriptive model
of corrosion rate using ordinary mathematic modeling [6, 7]. To
study the corrosion behavior and corrosion-induced damages,
researchers have proposed many models and kinetic equations
employing multiple linear regression techniques [8, 9].

Several models have been proposed to predict corrosion in
carbon steel, such as the empirical formulae proposed in Refs.
[10, 11]. Feliu et al. [8] proposed a general equation to describe
corrosion phenomenon: C = At™, where A is the corrosion in
the first year, t is the time for which the model is exposed to
corrosive environment (in years), C is the corrosion after t
years, and n is a material-dependent constant which was
proposed to be 0.44 for steel. Aiming at evaluating the damage
of carbon steel as a function of some environmental variables,
Diaz and Lopez [12] used an artificial neural network (ANN)
model. Following another neural network model-based
approach, El-Abbasy et al. applied ANN models to simulate
(and therby predict) the conditions to which offshore oil and gas
pipelines are exposed [2]. Furthermore, Fuzzy Logic (FL)
approach was proposed to estimate corrosion failures along oil
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and gas pipelines [13, 14]. Ling and Dong-Mei [15] proposed
support vector regression (SVR) for predicting corrosion rate.
Wen et al. [10] applied a PSO-based SVR model for optimizing
SVR parameters and integrating leave-one-out cross-validation
into it (SVR-LOOCYV) to predict corrosion rate of 3C steel.
They presented a comparison between experimentally
measured and predicted corrosion rates by SVR-LOOCV and
Back-Propagation Neural Network (BPNN) modeling on the
same dataset. Accordingly, they suggested that BPNN is not an
appropriate and reliable method for predicting the rate of
corrosion due to lack of a unified mathematical theory, its
adverse effect on global optimization, and its tendency toward
over-fitting. In addition, they found that the limited
extrapolation capability is an important disadvantage of the
SVR model.

Therefore, this paper aims to find an alternative method for
updating the center and spread of the membership functions in
ANFIS. Establishing an ANFIS model is a required step when
choosing a proper set of Gaussian-function parameters is aimed.
To prevent the problems mentioned in previous works, a smart
integrated method is used to estimate corrosion rate of 3C steel
at a higher accuracy. The choice of the smart integrated method
is a key step in finding optimal ANFIS parameters.

In this paper, applying a modern regression algorithm, namely
ANFIS, a small set of factors with the largest contributions into
the corrosion rate is extracted, based on which reliable
corrosion models can be created. Next, a hybrid model
generally referred to as ANFIS-PSO (which is based on
simulated corrosion experiments) is used to predict corrosion
rate of 3C steel. Here, PSO is used as tool for selecting optimal
ANFIS parameters accurately. Following with the research,
produced prediction errors by the proposed ANFIS- PSO model
are compared to those of other models (e.g. ANFIS-GA and
SVR). The results will show superior accuracy (with reference
to experimental data) of the proposed ANFIS-PSO model over
SVR [16] when applied to unseen data.

The rest of this paper is arranged as follows: Section 2 describes
the theory of ANFIS and PSO briefly; an introduction on the
dataset used in this paper is presented in Section 3; Section 4
gives computational results of the proposed ANFIS-PSO model
along with a detailed discussion on the results, with the final
conclusions drawn in Section 5.

Il. METHOD AND MATERIAL

A. Theory of adaptive neuro-fuzzy inference system (ANFIS)

To determine optimal parameters of Gaussian functions,
ANFIS presents a relation for mapping input dataset to output
dataset following a hybrid learning approach. As a conventional
mathematical tool, ANFIS was first introduced by Jang [17],
based on the first-order Sugeno system [18]. ANFIS combines
the ideas of Fuzzy Logic (FL) with Neural Network (NN) to
form a hybrid intelligent system which is of enhanced automatic
learning and adapting capabilities. It represents one of the best
trade-offs between (NN) and fuzzy systems, providing
smoothness by fuzzy interpolation and adaptability by BPNN
[19, 20]. ANFIS networks utilize five layers to create a fuzzy
inference system (FIS). Each layer consists of several nodes
described by the node function. Inputs into current layers are

outputs from the nodes in preceding layer(s). Fig. 1 shows the
inference approach followed by a first-order Sugeno fuzzy
model which involves two inputs (x and y) and one output

( (X, ¥) = four), such that it contains two fuzzy ‘‘if-then”’
rules simply developed as follows:

Rule 1. If xis A; and y is By; then f; = pyx + quy + 11.
Rule 2. If xis A, and y is B,; then f, = p,x + q,y + 1.

where A; and B; (i = 1, 2) are the fuzzy sets corresponding to
input membership functions (MFs) x and y, respectively, and p;,

q; and r; (i = 1, 2) are parameters of the output MFs. The
Gaussian MFs of the input parameters x and y are:
(x=ca,)’ . .
Mg, (X) = exp(——2 ) i=1,2 @
(-cn)’~ . _ )
uBi(y) = eXp(— 0'5. ) 1= 11 2 ( )

where { cq,,04,} and {c,,,0,,} are sets of centers and
spreads of MFs, respectively. Fig. 2 represents ANFIS structure

which is equivalent to the inference process. ANFIS

feedforward equations are simply developed as follows:
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From Fig. 1 and according to Eq. (7), the final output, f,.:,
can be expressed as a linear combination of the corresponding
parameters.

foiz W_1f1+W_2f2=W_1(P1ﬁ‘ “ny+ L
7'1)+W2£72x + Q2y_+ ) = WL(PNC)"' w1 (q1y)+w, @)
(1) + Wy (p2x) + W, (q2Y) + wy(12)

From Egs. (1)-(6), it can be seen that, as the performance of
ANFIS depends on such parameters as center and spread of
each MF, the parameters shall be set appropriately.

ANFIS employs a combination of least-squares and BPNN
methods to train MF parameters based on a given training
dataset. Formally speaking, such an estimation function is
defined as one used to estimate a function f = f,,, in such a
way that it can be applied to reasonably approximate the actual
function, f. However, the system tends to predict the output y~
for a given input vector (X, , X, X3, ... X;;) in such a way that
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Fig. 1. Inference process of first-order Sugeno.
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Fig. 2. ANFIS structure.

The ANFIS structure is shown in Fig. 3a. Further, more
details of a fuzzy inference system is depicted in Fig. 3b.
ANFIS has four major components including a knowledge-
based module (which defines the MFs used as the fuzzy rule
base) consisting of a set of fuzzy rules and a database. An
inference mechanism, that applies the reasoning process to
derive outputs of the fuzzification and defuzzification modules
while converting the inferred fuzzy sets into crisp output(s),
converts crisp inputs into appropriate fuzzy sets.

In its basic form, a FIS consists of a set of fuzzy IF-THEN
rules describing input—output pairs.
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Fig. 3a. ANFIS model structure.
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Fig. 3b. Fuzzy inference system diagram.

B. PSO algorithm

Evolutionary algorithms are often used to solve optimization
problems in complex, discontinuous, non-linear, and highly
constrained search spaces, with no need to neither gradient
information nor a comprehensive knowledge of model
characteristics, in presence of a wide spectrum of uncertainties.
Kennedy and Eberhart [21, 22] introduced PSO as an
evolutionary algorithm based on social behavior and swarm
intelligence. The main benefit of PSO is that, rather than a
single solution, it provides a family of near-optimal solutions
with a small variation in performance index. PSO algorithms
are based on swarm intelligence which represents a system’s
ability to get a level of intelligence (i.e. complex behavior
patterns) beyond that of other members in the society. However,
these complex behavior patterns are created via simple and
repetitive tasks performed on each and any member of the
society. To find the optimum solution, each particle has its
position and velocity information, and hence fitness value,
iteratively updated. Behavior of the particles are then altered to
improve the probability of having the particles shifted to
regions of high fitness value, i.e. meeting optimal solution.
Particles can be tuned by tracking their local best values, global
best values, present position, and/or velocity information. In
PSO, each particle has its particular velocity and position
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evolved based on the following equations:

k+1

— k k k k
Vig = W*vig +cp x1y x(pbestiy — xjg) +cp *

¥ x(gbestk — xk)
x5 =l + vl (10)
In Egs. (9) and (10), xk, , x5, vk, v+ represent the d-

dimension values of positions and velocities of the particle i at
the kth and (k+ 1)th iterations, respectively. pbestk,
represents optimal d-dimension value of the individual i at kth
iteration. gbest¥ is the d-dimension value of the swarm at its
most optimal position. Velocities of the particles in different
directions are confined between vy,,in and Vgmax, SO as to
avoid particles from getting too far from the state space of the
problem. Parameters ¢, and c, are referred to as learning factors
and normally set to 2. Parameters r; and r,, are random fictions,
with their values defined to be randomly fall within [0-1]. In
Eqg. (9), w represents inertia weight to speed up the rate of
convergence which is defined as:

Wnax — Wnin

) * [ter
Iteryax

W = W — ( (11)

where wy,,, and wy,;, represent maximum and minimum
inertia weights, respectively. Also Iter and Iter,,,, Stand for
current and maximum number of iterations, respectively. PSO
resembles other population-based evolutionary algorithms (e.g.
differential evolution DE, genetic algorithm GA, etc.) in that it
is initialized with random solutions. Subsequently, according to
properties of the swarm intelligence and evolution (fitness
function), optimal solution is looked for. Each particle is
initialized with a random velocity that is then iteratively
approached through the state space of the problem toward the
best fitness value. The solution evolution process is essentially
an iterative process, thereby necessitating a stopping criterion
to be met when the learning process is completed. In this
research, maximum number of generations is used as the
stopping criterion

C. Choosing the best parameters for ANFIS using PSO

A main challenge in optimizing all parameters of ANFIS is
different spans within which various parameters should be
optimized. Inan ANFIS modeling, the values of key parameters
can determine the performance of prediction results, as
compared to actual values. Training ANFIS parameters
presents an optimization problem, so that metaheuristics and
evolutionary algorithms can be employed to set ANFIS
parameters. In MATLAB implementation of the evolutionary
ANFIS training, firstly, a set initial values are generated and
considered as ANFIS parameters; these are then optimized by
PSO. Performance of an ANFIS model depends on parameters
such as center and spread of each membership function {c; ,;},
which should be set appropriately. Actually, ANFIS parameters
selection optimizes the search process in the ANFIS model to
minimize overall error. As such, in this research, PSO is
employed to seek optimal parameters for ANFIS, so as to
promote the prediction efficiency. Being directly related to
regression performance of ANFIS, root mean square error

(RMSE) was used as fitness function in this paper:

n
1 52
;Z(yi =)
i=1

where n denotes the number of training samples and y; and
, represent actually measured and estimated values of the ith
training sample. In the present research, 240 parameters were
required to be optimized since the case study had six variables
(total number of input and output variables) and 20 Gaussian
functions, with each Gaussian function having two parameters
to be optimized (6 x 2 x 20 = 240). The parameters of the
ANFIS-PSO model for predicting corrosion rate are listed in
Table 1.

RMSE = (12)

TABLE 1
ANFIS-PSO PARAMETERS TO PREDICT CORROSION RATE.

PARAMETERS VALUES
Maximum number of iteration 400
Population size 50
Personal learning coefficient 1
Global learning coefficient 2
Inertia weight damping ratio 0.99
Inertia weight 1
Number of Gaussian functions 20
Number of optimized parameters 240

I1l. DATASET

Originally compiled in Ref. [23], the dataset used to train and
test the proposed ANFIS-PSO model in this study included
measured values of 6 variables on 46 samples using an
electrochemical technique. Input and output variables and
system type are indicated in Fig. 4.

X

Temperature

ﬁ

Dissolved Oxygen Sugenosl

f(u)

Salinity Sugeno

y

PH Values

Corrosion Rate

@

Oxidation Reduction Potential

Fig. 4. Input and output variables of ANFIS model.

A. Data preprocessing

Coming from real engineering applications, raw data are
usually of unequal ranges. So all data in a dataset need to be
preprocessed. The primary purpose of data preprocessing is to
simplify calculations and improve efficency of the model
before the ANFIS model is trained. In order to attain this
purpose, all data are normalized (mapped) to [-0.5, +0.5]:

X—Xmin

X, = - 05 (13)

X — .
max—Xmin

In Eg. (13), X is actual value of the variable under
consideration, X, is normalized value of X, and X4, and
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Xmin are the maximum and minimum values of X,
respectively.
3.2. Partitioning the dataset

Partitioning the dataset is performed by dividing the whole set
of samples into two distinct sets, namely training and testing
sets. The training samples are employed to determine the set of
optimal parameters for ANFIS model, whereas the testing
samples are utilized to demonstrate the model performance in
terms of associated prediction errors, and hence the extent to
which the model can be generalized. In order to appropriately
compare performances of ANFIS-PSO, ANFIS-GA and SVR
models, training and testing samples were randomly selected
according to Liu et al. [23, 24]. According to the result of Ref.
[23], five samples (Samples #7, 10, 14, 19 and 21) were selected
as testing data, with the other 41 samples selected as training
samples.

3.3. Model evaluation criteria

Model assessment is the main step when it comes to
appropriately comparing a model to others. Accordingly, to
consider the efficiency of our proposed hybrid model, six
criteria (mean square error (MSE), root mean square error
(RMSE), correlation coefficients (R2), average percentage
relative error (APRE), mean absolute error (MAE) and mean
absolute percentage error (MAPE)) were used to evaluate
different models’ generalizability properties. Table 2 indicates
these performance metrics and associated formulae. RMSE and
MSE measure the difference between actual and predicted
values. R2 is a simple statistical parameter showing how well a
model matches corresponding actual data and, consequently,
represents a measure of the utility of the model. APRE
measures relative deviation from experimental data. MAE and
MAPE are used to measure absolute deviation and mean
absolute deviation from actual values, respectively. Table 3
indicates these performance indexes and associated
calculations, respectively, for the training set, while Table 4
shows the corresponding information to the testing samples.

TABLE 2
PERFORMANCE METRICS AND CALCULATION FORMULA. (a; , p;
AND a; ARE THE ACTUAL, PREDICTED, AND MEAN OF ACTUAL
VALUES, RESPECTIVELY)

Metrics Calculation formula
MSE
RMSE
R? 1— Z?:1(ai - pi)z
iz (D — @p)?
1 (ai-pi)
APRE - ?:1% +«100%
n
MAE ! Z
"y la; — pil
i=1
MAPE l n |ai_pi|*1000/0
n =Lyl

IV. RESULT AND DISCUSSION

In this research, the ANFIS was applied to construct a
predictive model to forecast corrosion rate of 3C steel. Both
PSO and GA were used to optimize the ANFIS parameters.
MATLAB was employed to compare the proposed ANFIS-PSO
model to ANFIS-GA and SVR [16] models. The efficiency of
the ANFIS-PSO model was assessed using published datasets
for corrosion rate of 3C steel in different seawater environments
[23, 24]. Fig. 5 shows a comparison between experimentally
measured and predicted corrosion rates by the ANFIS-PSO and
ANFIS-GA models when applied on the same testing dataset.
Prediction errors are also shown in Fig. 5 where it can be seen
that ANFIS-PSO tends to provide lower prediction errors than
those of ANFIS-GA. Indeed, PSO appears to provide superior
results over GA when it comes to the search for optimal
parameters of Gaussian functions. The results illustrate better
generalizability of the ANFIS-PSO model rather than ANFIS-
GA one, mostly due to the followings. First, unlike GA, PSO
does not go through such evolutionary operators as selection,
crossover and mutation; in PSO, potential solutions travel
through the state space of the problem and this simplifies the
implementation process. Second, to find optimal solution, PSO
needs just few parameters to be tuned. The major drawback of
ANFIS-GA method is that it can be very time-consuming.
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Fig. 5. Comparison between electrochemically measured and predicted values
by ANFIS-PSO and ANFIS-GA models.

Fig. 6 illustrates that most of the data points lie either on or
very close to the straight-line at the slope of 1. This shows that
the predicted corrosion rates by the ANFIS-PSO model are in
good agreement with the measured values. Fig. 6 indicates that
the proposed hybrid model possesses good interpolation and
extrapolation capabilities. From Fig. 7, SVR [16] model is seen
to have good interpolation ability; it is further evident that the
data point at right-end of the spectrum is seriously deviated
from the straight-line, confirming the weak ability of SVR
model when it comes to extrapolation; however the hybrid
model in this research could overcome the weakness of the SVR
model [16].
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Fig. 6. Actual corrosion rate vs. predicted values by ANFIS-PSO

implemented to illustrate whether the proposed ANFIS-PSO
model is associated with an error any smaller than that of the
SVR model [16]. As shown in Fig. 8, when compared to
measured values, the results of the ANFIS-PSO model show
good precision of this model. Fig. 8 also indicates that ANFIS-
PSO outperforms the other two models (SVR [16] and ANFIS-
GA\) in predicting corrosion rate of 3C steel under different
marine environment conditions, when tested on the same testing
dataset.

—e— Experimental Values
16 4 —*— ANFIS-PSo

v ANFIS-GA
—— SVR

Targets and Outputs (yAlcm )
2

Testing Samples Number
Fig. 8. Comparison between actual and predicted values by ANFIS-PSO,
30 ANFIS-GA, and SVR (testing phase).
s 1 —— Targets - .
o B ®  Outputs Table 4 compares different models on the basis of MSE,
(] -
2 RMSE, R2, APRE, MAE and MAPE values for the same testing
Zg dataset. According to this table, RMSE, R2, MAE and MAPE
T 451 g values of the proposed ANFIS-PSO model are superior over
§ those of SVR [16] and ANFIS-GA models, for the same testing
§ 10 1 dataset.
= TABLE 4
B 5 PERFORMANCE INDEXES AND ASSOCIATED CALCULATIONS
3 (TESTING PHASE).
& g Hybrid MSE | RMSE | R? APRE | MAE MAPE
model
0 5 10 15 20 2 30 ANFIS- | 0.2336 | 0.4833 | 0.9525 | -0.2828 | 0.3403 | 2.9214
Real Corrosion Rate (nA/cm?) PSO
Fig. 7. Real corrosion rate vs. predicted values by SVR [16]. g,’:FIS- 0.7087 | 0.8418 | 0.7372 | -2.3763 | 0.7384 5.8974
SVR [ - 0675 | 0942 | e 0.485 3.84
Table 3 compares ANFIS-PSO and ANFIS-GA models based

on the obtained values of MSE, RMSE, R?, APRE, MAE and
MAPE for the same training dataset. Table 3 indicates that, the
proposed ANFIS-PSO algorithm outperforms the ANFIS-GA

model.

TABLE 3
PERFORMANCE INDEXES AND ASSOCIATED CALCULATIONS
(TRAINING PHASE).

Hybrid MSE RMSE | R? APRE MAE MAPE
model
ANFIS- 0.0429 | 0.2072 | 0.9958 | -0.0742 | 0.1081 | 0.9920
PSO
ANFIS- 0.1094 | 0.3307 | 0.9891 | -0.0511 | 0.2118 | 1.8843
GA

Fig. 8 shows a comparison between experimentally measured
and predicted corrosion rates by ANFIS-PSO, ANFIS-GA, and
SVR [16] models on the same testing dataset. Testing phase was

V. CONCLUSION

This research aimed at predicting the corrosion rate of 3C steel
under the effects of five marine environment factors including
temperature, dissolved oxygen, salinity, oxidation—reduction
potential, and pH values. For this purpose, PSO algorithm was
used to tune optimal parameters for the ANFIS model.
Prediction results were compared to those of ANFIS-GA and
SVR models. The proposed hybrid model was found to provide
smaller prediction errors than those of SVR and ANFIS-GA
models, due to not only the use of a combination of neural
network with fuzzy logic, but also the advantage of embedding
PSO, as an evolutionary algorithm, into ANFIS to converge a
globally optimal solution. The PSO appeared to be superior
over GA when it came to the optimization of ANFIS
parameters. The proposed model for predicting corrosion rate
has many advantages over the traditional methods used in the
industry, such as empirical, semi-empirical and intelligent
models. It has the capability to account for some of essential
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factors in seawater environment, which are not considered in
SVR and ANFIS-GA models. Comparisons showed that,
compared to SVR and ANFIS-GA models, the proposed hybrid
model can predict 3C steel corrosion rate more accurately.
Finally, the SVR model was found to suffer from limited
extrapolation capability, while ANFIS-PSO was seen to be of
strong extrapolation capability and generalizability.
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