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Formation and Tracking Control of Quadrotors
under a Leader-Follower Strategy

Mohammad Reza Soltanpour **, Reza Hooshmand 2

Abstract—In recent decades, the researchers have been
attracted in utilizing of the multi-agent systems due to the
sophistication in industrial processes, the cost of performing them
and increasing the reliability. One of the interesting problems in
this field of study is formation control of agents. In this paper, we
are going to design a decentralized control strategy for the
formation control of a group of quadrotors. To be more specific,
we simplify the nonlinear dynamic of a quadrotor by using motion
approximation and feedback linearization. Then, we solve the
formation control problem of quadrotors by the utilization of
leader-follower strategy with a decentralized protocol. In this
control strategy, only do a partial number of followers have access
to the leader’s information. This matter can reduce noticeably the
energy consumption of the leader since it requires to send less
amount of information. Thereafter, we will corroborate the
convergence of quadrotors to the predefined formation and leader
tracking mathematically. Finally, the simulation example will be
presented in order to validate the theoretical results.
control,

Index Terms—Multi-agent system, Formation

Quadrotor, Leader-follower, Tracking.

I. INTRODUCTION

WITH the advent of time, the researchers have been
intersected in the employing of the multi-agent systems
especially in the field of coverage, formation, and consensus
control [1]-[3]. Among these interesting fields, the formation
problem of UAVs (Unmanned Aerial Vehicles) has attracted
the attention of many researchers. This problem has a myriad of
applications including gathering information, surveillance,
traffic control, and etc., [2] and [4] Among many recent
investigations, quadrotor is one of the interesting agents which
has been used in many recent industrial and military projects
and problems. However, this type of agent has its own
challenges including under-actuated nonlinear coupled
dynamic structure, which make it a sophisticated control
problem. Despite these issues and encumbrances, quadrotor is
widely used in many multi-agent systems especially in the
formation problem due to its rational size, low cost of
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manufacturing, and capable of equipping with sensors,
cameras, communication systems or even lightweight weapons.
So far, a lot of efforts have been made in order to facilitate or
even obviate these challenges. In [5], the author employed
classical linearization method in order to simplify the
quadrotor’s dynamic. However, based on the intrinsic limitation
of this approach, the flawless performance and global stability
of the closed-loop system cannot be guaranteed. Moreover,
another interesting method was used in [6]. In this approach, the
authors utilized feedback linearization method and transformed
the nonlinear system into a linear decoupled system. On the
other word, in the new dynamic model, the translational
dynamic (position in 3-D space) and angular dynamic (heading
angle) were decoupled and transformed into a fourth-order
integrator and second-order integrator respectively. Then, by
employing a leader-follower strategy, they solved the formation
problem of a group of quadrotors.

In order to increase the robustness of the system, SMC (Sliding
mode Control) was employed, [6]-[10]. In [7], the authors
utilized SMC in order to cancel uncertainty and disturbance of
single quadrotor. Furthermore, in [6] SMC was also employed
to cancel the uncertainties in the dynamical model due to the
use of feedback linearization. One of the main drawbacks of
using SMC is the chattering problem. However, in [8], a QSMC
(Quasi SMC) method and TSMC (Terminal SMC) method in
[10] were employed in order to obviate the problem of
chattering. It should be noted that defining appropriate bounds
of uncertainty is also another kind of challenges, especially in
practical experiments.

Moreover, some other strategies have been used to model and
control the networked quadrotors [11]-[13]. As an instance, in
[11], the authors employed a two-layer controlling procedure in
order to stabilize and conduct the agents to a desired formation.
In this approach, a linear MPC method (Model Predictive
Control) was utilized in the top layer in order to produce an on-
line trajectory planning as well as achieving a desired
formation. On the other hand, in the bottom layer, a nonlinear

E-mail: rhooshmand@ssau.ac.ir
" Corresponding author: Mohammad Reza Soltanpour
E-mail: m_r_soltanpour@yahoo.com


mailto:m_r_soltanpour@yahoo.com
mailto:rhooshmand@ssau.ac.ir
mailto:m_r_soltanpour@yahoo.com

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 4, WINTER 2016 43

control mechanism is employed in order to stabilize the
quadrotors. However, this approach is not practical when the
number of agents increases.
Another kind of strategy called potential field is also used to
generate and achieve formation. This method was used in [14]-
[17]. In this method, a potential field is defined over the domain
of the whole system workspace such that the formation of
agents can be achieved by attracting and repulsing forces
among the agents. It is worth mentioning that this method was
also used in flocking algorithm which the shape of formation
cannot be defined beforehand, [18] and [19].
Dealing with the nonlinearity in the dynamic of quadrotor is a
quite arduous task. However, in [6], this problem was relatively
handled by using SMC and feedback linearization. In our
proposed approach, we are going to employ the feedback
linearization approach [6] in order to simplify the quadrotor’s
dynamic. Additionally, by employing a leader-follower strategy
and partial accessibility of the followers to the leader’s
information, formation convergence and leader tracking of the
followers will be shown mathematically. The interaction
between the followers is defined by an undirected graph and
also the leader sends its information to only a part of the
followers with a unidirectional link. In this approach, there is
no constraint on the number of agents and the shape of the final
formation in comparison with the potential field strategy.
Moreover, the state feedback control is used in order to adjust
the leader at the desired height and heading angle. All in all, the
main achievement of this paper can be summarized as follow:
1. Designing a decentralized leader-follower strategy for a
formation of a group of quadrotors in which a part of the
followers has access to the leader’s information. In this
approach, the shape of formation can be designed
beforehand.

2. Designing a state feedback control in order to maintain the
leader at a fixed and desired height and heading angle.
The rest of the paper is organized as follow. In Section 2, we
will present some basic preliminaries regarding graph theory
and a quick introduction to feedback linearization of MIMO
(Multi-Input Multi-Output) systems. Next, in Section 3, we will
introduce the nonlinear dynamical structure of a single
quadrotor. Moreover, in Section 4, we will propose the control
inputs in order to reach our goals. Finally, in the Section5,
simulation example will be presented in order to validate the

theoretical results.

Il. BACKGROUND AND PRELIMINARIES

In this section, we are going to present some basic preliminaries
regarding graph theory and feedback linearization.

A. Graph Theory
A graph is an ordered pair G (v ,E ) where V' represents the

node set of the graph and E is the subset of E <V xV which

represents the edge set of the graph. We denote an edge between
the node i and j as a pair. A directed path between two nodes

iand j is defined as a connected sequence of edges

{(i ,e),(e,t),...,(h, j )} where e,t,...,h are the middle nodes of
the path. An undirected path can be traversed both directions
(whether from ito j or j to i). An undirected graph is
connected if at least there is one undirected path between every
pair of its nodes. The neighborhood of node 1 is defined as:

N, ={jev|ij)eE}

Also, A, =|N,| is the degree of a node i and the degree matrix
is defined as D =diag (A,.A,,...,Ay ) -
The adjacency matrix A €0 "*" of a given graph G (v ,E )
is defined as:

a :{L (i,j)eE

! 0, otherwise

where a, ’s are the entries of the adjacency matrix A . A graph
is called symmetric if a =a,, Vi,j. Moreover, the
Laplacian matrix L is defined as L =D -A, [20].
Lemma 1. [21]
Consider L as the Laplacian matrix and H, as the accessibility
vector in a leader-follower strategy. Then, the matrix L + I—_|a (
H, =diag(H,) ) is positive definite if and only if L is semi-
positive definite and H , is nonzero.

Remark 1.
Lemma 1 indicates that the topology should be connected and
at least one of the followers has access to the leader's
information.

B. Feedback Linearization

In this section, we are going to introduce feedback linearization
method in the control of a nonlinear system with multiple
inputs. In this technique, the nonlinear system is transformed to
a linear system by designing and applying proper control laws.
Definition 1. [22]

Let h:0" —[ be asmooth scalar function, and f ;0" —0"
be a smooth vector field on ", then the lie derivative of h

with respect to T is a scalar function defined by L, h=vh-f

Now, Consider a nonlinear system defined in a neighborhood
Q) of the point X, with the following form:

{x‘:f (x)+G (x u M
y=h(x)
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n - .
ere X €[] is state vector, uelJ" is control input vector,  preedom) with the o = [¢,9,V/]T as its angular coordinates and

y eJ™ is output vector of the system, G e[] ™™ is a matrix .
. p= [X Y ,Z] as its Cartesian coordinates. Moreover, the mass
whose columns are smooth vector fields g, elm™, and

£ (x).h(x) are also smooth vector fields. of each rotor is m, ,i =1,2,3,4 and the total mass of quadrotor

is M, Fig. 1 shows a quadrotor in 3-D space.

f

Assume that r; is the smallest integer such that at least one of

/i

the inputs appears in yi(" ) , then:
yi(r')sz“hi+Z[LgiLf"’lh(i )Juj [4

i=1 ;
With L, L h(i)=0 for at leastone J , ina neighborhood

Q, of the point x . By repeating the abovementioned
procedure for each output, we will have, [22]:

N Z
v (x) U,
(r2) X u
V2" () | g (e )eae)] 2
Yo (x) Un
where b(X )€™ and A(X)ell™" are a vector and an
invertible matrix respectively with the following forms, [22]: X
LaLith LLith o L Lih Fig. 1. A single quadrotor in 3-D space.
1 - 1 r-1 . 1 -1
A(x ) _ Lg1Lf h, ngLf h, Lg” L¢h, By assuming the fact that quadrotor is not allowed to have agile
L : . . : ) k ) : motion, which means |9|,|¢| are so small, the dynamic model
L,Le~h, L,Lr~h - L Lmh
g g 9 of a quadrotor can be represented as follows, [23]:
L, *h, (x A
LfrZhl((X)) X =V V.x =——Lu'
b(x)= " 2 M
: y=v,, V =—iul
Lf Tm hm (X ) y! y M
. - . . . A
Now, by defining the following control input, [22]: Z=v,, V,= Daytyg
u=A"(x)(v-b(x)) @) M (3)
; . I v I 2z 1 2
where v €J" is control input vector. The system (1) is =1, 77=|—/37+|—U
transformed into a linear system with the following form: XX X
(r) i ) : I 7 Ixx 1 3
yi(x)=v,,i =1,2,...,m 6=p, ﬂ:|—777/+|—u
Remark 2. [22] » i

vy, 1 ZMUI[%LLU“

relative degree of the system), there is no internal dynamics. On I .,

the other word, the control input (2) guarantees the stability of ~ where, is the position of the quadrotor,p _[x y 2T
the system (1) without any worry regarding the stability of the

internal dynamics.

In the case ¥ =N (where r =r,+r,+...+r, is the total

. T
is control U =[u*,u?,u’,u*] are Euler angels, , _[4,6,, ]

input signal, | 1 | _are the moments of inertia along
xx 1 yy ' zz

I1l. DYNAMIC MODEL OF A QUADROTOR 7
. . - - - X 1 ] i i i i i
In this section, we are going to introduce the dynamic of the y and axis  respectively, § is gravitational

quadrotor. Its dynamic is defined with 6-DOF (Degree Of acceleration constant, and A, A, A, are defined as:
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A, =cosgsingcosy +singsiny

A, =cosgsingsiny —singcosy

A, =cosgcosd
Now, by utilizing the procedure performed in [6], the dynamic
of the system can be rewritten as:

[1=F (11)+ 36" (ITu* (4)

Where H:[x,y,z,VX,Vy,VZ,§,§,¢,9,V/,U,ﬂ,7T'

ul=¢, ut=¢,and F, , isavector with the following form:

A A A
F=|v,,——XCVv,,——2CV,,0g-——2C0,8,0,n,
|:>< MC y MC 29 M(f n

- i
xxl yy nﬂ:l

XX yy 7z

I _IZZ Izz _Ixx
yyl Br. B.=—==m17.7,

Moreover, g X

xa k =1,2,3,4 are vectors whose all the entries

are zero except G} =1, G2, - G2 -1 G _ 1

| | |

XX yy 2z
According to [6], the system (4) can be transformed into a linear
system by utilizing feedback linearization method. This goal

can be achieved by the following control input:
U=A"(-b+r) )

By applying control input (5) to the system (4), the linearized
form of the system (4) has the following form:
=7
.4 (6)
v=r
where r = [r_T , r“]T is a desired control input which will be
designed later.

IV. PROBLEM STATEMENT AND MAIN RESULTS

In this part, we are attempting to design a leader-follower
control strategy such that a group of networked quadrotor
converge to an optional predefined formation as well as
tracking their leader. In this problem, the dynamical equations
(6) are employed as the dynamics of each agent. Moreover, the
problems of converging to formation and tracking will be
shown mathematically. Then, a control strategy will be
proposed to fix the leader at a desired height and heading angle.

A. Formation Control of Quadrotor

Consider a network of N agents as the followers modeled by
an undirected graph G (v ,E) . In this modeling, each node

represents an agent and the edge set E represents their
communication links. Additionally, some of the followers
access the information of their leader through an undirected
link. The accessibility of followers to the leader is defined by a
vector called accessibility vectorH, .

The dynamics of each follower have the following form:

Pe=n 7)

where i is the agent number and r, =[¥,r‘ | is the control

input signal of the follower i . Similarly, the dynamics of the
leader has also the following form:

PL=M., ¥ :rL4 ®)

where r_=[ T ,r." | is the control input signal of the leader.
Before the proposing the control input signal, the formation
should be defined first. Therefore, we define the relative

distance between each follower and the leader which is
represented by P . This parameter is fixed and indicates that

each follower reaches this relative distance at the end while the
formation is creating. It is worth mentioning that each agent
requires 3 components in order to determine its relative distance
in 3-D space. These components are:
.
di zl:dixL’di{ ’diZL]

Now, we redefine the states of the system as
St=p, S7=p, S°=p, s'=p ad si-y,, 7=y,
where | =12,...,N is used to show the numbered agent is a
follower and | =L is used to show the numbered agent is the
leader (It should be noted that sk ep®, for instance
Sl=[x,y,z] ) Basedon the aforementioned discussions, the

proposed control inputs have the following form:

— a:lg i 1 1 N 1 1
" :_K_{Ha (S7-Si-di)+2 (S -S] _dijp)}
=

1 d k i k k 3 k k (9)
_K_Za'{Ha(Si —SL)+Zaij (Si -S; )}

where o* k =1,2 and 0::;, k =1,2,3,4 are positive constant
numbers, a; are the entries of the adjacency matrix, and

N

K =H +)a .

j=t

Additionally, according to (8),

St=r,st=r" The accessibility vector

Ha=[H§,Ha2,---aHaN T is also defined such that H! =1

whenever agent | has access to the leader's information and
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H! =0 whenever an agent i does not have access to the

leader's information.

Remark 3.

To clarify the control laws (9) and (10), it should be noted that
we employ the consensus control laws with some
modifications. On the other words, the quadrotors converge to
desired formation rather than a single point by applying nonzero
relative distance among quadrotors. Additionally, the time
derivatives of leader’s states are also added to the control inputs
to guarantee that the tracking error will converge to zero.
Remark 4.

In the proposed control inputs (9) and (10), three main goals are
considered. First one is to navigate all the agents to the
predefined formation. The second one is that the higher order
time derivatives of all agents’ position converge to a common
value in order to the guarantee the endurance of formation.
Finally, the third one is that the followers follow the leader.

B. Stability Analysis and Leader Tracking

To corroborate that the systems (7) and (8) under the control
inputs (9), (10), and r, guarantee the goals stated in Remark 3,
first the following theorem is presented and then it will be
proved.

Theorem 1.

Consider a multi-agent system with N follower with the
dynamic of (7) under control inputs (9) and (10), and one leader
with the dynamic of (8) under control input r, . The follower

interacts through an undirected graph G (v , ) . Additionally,

the accessibility of the follower to the leader’s information is
determined by the accessibility vector H, . Now, if:

1. The Graph G (v ,E) is connected.

N ! which means at least
one follower has access to leader’s information.

2. The accessibility vector H,#0

3. The polynomials assigned to (05,1,,0!‘3,0!;,053) and

(ayl,,a;) are Hurwitz.
Then the system (7) and (8) under control inputs (9) and (10),

and I will converge to the predefined formation and track the

leader.

Proof.

Before starting the proof, it should be noted that the
translational and angular dynamics of the quadrotor are
separated since these two parts were decoupled by feedback
linearization. Therefore, the stability (converging to the
formation and tracking the leader) of each part will be proved
separately.

In order to investigate the stability of translational dynamics of
the quadrotor, we define a new variable called position error
with the following form, [24]:

e —H!(Si-s!)+a, (SI-S1), i-12.N ()
j=1

where st —s!_gp. Now, based on this definition, the position
error dynamic of the system is rewritten. By computing the

fourth-order time derivative of the error variable, we will
obtain:

onifEiost) a5

N . (12)

N . . . N
= —Za,.ij“—Ha'Sf+[Ha' +Zaijjr—
j=1 j=1

. N
By choosing K, =H_+Y a,
j=1

the (12) can be simplified

into:

é;'zKiﬁ—NZaijs';‘—H;s'f, i=12,.,N (13)
j=1

By substituting (9), (11), and first-order to third-order time
derivatives of (11) into (13), we will obtain:

i =12,.,N (14)
Eqg. (14) is a differential equation expressing the error dynamic
(convergence of the followers to the formation and tracking the
leader) of the system. In order to show that the error variable in

differential equation (14) will converge to zero, the polynomial

e 1 2 . 3 .- Boee
€ = -6 —x,6 —ae —ayE;,

assigned to (a;,as,az,a:) should be Hurwitz. By holding
this assumption, we can conclude that:
e,=0,6 =0,€ =06 =0 i=12.,N
It can be shown that (11) can be written into the following form:
e=[(L+H,)®1,,]8"~(H,®1,,)s! (15)

where Laplacian matrix, and

H, =diag (H, )" L s
§1:|:|:§11:|T .[SNQ]T [§; ]T }T . According to € =0, we will

have[(L + I—Ta)®l3x3}8~1 =(H,®1,,)S!. In order to
simplify this equation, we should investigate the inversibility of
L+H,-In order to satisfy this condition, two constraints
should hold. Firstly, the interaction topology between followers
should be connected (Laplacian matrix L should have the

rank of N —1) and secondly at least one follower has access
to leader's information (H, =0, ). Then, according to

Lemma 1, L +H, is full rank and inversible. Based on these
assumptions and (16), we will have:
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S'=[(L+H,)®1,,] (H.®1,,)s!
[(L+H) @1, |(H, ®1,.)8!

=((L+|—Ta)’1Ha®|3X3)Sﬁ

(16)

where ® is kronecker product. It can be easily shown that

(L + I-Ta)lN . =H,. Then, according to the inversibility of

L+, we will have (L+H, ) H,=1, . By subsituting
this result into (16), we will obtain:
Sl:(lel®I3x3)SE (17)

The (17) implies that the position error of all the followers (
St=S'-dp, i=12..,N) will converge to the leader's

position. On the other word, the desired formation will be
achieved.  Additionally, it can be shown

T T T
S :(le1®|3x3)SLk' (Sk :|:|:Slk:| '|:Szk:| ”|:SNk:| :| )7
k =2,3,4 which they imply that the other states of followers

that

will track leader's states. On the other word, formation and
tracking will be guaranteed.

So far, we have shown the stability of translational dynamics of
the quadrotor. Similarly, we can show the stability of angular
dynamics of the quadrotor.

In a similar way, we define a new variable called angle error
with the following form:

c, :iaij (sil—s})+H;(si1—si), i=12.,N (18
=

Now, based on this definition, the angular error dynamic of the
system is rewritten. By performing the same procedure, it can
be obtained that:

€ =-a,¢ —a,C;, 1=12.,N (19)
Eqg. (19) is a differential equation expressing the error dynamic
(tracking the leader) of the system. In order to show that the

error will converge to zero, the polynomial assigned to (a,a?)
w1 Py

should be Hurwitz. By holding this assumption, we can
conclude that ¢, =0, ¢, =0 i =1,2,..,N .

Now, it can be shown that (18) can be written into the following
form:

c=(L+H,)s"'—H,s! (20)

T .
where s' =[sll,s§,...,s; J . By performing the same procedure

and holding the mentioned assumptions, we will have:
st = 1, xlsi

The (20) implies that the heading angle of all the followers will

converge to the leader's heading angle. Additionally, it can be

2 2 .
shown that S™ =1 ;S| (s? :[sf,szz,...,sfl ]T ), which it

implies that the other states of followers will track leader's
states.
All in all, we showed that all the followers track the leader as
well as converging to the formation.

[ |
Remark 4.
According to the aforementioned proof, there is no constraint
on the number of agents and the shape of formation. Therefore,
any formation with any number of agents can be achievable by
the proposed control input.
Remark 5.
Although the Theorem 1 states that the followers interact
through an undirected graph, the necessary condition is that the
topology should be connected. Additionally, based on the proof,
there is no limitation on the direction of communications. It is
only necessary that the lemma 1 holds. Therefore, this proposed
approach can be used when the followers interact through a
directed graph. In this case the graph should contain a spanning
tree.

C. Leader Control

So far, we have discussed about the controlling of followers. In
this section, we are going to design a control input signal

r =[rL1,rL2,rL3,rL4 ]T so that the leader converges to a fixed

desired height and fixed desired heading angle as well as

tracking a desired path in the XY plane. In order to achieve
these goals, we utilize a state feedback method for r2,rt.

Therefore, we propose the following control laws:
3 1 1 252 3,3 4,4
r°=-4, (zL -h, )—/IZZL A1) -4z

i st vy )2t

third

(21)

=~

where L is  the component  of

S¢ =[Xt:ylﬁthT , k=1234. Additionally, positive
constant numbers 24,k =1,2,3,4 and Al k=12 should
be chosen such that the polynomial assigned to (/121 , Azz,/if,/lf)
and (/1;/1,;) are Hurwitz respectively. By holding these
conditions, the leader will converge to the desired height
hy € (0,0) and desired heading angle v, e{oif]
2
Moreover, in order to navigate the system in the XY plane,

. _ 1,2 _ _ .
control input signal I, I~ can be just an appropriate function

of time, 2 (t).r2(t)-
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Z-axis

X-axis

As

Fig. 2. Desired formation.

®

Al (F2)

@b

F9)

Fig. 3. Interaction topology among the followers and the
leader.

@

V. SIMULATION
Before starting the simulation, it should be noted that, first of
all, the nonlinear dynamics of quadrotor (3) is transformed into
the linear dynamic (6) by applying control input (5) (In this
control input, | -1 =0.03kg.m? I, =0.04 kg.m? and
M =1.5kg were considered). Then, in the second step, by
considering the dynamics of the followers as (7) and the leader

as (8) and applying control inputs (9), (10), and I , the
simulation will be executed.

Moreover, in order to control the leader, we will employ control
inputs (22). We choose A4,k =1,2,3,4 as

[0.0052,0.0797,0.4475,1.1], 2%, k =12 & [1,2],

rt(t)=0.0002, and r’(t)=0. Also, we adjust the desired height

at h, =12 and heading angleat, _ 7.
Vo = 4

position

Fig. 4. Path of the agents moving in 3-D space.

Now, consider six followers and one leader is available. The
interaction topology among the followers and the leader is
depicted in Fig. 3. Additionally, we define the formation with

the following relative distances (d =1m ), Fig. 2.
dii Z[O'd 'O]T »dj =[d,0,O]T , d =[0,—d ,O]T
d2 =[-d,0,0] , d% =[0,0d] , d& =[0,0,dT

The parameters of the control inputs (10) and (11), i.e.
0(;, k =1,2,3,4 are selected as [0.0938,0.7813,2.1875,2.5] and

0‘;’ k =1,2 are selected as [0.4,1.3]-

By performing the simulation, the path of moving the agents is
depicted in Fig. 4. As it can be observed in this figure, all the
agents converged to the desired formation and the followers are
tracking the leader as well. Additionally, the leader has
converged to the desired height. In Fig. 5, the first-order time
derivative of all the followers' position are shown and as it can
be seen they have converged to the leader as well as tracking it.
Moreover, in Fig. 6 and Fig. 7, the higher-order time derivative
of all the followers' position are depicted. As it can be observed
all of them converged to the leader's trajectory. In Fig. 8, the
heading angle and its time derivative are depicted. As it is
obvious in this figure, all the followers' heading angles are
tracking the leader's heading angle and they have converged to
the desired heading angle.
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dot p dot p
1.5 1 ‘

3 1

% 05 \

5 ¥ =

0 ol
05
0 20 20 40
t(s) i(s)
1
Follower 1
— Follower 2
o
E Follower 3
0.5 Follower 4
e Follower 5
= Follower &
Leader
0
40

i(s)
Fig. 5. The first-order time derivative of all agents’ position.

ddot p ddot p
1 1
n 1
= 0.5 = 05
< I =
3 0z g 0
3 k? i=l
05 0.5
0 20 40 0 20 40
ts), ddot p t(s)
—_ Follower 1
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VI. CONCLUSION

In this paper, the formation and tracking problem of a group of
quadrotors were investigated. Under the leader-follower
strategy, a control input signals were designed such that the
closed-loop system achieve a formation and track their leader.
The convergence of the followers and leader to the predefined
formation and leader tracking were corroborated through a
mathematical proof. It should be noted that, by employing this
control strategy, any kind of formation is feasible. Moreover,
a height and heading angle regulation were also designed to

improve the free movement of the leader in the XY plane.
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