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A Comparative Study on H, Resilient Observer
Design; Lipschitz and One-sided Lipschitz
Fractional Order Systems’ State Estimation

Elham Amini Boroujeni

. Introduction

Abstract— This paper proposes the states estimation
of one-sided Lipschitz fractional order systems. In
this regard, using an LMI based continuous

frequency distribution results in H_ nonlinear

resilient observer design in the presence of an
exogenous disturbance input and observer's gain
perturbation. Since one-sided Lipschitz class of
nonlinear systems encompasses a wide range of
nonlinearities including the Lipschitz class, It is
shown that the proposed observer design based on
the one-sided Lipschitz systems has simpler LMI
and it can tolerate a wide range of changes in gains
perturbation and exogenous disturbances compared
to recent research findings for the counterpart
Lipschitz systems. Finally, a financial fractional
order system with Lipschitz nonlinearity is
presented as an example, which can illustrate the
effectiveness of the proposed one-sided Lipschitz
observer design and compare the feasible region of
input disturbance and observer’s gain for both
Lipschitz and one-sided Lipschitz observer design.

Index Fractional order nonlinear systems; Linear
matrix inequalities (LMIs); One-sided Lipschitz
systems; Robust observer.

D ue to the Importance of state estimation in
practical and industrial tasks, there are various
studies on the design of estimators. In addition, recent
engineering calculations have extended to fractional
calculus and this has made many scholars focus on
fractional order observers’ design. On the other hand,
while linear systems are not practically accountable,
many research studies have been proposed for the state
estimation of nonlinear fractional order systems over the
last decade [1-5]. A class of nonlinear fractional order
observer design has concentrated on Lipschitz systems as
a wide range of nonlinear systems [1,2,6,7].
Although working on Lipschitz fractional order
observers is still open [8,9],a main drawback in the
existing results for Lipschitz nonlinear systems is that
they have failed to provide a solution for large

Lipschitz constants and also the reported LMIs cannot
be feasible [1 ]. One-sided Lipschitz nonlifear systems
can encompass a more general class of nonlinear
systems including Lipschitz nonlinearities. Besides,
one-sided Lipschitz constants are significantly smaller
than their counterpart Lipschitz constants [1 ].

Authors in [7] introduced a non-fragile observer
design for fractional order one-sided Lipschitz
nonlinear systems and the extension of this work is
presented in [1 ] to introduce the full ofder and
reduced order observer for one-sided Lipschitz
systems. In continue of the previous researches, in
reference [1 ] the uncertainty of one-sided Lipschitz
model is considered in the design of both full order and
reduced order observer. One of the newest researches
on the fractional order one-sided Lipschitz system is
[1 1, in which Mittag Leffler stability is obtained using
Caputo fractional derivative. Nevertheless, these
designs can become unstable in the presence of
exogenous disturbance input.

To the best of author knowledge, nearly all of the
previous researches on fractional order one-sided
Lipschitz model have considered both quadratic inner
boundedness and one-sided Lipschitz condition for
model nonlinearity while [1 ] has shown this class of
nonlinearity is smaller than one-sided Lipschitz.

Motivated by the above discussions, in this paper
we consider a fractional order one-sided Lipschitz
observer, containing bounded perturbations on the
observer gain with exogenous disturbance input. Using
a continuous frequency distribution, the stability
conditions are derived based on an indirect approach.

An  LMlI-based H_optimal observer for state

estimation of the one-sided Lipschitz system is
proposed, which is robust against perturbations in the
gain matrix aside from the presence of exogenous
disturbances. Unlike previous researches, this paper
suggests a nonlinear observer design for fractional
order one-sided Lipschitz system without quadratic
inner boundedness and it is robust against an
exogenous disturbance input

Financial systems are complicated nonlinear
systems that are influenced by external disturbances
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due to the factors such as interest rate, the price of
goods, investment demand, and stock. On the other
hand, some state variables in a financial system are not
measureable. Thus, economic adaption and prediction
are needed to estimate all the state variables in the
presence of uncertainty and disturbances. This system
is chosen as a practical model to investigate the
proposed design.

The rest of this paper is organized as follows:
Section 2 provides the basic concepts. In section 3, the
design procedure for nonlinear fractional order
observer is discussed, while section 4 presents prior

Lipschitz fractional order HOO resilient observer design

mathematically and has a theoretical comparison with
the main results of this paper in section 3. A financial
system is presented as an example in section 5 and
finally, the conclusion remarks are given.

Il.  Preliminaries and problem statement

In this section, diffusive representation that
provides the theoretical basis for a time approximation
of fractional order integral is given. Subsequently, the
problem statement and some useful Lemmas for our
main result are presented.

Definition.1 [1 ]: The nonlinear fractéonal
differential equation is considered as:
DX = (X) 1)
due to the continuous frequency distributed model of
the fractional integrator, it can be expressed as:

% =-wz(ot)+ f(X(1))
o 2)
X (t) = J-,u(a))z(a),t)da)
0
where u(w) is considered as follow:
u(w) = M w9 (3)

Definition.2 [1 ]: The design of the rbbust

proportional observer consists in finding a matrix L
o () -
such as the estimation error, , satisfies the

- H
following ~  * performances:

lim X (t)=0 forW(t)=0
W(t)=0
~ 2 2 (4)
mehﬁﬂwﬂmk for { and

X(0)=0

Minimizingn causes the smaller state estimation’s

error.
Lemma 1 (Schur complement) [1 ]: The Linear

Matrix Inequality (LMI):
X) S

{QT( ) (X)}<0 ©)

S"(X) R(X)

where  Q(X)=Q"(X), R(X)=R"(X), and S(X)

affinely depend on X, is equivalent to:

{R(X)<0

Q(X)-S(X)R(X)ST(X)<0 ©

Lemma 2: [18] Let X ,Y be real vectors of the
same dimension. Then, for any scalarg >0, the
following inequality holds:

XTY <eX"™X+& YTy 0]
In the continue, an uncertain fractional order

system is considered as:

DX = AX +BU +¢(X,U)+W

Y =CX

®)

qth-order fractional derivative,

qe(0 1],Xel", Uel9, and Y el "are the

where D% is

state, input, and output, respectively. W []"is the

[J ™" is a constant matrix and

disturbance input, C €
#:[0" U9 —0" is a nonlinear function. The
nonlinear function (X ,U ) is said to be a Lipschitz
function of X with Lipschitz constants y > 0, if:
||¢(X1’U) _¢(X2’U)” < 7||X1 - X2||

9)
VX, X, el n

And @(X ,u) is said to be a one-sided Lipschitz if

there exists a constant p €[] such that : [1 ]

(P(X,U) = p(X,,U), X, = X,)

2 , (10)
<p|X = Xo|", WX, X, el

One-sided Lipschitz condition provides a less
conservative condition than the counterpart classical
Lipschitz [7]. Note that the Lipschitz constant must be
positive, while one-sided Lipschitz constant may have
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a positive, zero or negative value. For any function
o(X,u), we have:
(#(X,,U) = 4(X,,U), X, = X, )

<[¢(X1,U) = p(X, U)X, = X,
and if (X, U) is Lipschitz, then inequality (11) can be
written as:

(#(X1,U) = 4(X,,U), X, = X, )|
<yIX=X,[

Therefore, any Lipschitz systems are one-sided
Lipschitz, but the converse is not necessarily true [2 ].
1. One-sided  Lipschitz  fractional order

observer design

Consider a nonlinear one-sided Lipschitz fractional
order observer as:

,DIX = AX +BU +¢(X,U)
+(L+A(t)(Y —CX) (13)
Y =CX

Where X is the state estimation L is the proportional

11

(12)

observer gain and the term A(t) is an additive
perturbation on the error gain with a known bound

||A(t)|| <. Defining the state estimation error with

X =X =X, the observer error dynamic equation is
summarized to:

,DIX =(A-LC-A(t)C)X

\ (14)
+o(X,U)-g(X,U)+W

The following theorem provides sufficient
conditions for the stability of the resilient fractional-
order observer (13) for both Lipschitz and one-sided
Lipschitz nonlinear fractional order system (8).

Theorem 1: Consider the non-fragile observer (13).
This observer has a stable observation for one-sided
Lipschitz systems (8), if there exists a positive real

number&, and matrixP =PT >0, while the

proportional observer gain is the solution of the
following constrained LMI:

minimize n
M. P P
. (15)
subject to * -l 0 |<0
* * =gl
where:

M. =PA-K, C+PA" —C'K/ +gr’C'C+2pP +1

and 7 is the L, gain from disturbance to error as

53

introduced in (4), p is a one-sided Lipschitz constant of

the nonlinear function in system (8) and I is the
known bound of the additive perturbation on the

observer gain. Defining K [l PL, the observer gain is
calculated by L = P'K .

Proof: by using Definition.1, Eq. (14) can be
written as:

% =-~wz(w,t) + (A-LC - A()C)X

o+ BXU)—4(X,U) +W (16)

)Z(t):]g,u(a))z(a),t)da)
0

where (@) is determined by (3).

Consider the following Lyapunov function
candidate for error dynamic (14):

V()= T,u(w)v(m, t)dw 17)

where 14(®) is the weighting function and V(1) is a

monochromatic Lyapunov function corresponding to
the frequency @ as follow:

V(o,t) =2 (o,t)Pz(w,t), Pl ™, P>0 (18)
Taking the derivative of Eq. (18) causes:

S [ b

o0

do
dt

ov(o,t) oz(w,t)
MO S on ot

1(0) (2 (0,)P)(~oz(a,t) + (A-LC - A(t)C)X
P +(X,U)=g(X,U)+W)de

T (@) (~oz(o,t) + (A-LC - A(t)C) X

0

+ K (19)
+9(X,U)=g(X,U)+W)" (Pz(o,t))d@
Equation (19) can be sorted as below:
dv(t) 7 T
T-!y(a))z (@,t)dw-PM,
+M pTP~jy(a))z(a),t)da) (20)
0
- ZJ.a),u(a))ZT (0,)P2(o,t)dw
0
While:
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A, =((A=LC —A(t)C)X +¢(X,U)—g(X,U) +W)
Applying Eq. (16) causes (20) to be simplified as
follows:
dv (t)

S = X"PA, + AlP X

—ZTa),u(a))ZT (0,t)Pz(w,t)dw (21)

According to the Lyapunov theory, stability condition
for system (14) is% <0,ie.if:
XTPA, +AIPX <0 22)
or equivalently:
XTP(A-LC-A(t)C)X + X"PW
+XT(A-LC -A@t)C)" PX +WTPX
HP(X,U) - $(X,U)) PX @)
+XTP(#(X,U)—p(X,U)) <0

According to our knowledge X 0", Pel ™"
andg: [0 "

XTP(HX.U)-g(XU) =((9(X,U)-4(X,U))" PX
So inequality (23) can be presented as:
XTP(A—LC -A(t)C)X
+XT(A-LC -A(t)C)" PX
+2XTP(g(X,U) —g(X,U))
+XTPW +W'PX <0 (24)

Making use of inequality (10), inequality (24) can be
simplified to (25):

XTP(A-LC -A@t)C)X + XTPW +WTPX
+XT(A-LC-A@)C)" PX +20P|X[ <0
Inequality (25)can be rewritten as below:
XT(P(A-LC)+(A-LC)" P)X
~XTPA(t)CX — XT (A(t)C)" PX +
+2pPXTX + XTPW +W'PX <0 (26)
Using Lemma 2 on the second and third term, with

U"]— 0", which results in

T

(25)

& results in:
XT(P(A-LC)+(A-LC)"P+&'PP)X
+&, X TCT[AM)] A()CX ++2pPX T X

+XTPW +WTPX <0

Since |A(t)] < r the inequality (27) can be written as:

(@7)

XT(M;)X +2pPX"X + XTPW +WTPX <0 (28)

Where

¢ =P(A-LC)+(A-LC)' P+& 'PP+&r’C'C
Using Definition.2, when w = Qsufficient conditions
for observer convergence can be obtained by setting:

XT(My +2pP)X <0
or equally:
M; +2pP <0

(29)

(30)
Using Definition.2 for the H _ observer we have:

XT ()X () —7WT ()W (t) <0

(31)
On the other hand, for the stability of the observer it is
necessary to have av(y) <0 which causes:
XTX —npWTWw LVO (32)
Then, using (21) and (28) is followed by:
T - RTMg X +2pPRT R+ XTPW
r o 7 ; (33)
+WTPX -2 j o u(0)7" (@,)P2(w,)dw
0
Inequality (32) can be rewritten as:
XTX —pw'w+ XM X +2pPXTX +
- 2ja) 1(0)7" (0,t)Pz(w,)dw (3
0
+XTPW +WTPX <0
To summarize (34), a sufficient condition is:
XT (Mg +2pP+1)X —pWTW )
+X"PW +WTPX <0
which implies that:
M, +20P+1 P
X! [ x TP } X, <0
P -7l (36)

~ T
with X, :[X W] . This can be altered to an LMI

by using Schur complement as:

r P P

* -l 0 |<0

*  * gl S
with

['=P(A-LC)+(A-LC) P+&r’C'C+2pP+1,
K, =PL and P>0.0

Remark: By considering W =0 in system (8),
the error dynamic (14) changes to:
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DX =(A-LC - A(t)C)X

+p(X,U)-¢(X,U) (38)
Using a continuous frequency distributed model and
the Lyapunov function (18) leads the sufficient
condition for observer convergence to (30), and the
LMI approach to achieve the resilient observer gain
alters to:

0
( P —gllj< (39

in which:
No. =P(A—LC)+(A—LC) P+ r’C'C+2pP
Due to Lemma.1 and inequality (36) a feasible solution

for our main theorem will make (39) feasible but the
reverse is not necessarily correct.

[11. Prior Lipschitz fractional order H « resilient

observer design
As discussed in the introduction, several works have
planed the observer design for Lipschitz fractional
order systems. In this section, we will present the
results of a recent and complete article on the Lipschitz

fractional order HOo resilient observer design, which is
very similar to the topic discussed in this article. This
similarity will help us to have a better comparison.
Reference [6] has considered the non-fragile
nonlinear observer (13) for system (8) while (X, u)

is a Lipschitz function with Lipschitz constant y . This
paper by using continuous frequency distribution has a

comparison with [1, which has presented HOo resilient

observer design for Lipschitz fractional order systems
based on an iterative algorithm. [6] claims to have a
bigger feasibility region for the designed observer
besides simpler computing.

The Result of [6] is summarized in the following
Lemma.

Lemma 3: Consider the resilient observer (13).
This observer has a stable observation if there exist
positive real numbers &, &,and matrices P >0, while

the proportional observer gain is the solution of the
following constrained LMI:

N, +1 Popr
2
pT
> -7l 0 0 |<0 (40)
P 0 241 0
P00 -2l

55

in which

_PA+ATPT SC+C'ST &r’
2 2 2

and 77 is the L, gain from disturbance to error as

N, CTC+%7/2I,

introduced in (4), » >0is Lipschitz constant of

nonlinear function in system (8) while r is the known
bound of the additive perturbation on the error gain.

S =PL and the proportional observer gain is equal to

L=P7s.

At first glance, Theorem 1 has less degrees and
variables than Lemma 3. And at second glance, the
constant of one-sided Lipschitz in (15) is of the first
power while the constant of Lipschitz in (40) is of the
second power.

Overall, it looks like having a bigger feasibility
region for (15) versus (40), but to have a better
intuition the simulation results will be shown in the
next section.

V. Simulation Results

We have claimed that the proposed observer for
one-sided Lipschitz has a more feasible region in
comparison with Lipschitz systems. On the other hand,
in [20] has been shown that any Lipschitz system is
one-sided Lipschitz. In this section, we consider a
financial model to show the effectiveness of the
proposed observer besides having a comparison with
the results of [6] as one of the similar articles with the
approach of the present article in the field of Lipschitz
nonlinear fractional order systems.

We introduce the fractional commensurate order
financial system [2 ] that describes a fractionallorder

model of three state variablesX,, X, and X; which

stand for the interest rate, the investment demand, and
the price index, respectively. The model is described

by:

-a 0 1 XX
DIX=|0 -b 0 |X+|1-%°|+W
-1 0 - 0
41
y=[L 1 0]X “

where constant valuea > 0is the saving amount,
constant value b >0 is the cost per investment, and

constant value C > 0 is the elasticity of the demand of
commercial markets.

In this paper, we consider q=0.9,r =1land
At) =[0.8, 0.5, 0.2] sin(4t) where a=0.5,b=2

and C=3. As shown in [1], calculating the Lipchitz
constant by using Jacobian matrix of nonlinear part
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.
¢(X,U):[x1x2,1—x12,0] and considering the
states’ initial value equal to (—0.8,—2,1) results in

y=0.26.
Lipschitz constant in Lipschitz systems is shown,
which causes p = ¥ =0.26 . With the use of YALMIP

toolbox [2 ] and LMI control toolbox [2 ] in
MATLAB as solver, the feasible solution for (15) with

Using (12) the equality of p and

i, = 0.6286 is derived as:
S =[18258.02 18257.22 -0.284] & =29919,
27.1687 26.7745 0.0446

and P= 26.7745 28.1085 -0.6645

0.0446 -0.6645 1.9451
Therefore, the observer gain of the non-fragile observer
is equal to L =[501.6269 172.8271 47.3926]T .

To have a comparative study on Lipschitz and one-
sided Lipschitz observer performance, solving (15) and
(40) leads to the derivation of the non-fragile observer
gain for system (41) in two ways. The feasible solution

for (40) is derived as: 7, =0.6599,
g =6.2491, ¢, =26526,
55.3362 54.4146 0.0825
P=| 54.4146 56.9664 -1.1589 | and
0.0825 -1.1589 3.7408
gain is equal to
L =[271.8169 111.2596 28.2887]" .

The results of the two theorem are similar, so in the
continue, using the Ninteger toolbox [2 ]for simulating
the fractional order dynamic consequences results in
fig 1 and 2 which show the state estimation and
observation errors for both Lipschitz and one-sided
Lipschitz observer while input disturbance is
introduced as

observer

W =[0.5sin(3t), % 0.01sgn(sin(zt))]" .

Both observers work robustly and their
performance is like each other. Estimation is good and
acceptable while nl 0.6 and

W =[0.5sin(3t), % 0.01sgn(sin(zt)]" .
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Fig. 1: Actual states (solid, blue), states estimation of the one-sided
Lipschitz observer (dashed, red) and Lipschitz observer (dashed-

dotted, green).
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Fig. 2: States estimation errors of the one-sided Lipschitz observer
(solid, blue) and Lipschitz observer (dashed, red).

In the next step, the feasibility region of (15) and
(40) will be evaluated. Figure 3 shows the feasibility

region of LMI (40) and ||L||for different values of the

Lipschitz constant and gain perturbation for the
Lipschitz observer in lemma 3 while Fig 4 is the same
for different one-sided Lipschitz constant and gain
perturbation for LMI (15). It should be noted that value

1000 for ||L||is an arbitrary boundary condition in

accordance with the results obtained from the actual
conditions of model (41) and some limitations in the
physical realization.
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Feasibility of LMI
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Fig.4: a) Feasibility region of (40) for different values of » and I'. (
* show the feasible solution, A the infeasible solution and O
shows the feasible observer gain that|L|>1000). b) Observers

gain magnitude  (||L|| <1000)

It can be seen that inequality (40) becomes infeasible
for y >1.5and the observer's gain will have large

values (||L|| >1000) by increasing I' .

Feasibility of LMI
35
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Fig.5: a) Feasibility region for the proposed method for different
values of pand I'. (* show the feasible solution, + the infeasible
solution and O shows observer gain more than 1000). b) Observer's
gain magnitude (||L| <1000)

Figure 5 illustrates the feasibility region of the one-
sided Lipchitz observer including a wide range of
values for pand r. However, increasing I and o

will cause observer gain magnitude to become large (
||L|| >1000) but the first infeasible response will be

obtained by p=35and r =30.

As it was expected and explained in section 4 of this
paper, although LMI (15) and (40) will both lead to a
robust and stable observer design, the feasibility region
of inequality (15) is much larger than LMI (40) for
Lipschitz systems. Besides LMI (15) comprises a wider
range of observer design for both Lipschitz and one-
sided Lipschitz systems.

V. Conclusion

In this paper, we offered a systematic algorithm for
designing a robust non-fragile fractional order observer
for one-sided Lipschitz fractional order systems.
Solving the resulting LMIs yields the observer gain,
which ensures that state estimates converge to their
true values besides minimizing the effects of
exogenous disturbances and gain’s perturbation. In
addition, bigger feasibility region is shown for the
proposed design in comparison with one of the latest
and most similar observer designs for Lipschitz
systems. The effectiveness of the proposed observer is
investigated through the simulation of a fractional
commensurate order financial system. Future studies
can consider observer design for non-commensurate
fractional order one-sided systems with simultaneous
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time-delay, model uncertainty and exogenous
disturbance input.
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