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I. Introduction 

Abstract— This paper proposes the states estimation 

of one-sided Lipschitz fractional order systems. In 

this regard, using an LMI based continuous 

frequency distribution results in H  nonlinear 

resilient observer design in the presence of an 

exogenous disturbance input and observer's gain 

perturbation. Since one-sided Lipschitz class of 

nonlinear systems encompasses a wide range of 

nonlinearities including the Lipschitz class, It is 

shown that the proposed observer design based on 

the one-sided Lipschitz systems has simpler LMI 

and it can tolerate a wide range of changes in gains 

perturbation and exogenous disturbances compared 

to recent research findings for the counterpart 

Lipschitz systems. Finally, a financial fractional 

order system with Lipschitz nonlinearity is 

presented as an example, which can illustrate the 

effectiveness of the proposed one-sided Lipschitz 

observer design and compare the feasible region of 

input disturbance and observer’s gain for both 

Lipschitz and one-sided Lipschitz observer design.  

 

Index Fractional order nonlinear systems; Linear 

matrix inequalities (LMIs); One-sided Lipschitz 

systems; Robust observer. 

 

ue to the Importance of state estimation in 

practical and industrial tasks, there are various 

studies on the design of estimators. In addition, recent 

engineering calculations have extended to fractional 

calculus and this has made many scholars focus on 

fractional order observers’ design. On the other hand, 

while linear systems are not practically accountable, 

many research studies have been proposed for the state 

estimation of nonlinear fractional order systems over the 

last decade [1-5]. A class of nonlinear fractional order 

observer design has concentrated on Lipschitz systems as 

a wide range of nonlinear systems [1,2,6,7]. 

 Although working on Lipschitz fractional order 

observers is still open [8,9],a main drawback in the 

existing results for Lipschitz nonlinear systems is that 

they have failed to provide a solution for large 

Lipschitz constants and also the reported LMIs cannot 

be feasible [1 0]. One-sided Lipschitz nonlinear systems 

can encompass a more general class of nonlinear 

systems including Lipschitz nonlinearities. Besides, 

one-sided Lipschitz constants are significantly smaller 

than their counterpart Lipschitz constants [1 1]. 

Authors in [7] introduced a non-fragile observer 

design for fractional order one-sided Lipschitz 

nonlinear systems and the extension of this work is 

presented in [1 2] to introduce the full order and 

reduced order observer for one-sided Lipschitz 

systems. In continue of the previous researches, in 

reference [1 3] the uncertainty of one-sided Lipschitz 

model is considered in the design of both full order and 

reduced order observer. One of the newest researches 

on the fractional order one-sided Lipschitz system is 

[1 4], in which Mittag Leffler stability is obtained using 

Caputo fractional derivative. Nevertheless, these 

designs can become unstable in the presence of 

exogenous disturbance input. 

To the best of author knowledge, nearly all of the 

previous researches on fractional order one-sided 

Lipschitz model have considered both quadratic inner 

boundedness and one-sided Lipschitz condition for 

model nonlinearity while [1 5] has shown this class of 

nonlinearity is smaller than one-sided Lipschitz.  

Motivated by the above discussions, in this paper 

we consider a fractional order one-sided Lipschitz 

observer, containing bounded perturbations on the 

observer gain with exogenous disturbance input. Using 

a continuous frequency distribution, the stability 

conditions are derived based on an indirect approach. 

An LMI-based H optimal observer for state 

estimation of the one-sided Lipschitz system is 

proposed, which is robust against perturbations in the 

gain matrix aside from the presence of exogenous 

disturbances. Unlike previous researches, this paper 

suggests a nonlinear observer design for fractional 

order one-sided Lipschitz system without quadratic 

inner boundedness and it is robust against an 

exogenous disturbance input.  

Financial systems are complicated nonlinear 

systems that are influenced by external disturbances 
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due to the factors such as interest rate, the price of 

goods, investment demand, and stock. On the other 

hand, some state variables in a financial system are not 

measureable. Thus, economic adaption and prediction 

are needed to estimate all the state variables in the 

presence of uncertainty and disturbances. This system 

is chosen as a practical model to investigate the 

proposed design. 

The rest of this paper is organized as follows: 

Section 2 provides the basic concepts. In section 3, the 

design procedure for nonlinear fractional order 

observer is discussed, while section 4 presents prior 

Lipschitz fractional order H resilient observer design 

mathematically and has a theoretical comparison with 

the main results of this paper in section 3. A financial 

system is presented as an example in section 5 and 

finally, the conclusion remarks are given. 

II. Preliminaries and problem statement 

In this section, diffusive representation that 

provides the theoretical basis for a time approximation 

of fractional order integral is given. Subsequently, the 

problem statement and some useful Lemmas for our 

main result are presented. 

Definition.1 [1 6]: The nonlinear fractional 

differential equation is considered as: 

( )q
a tD X f X  (1) 

due to the continuous frequency distributed model of 

the fractional integrator, it can be expressed as: 

0

( , )
( , ) ( ( ))

( ) ( ) ( , )

z t
z t f X t

t

X t z t d


 

   




   


 




 (2) 

where )( is considered as follow: 

qq  





)sin(
)(  (3) 

Definition.2 [1 7]: The design of the robust 

proportional observer consists in finding a matrix L

such as the estimation error, 
( )X t

, satisfies the 

following 
H   performances: 

2 2

22

lim ( ) 0 ( ) 0

( ) 0

( ) ( )

(0) 0

t
X t for W t

W t

X t W t for and

X




 

 


 




 (4) 

Minimizing  causes the smaller state estimation’s 

error.  

Lemma 1 (Schur complement) [1 8]: The Linear 

Matrix Inequality (LMI): 

( ) ( )
0

( ) ( )T

Q X S X

S X R X

 
 

 

 (5) 

where ( ) ( ),TQ X Q X ( ) ( )TR X R X , and ( )S X

affinely depend on ,X  is equivalent to: 

1

( ) 0

( ) ( ) ( ) ( ) 0T

R X

Q X S X R X S X




 

 (6) 

Lemma 2: [18] Let X , Y  be real vectors of the 

same dimension. Then, for any scalar 0 , the 

following inequality holds: 

1T T TX Y X X Y Y     (7) 

In the continue, an uncertain fractional order 

system is considered as: 

( , )qD X AX BU X U W

Y CX

   


 (8) 

where
qD is 

q
th-order fractional derivative, 

 0 1q ,
nX  , 

qU ,  and 
mY  are the 

state, input, and output, respectively. 
nW is the 

disturbance input, 
m nC   is a constant matrix and 

:[ ]n q n   is a nonlinear function.  The 

nonlinear function ( , )X U  is said to be a Lipschitz 

function of X with Lipschitz constants 0 , if:  

1 2 1 2

1 2

( , ) ( , )

, n

X U X U X X

X X

    

 
 (9) 

And ( , )X u  is said to be a one-sided Lipschitz if 

there exists a constant  such that : [1 9]  

1 2 1 2

2

1 2 1 2

( , ) ( , ),

, , n

X U X U X X

X X X X

 



 

     
(10) 

One-sided Lipschitz condition provides a less 

conservative condition than the counterpart classical 

Lipschitz [7]. Note that the Lipschitz constant must be 

positive, while one-sided Lipschitz constant may have 
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a positive, zero or negative value. For any function

( , )X u , we have: 

1 2 1 2

1 2 1 2

( , ) ( , ),

( , ) ( , )

X U X U X X

X U X U X X

 

 

 

  
 

(11) 

and if ),( uX is Lipschitz, then inequality (11) can be 

written as: 

1 2 1 2

2

1 2

( , ) ( , ),X U X U X X

X X

 



 

 
 

(12) 

Therefore, any Lipschitz systems are one-sided 

Lipschitz, but the converse is not necessarily true [2 0]. 

1. One-sided Lipschitz fractional order 

observer design 

Consider a nonlinear one-sided Lipschitz fractional 

order observer as: 

0
ˆ ˆ ˆ( , )

ˆ( ( ))( )

ˆ ˆ

q
tD X AX BU X U

L t Y CX

Y CX

  

   



 (13) 

Where X̂ is the state estimation, L is the proportional 

observer gain and the term )(t  is an additive 

perturbation on the error gain with a known bound 

rt  )( .  Defining the state estimation error with 

ˆX X X  , the observer error dynamic equation is 

summarized to: 

0 ( ( ) )

ˆ( , ) ( , )

q
tD X A LC t C X

X U X U W 

   

  
 (14) 

The following theorem provides sufficient 

conditions for the stability of the resilient fractional-

order observer (13) for both Lipschitz and one-sided 

Lipschitz nonlinear fractional order system (8). 

Theorem 1: Consider the non-fragile observer (13). 

This observer has a stable observation for one-sided 

Lipschitz systems (8), if there exists a positive real 

number 1  and matrix 0TP P  , while the 

proportional observer gain is the solution of the 

following constrained LMI: 

1

minimize 

subject to    * 0 0

* *

M P P

I

I







 
 

 
 
  

 (15) 

where:

2
1 2T T T T

L LM PA K C PA C K r C C P I        

and 
 
is the 2L  gain from disturbance to error as 

introduced in (4),  is a one-sided Lipschitz constant of 

the nonlinear function in system (8) and r is the 

known bound of the additive perturbation on the 

observer gain. Defining LK PL , the observer gain is 

calculated by
1

LL P K . 

Proof: by using Definition.1, Eq. (14) can be 

written as: 

0

( , )
( , ) ( ( ) )

ˆ( , ) ( , )

( ) ( ) ( , )

z t
z t A LC t C X

t

X U X U W

X t z t d


 

 

   




      




  

 




 

(16) 

where )(  is determined by (3).  

Consider the following Lyapunov function 

candidate for error dynamic (14): 





0

),()()(  dtvtV  (17) 

where )(  is the weighting function and ),( tv   is a 

monochromatic Lyapunov function corresponding to 

the frequency   as follow: 

( , ) ( , ) ( , ), , 0T n nv t z t Pz t P P       (18) 

Taking the derivative of Eq. (18) causes: 

0

0

0

0

( ) ( , )
( )

( , ) ( , )
( ) .

( , )

( )( ( , ) )( ( , ) ( ( ) )

ˆ( , ) ( , ) )

( )( ( , ) ( ( ) )

ˆ( , ) ( , ) ) ( ( , ))

T

T

dV t t
d

dt t

t z t
d

z t t

z t P z t A LC t C X

X U X U W d

z t A LC t C X

X U X U W P z t d

 
  

  
  



    

  

   

   














 


 

    


  

    


  








 

(19) 

 

 

Equation (19) can be sorted as below: 

0

0

0

( )
( ) ( , )

( ) ( , )

2 ( ) ( , ) ( , )

T
p

T
p

T

dV t
z t d PM

dt

M P z t d

z t Pz t d

   

   

     







 

 









 (20) 
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ˆ(( ( ) ) ( , ) ( , ) )A A LC t C X X U X U W        

Applying Eq. (16) causes (20) to be simplified as 

follows: 

0

( )

2 ( ) ( , ) ( , )

T T

T

dV t
X PA A P X

dt

z t Pz t d     

 



 

 

 

(21) 

 

According to the Lyapunov theory, stability condition 

for system (14) is 0
)(


dt

tdV
, i.e. if:  

0T TX PA A P X    (22) 

or equivalently: 

( ( ) )

( ( ) )

ˆ( ( , ) ( , ))

ˆ( ( , ) ( , )) 0

T T

T T T

T

T

X P A LC t C X X PW

X A LC t C PX W PX

X U X U PX

X P X U X U

 

 

   

    

 

  

 
(23) 

 

 

According to our knowledge ,nX 
 

n nP 

and :[ ]n n n  , which results in 

 ˆ ˆ( ( , ) ( , )) ( ( , ) ( , ))
T

T TX P X U X U X U X U PX      . 

So inequality (23) can be presented as: 

( ( ) )

( ( ) )

ˆ2 ( ( , ) ( , ))

0

T

T T

T

T T

X P A LC t C X

X A LC t C PX

X P X U X U

X PW W PX

 

  

   

 

  

 

(24) 

Making use of inequality (10), inequality (24) can be 

simplified to (25):  

2

( ( ) )

( ( ) ) 2 0

T T T

T T

X P A LC t C X X PW W PX

X A LC t C PX P X

    

     
 

(25) 

Inequality (25)can be rewritten as below: 

( ( ) ( ) )

( ) ( ( ) )

2 0

T T

T T T

T T T

X P A LC A LC P X

X P t CX X t C PX

PX X X PW W PX

  

    

   

 

(26) 

Using Lemma 2 on the second and third term, with 

1  results in: 

1
1

1

( ( ) ( ) )

[ ( )] ( ) 2

0

T T

T T T T

T T

X P A LC A LC P PP X

X C t t CX PX X

X PW W PX



 

   

    

  

 
(27) 

 

Since ( )t r  the inequality (27) can be written as: 

( ) 2 0T T T T

X
X M X PX X X PW W PX     (28) 

 

Where 

1 2
1 1( ) ( )T T

X
M P A LC A LC P PP r C C      

Using Definition.2, when 0w sufficient conditions 

for observer convergence can be obtained by setting: 

( 2 ) 0T

X
X M P X   

(29) 

or equally: 

2 0
X

M P   
(30) 

Using Definition.2 for the H  observer we have: 

( ) ( ) ( ) ( ) 0T TX t X t W t W t   
(31) 

On the other hand, for the stability of the observer it is 

necessary to have
( )

0
dV t

dt
  which causes: 

( )
0T T dV t

X X W W
dt

    
(32) 

 

Then, using (21) and (28) is followed by:  

0

( )
2

2 ( ) ( , ) ( , )

T T T

X

T T

dV t
X M X PX X X PW

dt

W PX z t Pz t d



     



  

  
 (33) 

 

 

Inequality (32) can be rewritten as: 

0

2

2 ( ) ( , ) ( , )

0

T T T T

X

T

T T

X X w w X M X PX X

z t Pz t d

X PW W PX

 

    



   



  

  
(34) 

 

 

To summarize (34), a sufficient condition is:  

( 2 )

0

T T

X

T T

X M P I X W W

X PW W PX

   

  
 (35) 

 

which implies that: 

2
0T X

w w

M P I P
X X

P I





  
 

 
 

(36) 

with 
T

wX X W    . This can be altered to an LMI 

by using Schur complement as: 

1

* 0 0

* *

P P

I

I





 
 

 
 
  

 
(37) 

 

with

2
1( ) ( ) 2T TP A LC A LC P r C C P I         , 

LK PL  and 0P  . □ 

Remark: By considering 0W  in system (8), 

the error dynamic (14) changes to: 
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0 ( ( ) )

ˆ( , ) ( , )

q
tD X A LC t C X

X U X U 

   

 
 

(38) 

 Using a continuous frequency distributed model and 

the Lyapunov function (18) leads the sufficient 

condition for observer convergence to (30), and the 

LMI approach to achieve the resilient observer gain 

alters to: 

1

0
OLN P

P I

 
 

 
 (39) 

 

in which: 

2
1( ) ( ) 2T T

OLN P A LC A LC P r C C P        

Due to Lemma.1 and inequality (36) a feasible solution 

for our main theorem will make (39) feasible but the 

reverse is not necessarily correct. 

III. Prior Lipschitz fractional order H resilient 

observer design 

As discussed in the introduction, several works have 

planed the observer design for Lipschitz fractional 

order systems. In this section, we will present the 

results of a recent and complete article on the Lipschitz 

fractional order H resilient observer design, which is 

very similar to the topic discussed in this article. This 

similarity will help us to have a better comparison. 

Reference [6] has considered the non-fragile 

nonlinear observer (13) for system (8) while ( , )X u  

is a Lipschitz function with Lipschitz constant  . This 

paper by using continuous frequency distribution has a 

comparison with [1, which has presented H resilient 

observer design for Lipschitz fractional order systems 

based on an iterative algorithm. [6] claims to have a 

bigger feasibility region for the designed observer 

besides simpler computing. 

The Result of [6] is summarized in the following 

Lemma. 

Lemma 3: Consider the resilient observer (13). 

This observer has a stable observation if there exist 

positive real numbers 1 2,  and matrices 0P  , while 

the proportional observer gain is the solution of the 

following constrained LMI: 

1

2

2

0 0 0
2

0 2 0

0 0 2

T T
L

T

P
N I P P

P
I

P I

P I







 
 

 
 

  
 

 
  

 (40)  

in which 

2
22 1 ,

2 2 2 2

T T T T
T

L

rPA A P SC C S
N C C I

 


 
   

and   is the 2L  gain from disturbance to error as 

introduced in (4), 0  is Lipschitz constant of 

nonlinear function in system (8) while r is the known 

bound of the additive perturbation on the error gain. 

S PL and the proportional observer gain is equal to

1L P S . 

At first glance, Theorem 1 has less degrees and 

variables than Lemma 3. And at second glance, the 

constant of one-sided Lipschitz in (15) is of the first 

power while the constant of Lipschitz in (40) is of the 

second power. 

Overall, it looks like having a bigger feasibility 

region for (15) versus (40), but to have a better 

intuition the simulation results will be shown in the 

next section. 

IV. Simulation Results 

We have claimed that the proposed observer for 

one-sided Lipschitz has a more feasible region in 

comparison with Lipschitz systems. On the other hand, 

in [20] has been shown that any Lipschitz system is 

one-sided Lipschitz. In this section, we consider a 

financial model to show the effectiveness of the 

proposed observer besides having a comparison with 

the results of [6] as one of the similar articles with the 

approach of the present article in the field of Lipschitz 

nonlinear fractional order systems. 

We introduce the fractional commensurate order 

financial system [2 1] that describes a fractional order 

model of three state variables
1x ,

2x  and 3x  which 

stand for the interest rate, the investment demand, and 

the price index, respectively. The model is described 

by:    

 

1 2

2
1

0 1

0 0 1

1 0 0

1 1 0

q

x xa

D X b X x W

c

y X

  
  

      
      



 

(41) 

 

where constant value 0a is the saving amount, 

constant value 0b  is the cost per investment, and 

constant value 0c  is the elasticity of the demand of 

commercial markets. 

In this paper, we consider 0.9, 1q r  and 

( ) [0.8, 0.5, 0.2] sin(4 )Tt t  where 0.5, 2a b 
 
 

and 3c  . As shown in [1], calculating the Lipchitz 

constant by using Jacobian matrix of nonlinear part 
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2
1 2 1( , ) ,1 , 0

T

X U x x x    
 and considering the 

states’ initial value equal to ( 0.8, 2,1)  results in 

0.26  .  Using (12) the equality of   and 

Lipschitz constant in Lipschitz systems is shown, 

which causes 0.26   . With the use of YALMIP 

toolbox [2 2] and LMI control toolbox [2 3] in 

MATLAB as solver, the feasible solution for (15) with 

min 0.6286   is derived as:
 

[18258.02     18257.22   -0.284]TS   1 29919, 

and 

     27.1687      26.7745 0.0446

26.7745 28.1085 -0.6645  

0.0446 -0.6645 1.9451

P

 
 


 
  

. 

Therefore, the observer gain of the non-fragile observer 

is equal to [501.6269  172.8271   47.3926]TL   . 

To have a comparative study on Lipschitz and one-

sided Lipschitz observer performance, solving (15) and 

(40) leads to the derivation of the non-fragile observer 

gain for system (41) in two ways. The feasible solution 

for (40) is derived as:
 min 0.6599  , 

1 26.2491, 26526   ,

   55.3362   54.4146    0.0825

   54.4146   56.9664   -1.1589  

    0.0825   -1.1589    3.7408

P

 
 


 
  

and observer 

gain is equal to 

[271.8169  111.2596   28.2887]TL   . 

The results of the two theorem are similar, so in the 

continue, using the Ninteger toolbox [2 4]for simulating 

the fractional order dynamic consequences results in 

fig 1 and 2 which show the state estimation and 

observation errors for both Lipschitz and one-sided 

Lipschitz observer while input disturbance is 

introduced as 

0.2
[0.5 sin(3t),  ,  0.01sgn(sin( t))]

1

TW
t




. 

Both observers work robustly and their 

performance is like each other. Estimation is good and 

acceptable while 0.6
 

and 

0.2
[0.5 sin(3t),  ,  0.01sgn(sin( t))]

1

TW
t




. 

 

 

Fig. 1: Actual states (solid, blue), states estimation of the one-sided 

Lipschitz observer (dashed, red) and Lipschitz observer (dashed-

dotted, green). 

 

Fig. 2: States estimation errors of the one-sided Lipschitz observer 

(solid, blue) and Lipschitz observer (dashed, red). 

In the next step, the feasibility region of (15) and 

(40) will be evaluated. Figure 3 shows the feasibility 

region of LMI (40) and L for different values of the 

Lipschitz constant and gain perturbation for the 

Lipschitz observer in lemma 3 while Fig 4 is the same 

for different one-sided Lipschitz constant and gain 

perturbation for LMI (15). It should be noted that value 

1000 for L is an arbitrary boundary condition in 

accordance with the results obtained from the actual 

conditions of model (41) and some limitations in the 

physical realization. 
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(a) 

 

(b) 

Fig.4: a) Feasibility region of (40) for different values of  and r . (

  show the feasible solution, ∆ the  infeasible solution and o  

shows the feasible observer gain that 1000L  ). b) Observer's 

gain magnitude        ( 1000L  ) 

It can be seen that inequality (40) becomes infeasible 

for 5.1 and the observer's gain will have large 

values ( 1000L  ) by increasing r . 

 
                                          (a) 

 

 

(b) 

Fig.5: a) Feasibility region for the proposed method for different 

values of  and r . (  show the feasible solution, + the infeasible 

solution and o  shows observer gain more than 1000). b) Observer's 

gain magnitude ( 1000L  ) 

Figure 5 illustrates the feasibility region of the one-

sided Lipchitz observer including a wide range of 

values for  and r . However, increasing r and 

will cause observer gain magnitude to become large (

1000L ) but the first infeasible response will be 

obtained by 35  and 30r  . 

As it was expected and explained in section 4 of this 

paper, although LMI (15) and (40) will both lead to a 

robust and stable observer design, the feasibility region 

of inequality (15) is much larger than LMI (40) for 

Lipschitz systems. Besides LMI (15) comprises a wider 

range of observer design for both Lipschitz and one-

sided Lipschitz systems. 

V. Conclusion 

In this paper, we offered a systematic algorithm for 

designing a robust non-fragile fractional order observer 

for one-sided Lipschitz fractional order systems. 

Solving the resulting LMIs yields the observer gain, 

which ensures that state estimates converge to their 

true values besides minimizing the effects of 

exogenous disturbances and gain’s perturbation. In 

addition, bigger feasibility region is shown for the 

proposed design in comparison with one of the latest 

and most similar observer designs for Lipschitz 

systems. The effectiveness of the proposed observer is 

investigated through the simulation of a fractional 

commensurate order financial system. Future studies 

can consider observer design for non-commensurate 

fractional order one-sided systems with simultaneous 
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time-delay, model uncertainty and exogenous 

disturbance input. 
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