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A New Noise-Assistant LM S Algorithm for

Preventing the Stalling Effect

Hamid Reza Shahdoosti

Abstract— In this paper, we introduce a new algorithm to deal
with the stalling effect in the LM S algorithm used in adaptive
filters. We modify the update rule of the tap weight vectors by
adding noise, generated by a noise generator. The properties of
the proposed method are investigated by two novel theorems. As
it is shown, the resulting algorithm, called Added Noise LMS
(AN-LMS), improvesthe resistance capability of the conventional
LMS algorithm against the stalling effect. The probability of
update with additive white Gaussian noise is calculated in the
paper. Convergence of the proposed method isinvestigated and it
is proved that the rate of convergence of the introduced method
is equal to that of LMS algorithm in the expected value sense,
provided that the distribution of the added noise is uniform.
Finally, it is shown that the order of complexity of the proposed
algorithm islinear asthe conventional LM S algorithm.

Index Adaptive filter; LMS algorithm; stalling effect; finite
precision effect.

|. BACKGROUND

ADAPTlVEfiIter algorithms are widely used for channel

estimation and equalization in digital communication
systems and digital signal processing [1-2]. The performance
analysis of these algorithms is usually done based on analog
assumptions in infinite precision environments. In practice,
digital signal processors are used to implement these
algorithms. Using these processors updating the filter tap
weights, calculation of the estimation error and data sampling
are done in a finite precision environment. This finite
precision assumption brings about some phenomena. One of
these phenomena is the quantization error which takes place in
converting analog data to digital ones. In can be shown that it
is possible to consider the quantization noise as an additive
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independent source of white noise provided that the
guantization is performed with high resolution (using 6 bits or
larger) and also the signal spectra is sufficiently rich [3-4].
One of the challenges in the implementation of adaptive filter
algorithms in finite precision environments is the staling
effect. In a finite precison environment eg., a processor,
whenever the correction term for a specific tap weight is
smaller in magnitude than the half of the least significant bit (
LSB) of this tap weight, the corresponding tap weight in the
algorithm is not updated (according to the rule of rounding to
the nearest mode) and thus, this filter tap weight stalls [5]. In
order to prevent the stalling effect in a finite precision
environment from happening, the residua error should be
made as small as possible. For this purpose, one of the
following two methods is usually used [4]:

1) Using a large number of bits for representing the filter

tap weight and other data by which the LSB can be

reduced.

2) The step-size parameter may be made as large as

possible in such a way that the convergence of the

algorithm is still guaranteed.
Another method for combating the stalling effect, is using
dither in the quantizer input by which the tap weight
accumulator is fed [6]. The authors in [7] modeled the
coefficients of adaptive filter as a Markov chain and the
matrix of transition probabilities of the chain was determined
for the one-dimensional case in this model. In addition, the
conditions in which staling phenomenon occurs, was
determined in [7]. In[8] a maodification of the LMS algorithm
was proposed that aleviates the effect of quantization at
virtually no extra computational cost. In this algorithm,
stalling situations are detected and a secondary adaptive filter
is used to increase the precision in such situations. A method
showing a performance that is comparable to that of full
precision adaptive filters has been proposed in [9], which uses
a companded delta modulation structure. In [10] the
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guantization effects on the steady-state performance of a
fixed-point implementation of the LMS adaptive algorithm
was studied, and the stall mode was reviewed. Furthermore,
the value of step-size corresponding to the onset of the stall
mode has been predicted in [10], such that one can avoid the
gtalling phenomenon by judiciously choosing the step size
value.ln this paper we propose a new method which is capable
of preventing the stalling effect by using a limited number of
bits. The main contribution of this paper is that the algorithm
does not stop updating even when the correction term is
smaller in magnitude than the half of the LSB. The proposed
algorithm has a rate of convergence amost equal to that of
LMS agorithm. The rest of the paper is organized as follows.
In section Il the proposed algorithm is presented in details.
Also, we analyze the rate of convergence of the proposed
algorithm in this section. Section Il presents the simulation
results and comparisons for the proposed method and
conventional LMS algorithm in finite and infinite precision
environments. Section IV concludes the essay.

Il. PROPOSED ALGORITHM

A. Preliminaries
The conventional LM S algorithm updates the tap weights as:

Wi+ 1) =W(i) + uu(i)e(i) Q)

where u(i) = [u@),...,u(@ — M + 1)]7and w(@) =
[wo (D), ...,wy_1(i)]" are the input data vector and tap weight
vector, respectively. Also e(i) = d(i) — d(i) = W(i) u(i) —
d (i) isthe estimation error.

Fig. 1 shows the block diagram for a general adaptive filtering
algorithm. In the above agorithm, if the values of each
element of the vector pu(i)e(i) in the finite precision
environment is less than 0.5 LSB, the stalling effect happens
and the value of that element isconsidered as zero.Therefore,

that tap weight is not updated. Assume that our
d(i)

2
%) LONG
/

Adlaptive weight-control
mechanism

u(i)

e(i)

Fig. 1: Block diagram of an adaptive

transversal filter

algorithm rounds any number to the nearest LSB. We
considerthe tap weight corresponding to the input u(i). Define
threshold error e;(i) as the minimum acceptable value of
estimation error above which no stalling effect happens for the
tap weight corresponding to input u(i). We have er (i) =

LSB
2pu(i)’

If e(i) <er(i) then uu(i)e(i) is considered as zero. For
example suppose that 12 bits are allocated for data

representation in the decimal part. In this case LSB = 2.44 x
107*. Assuming the normalized input data equals to 0.5 and
u = 0.01, the threshold error isequal to e (i) = 0.0244. So
the value of estimation error cannot exceed this threshold
value.

Fig. 2 demonstrates how the stalling effect happens in this
finite precision environment. The system model is an AR
model  described  asu(i) = 0.1u(i — 1) +0.1u(i —2) ...+
0.1u(i —10). The initia input data is considered as
u(1:10) =

[0.2 0.3 0.28 0.26 0.4 0.24 0.46 0.6 0.56 0.48]. Also we
set the initial tap weight elementsas 0.01 . Asit can be seen
from the figure, the finite precision LMS stops updating its tap
weight vector when the value of error islessthan 0.0244. This
begins at iteration number 134.

Is it possible to reach less error values with the same number
of bits allocated for digita quantization? We answer this
guestion in the following section.

B. Algorithm Description
In this section we present the proposed algorithm dealing with
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Fig.2: Stalling effect in finite precision LM S.
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the stalling effect. Fig. 3 depicts the structure of Adaptive
weight-control AN-LMS
algorithm.Specifically how new weights are calculated from

mechanism in the

previous ones. Function F is defined as F(x) = pu(i)x. The
update equation for filter weights can be written as:

W@+ 1) =w(@) + pu@)(e@) +n(i)) — pu@@n@)(2)
where n(i) is a white noise in this formula. The algorithm is
composed of two update terms i.e., pu(i)(e(i) +n()) and
uu(i)n(i). Note that if the environment is not a finite
precision one, then this algorithm is exactly the same as the
LMS algorithm. This simple agorithm has some interesting
properties. As we prove later, this algorithm prevents the
stalling effect from happening. If the error value is bigger than
the threshold value, i.e, e(i) = er(i),
convergence of this algorithm and the LMS algorithm are
almost equal. This is true because the quantized version of
modification terms pu(i)e(i) in the LMS agorithm and
pu(i)(e(d) + n(@)) — pu(n(i) in the proposed agorithm
differ at most in 1 LSB which 1 LSB and —1 LSB take place
with equal probability. If e(i) < e;(i) AN-LMS agorithm
prevents the stalling effect. Assume that e(i) < er(i) =

then rates of

e () in which the stalling occurs for the LMS algorithm.

Suppose that the noise n(i) has an arbitrary distribution (e.g.
Gaussian). Also assume that the error value e(i) and the input
signal u(i) are both positive. Since the value of error is less

LSB LSB N
2pu(i) 2y~ €D 18
positive. If the added noise value fals within the interval
which is shown in Fig. 4, then pu(i)(e(@) +n()) in AN-

LMS algorithm exceeds uu(i)n(i) by 1 LSBtherefore the
weight will be updated by +1LSB inthetrue directioni.e, in

than

and error value is positive,

+ + Noise
e(i) —=>(+)<— generator
n(i)
F F

+
wi =Gk (> wii+D

Fig. 3: Details of the adaptive weight-control mechanismin
the AN-LMS algorithm (F isafunction defined as F(x) =

uu(i)x).

the direction of sign LMS agorithm. This interval is not the
only interval within which if noise value fals, the weight

willbe updated. In fact if added noise fals within the
: (2k-1)LSB (2k 1)LSB
mtervals[w e(i),———=) for some integer k ,

the weights will be updated in the true direction.

The following two theorems defined and proved by the
authors, investigate the properties of the AN-LM S agorithm.
Theorem 1:Consider the algorithm presented by equation (2).

Suppose that in the time instant i we have e(i) < ” (SM ie,

the stalling phenomenon has happened in the finite precision
environment for the LM S algorithm, then the tap weight w, (i)
in the AN-LMS agorithm is updated in the true direction i.e.,
in the direction of the sign LM S algorithm.

Proof- Assume the added noise n(i) has an arbitrary
distribution (e.g. Gaussian). Also assume that the error value
and input signal u(i) are positive Since the value of error is

()

LSB_ — e(i)is positive. If the noise value fals within the
2uu(i)
. (2k-1)LSB . , (2k—1)LSB
interval o e(i) <n(i) < o) for some

integer k then pu(i)(e(i) +n(i)) — pu()n(i) will be equal
to 1 LSB. So, the tap weight w, (i) will be updated by 1 LSB
in the true direction (like sign LMS agorithm). If the noise
value does not fal in these intervals, then no updating in the
tap weight will happen. We prove this in the following.

Suppose that:

(2k-1)LSB . . (2k-1)LSB
W —e(i) <n(i) < W(S)

then,

(2k-1)LSB . . (Zk 1)LSB
o) = n(i) +e(@) <————+e()4)
and thus,

(2k-1)LSB 1)LSB < @) (n(Q) + e(i)) < FDLSE (k- 1)LSB +

uu(l)e(l) )

Since puu(i)e(i) < 0.5LSB the value of uu(i)(n(i) + e(i))
will be equal to kLSB.

Now we analyze the second update term of equation (2), i.e.,
uu(i)n(i). We have

(2k-1)LSB . , (2k-1)LSB
W e(l) < Tl(l) < —Z,uu(i) (6)
which isequivalent to

2k—1)LSB N N (2k-1)LSB
ST pu(@)e(@) < pu(n()) < 222 (@)

2
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As it can be inferred from this equation, since pu(i)e(i) <
0.5LSB the vaue of uu(i)n(i), when rounded to the nearest
LSB, will be equa to (k—1)LSB and thus the
differencebetween two update terms is equal to 1LSB and the
weight will be updated by +1LSB in the true direction (u(i)
and e (i) are both positive).

Now consider the case that the noise value does not fall within
the previous interval but fallsin the interval:

(2k—1)LSB . (2k+1)LSB .
o =) <= e (8)

We show that in this case, the proposed algorithm does not
update the tap weight. From (3) we have:

CRZDLSE 4 u(i)e(i) < pu(i)(n(i) + e(i)) <

2
(2k+21)LSB 9

Since pu(i)e(i) < 0.5LSB the value of uu(i)(n(i) + e(i)),
when rounded to the nearest LSB, will be equal to kLSB.
Moreover, from (3) we can write:

G < (i) < HEPEE — pu(De ()00

In similar way, the value of uu(i)n(i), when rounded to the
nearest LSB, will be equal to kLSB. Therefore, the difference
between two update terms is equal to zero and the tap weight
is not updated by the proposed algorithm. This result can be
concluded by the similar expressions for other tap weights
wy (i) to wy,_,(i). In addition, the proof for other 3 possible
states for signs of wu(i) and e(i) is similar (the intervals
changes according to signs of u(i) and e(i)). The proof is
completed here.

0.035 . :
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Fig. 4: Interval in which AN-LMS updates.

Theorem 2:Consider the algorithm proposed in (1) and also
suppose that the distribution of the added noise n(i) is
uniform. Rate of convergence of the proposed algorithm and
that of the LMS algorithm is identical in the expected value
sense.

Proof- In the LMS agorithm the update term is pu(i)e(i). If
uu(i)e(i) = 0.5LSB the probability that the update term in
the AN-LMS algorithm exceeds that of the LM S algorithm by
1LSB is equa to the probability that the update term in the
LMS agorithm exceeds that of the AN-LMS agorithm by
1LSB. Therefore, the rates of convergence of AN-LMS and
LMS are equal in afinite precision environment, provided that
the dalling phenomenon has not occurred and can be
approximated by a single exponential curve. An average
eigenvalue can be defined for the underlying correlation
matrix R of the tap inputs as:

Aav = %Zyzllj(ll)

The learning curve of the LM S algorithm can be approximated
by a single exponential with time constant t. One can use
equations which are developed for the method of steepest

descent, to define average time constant for the LMS

algorithm asthe following [4]:
1

T= e (12)
On the other hand, if uu(i)e(i) <05LSB , as it is stated
before, the algorithm always updates the tap weights in the
true direction. Now, assume that the distribution of the added
noise is uniform. We prove that in the case uu(i)e(i) <
0.5LS, the rates of convergence of the proposed method and
the LMS agorithm are equal. Again assume that the error
value e(i) and input signal w(i) may be negative or positive.

Define A as the event that the noise value fals within the
intervals:
[EDLSE _ (i), DL ¢ (o +or) (13
Suppose that Pr(A) = p. Asit is proved in theorem 1, the AN-
LMS algorithm updates the tap weights if and only if A
happens. Then the expected value of the update term in the

proposed method is equal to:

E(wo(i +1) —wo(i)) =

p X 1LSB x sign(u(i)e(i)) + (1 —p) x 0(14)
which w, (i) is tap weight corresponding to the input w ().

Now we calculate p as.

e(i)
LSB
pu(i)

(15)
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So the expected value of the update term in the proposed
method is:

e(i)

LSB
pu(i)

sign(u(i)e(i)) = uu(i)e(i)(16)

which means that the algorithm has the same rate of
convergence as the LMS agorithm in the expected value
sense. So the approximation of learning curve with an
exponential function is dill valid when the staling
phenomenon occurs. This completes the proof. This equality
in the expected value sense can be observed also in the
simulation results which is presented in section I11.

E(wo(i +1) —wo(i)) = x 1LSB x

C. Convergence of the AN-LMS algorithm

As mentioned, this algorithm is the same as LMS algorithm in
infinite precision environments. We have modified the LMS
algorithm by adding and subtracting a noise produced by the
noise generator (see equation (2)). So, the convergence of AN-
LMS agorithm is the same as that of LMS algorithm in an
infinite precision environment. The transient component of the
mean squared-error (i) dies out, which means that the LMS
algorithm and AN-LMS agorithm are convergent in the mean
square if and only if the step-size parameter y satisfies the
following condition [11]:

0<u<-—2-(17
AMax

where 1), 1S the largest eigenvalue of the correlation matrix
of input data, i.e., R.

The simplest consistent estimator for R can be obtained by
using instantaneous estimates that are based on sample values
of the tap input vector as the following:

R = u(i) *u(i)"(18)

The condition for the LMS algorithm and AN-LMS algorithm
to be convergent in the mean sgquare, which is described in Eq.
(17), needs a knowledge of the largest eigenvalue, 4,,,., of the
described correlation matrix R. In the application of these
algorithms, knowledge of A, is not usualy available. To
deal with this practica difficulty, the trace of R may be
considered as a conservative estimate for 1, - Therefore, the
condition described in Eq. (17) can be reformulated as:

2
0 < i < ;(19)

D. Complexity of the AN-LMS Algorithm

We consider the complexity as the number of multiplications
needed to calculate the updated tap weight vector from the
previous one. The computational complexity for the
conventional LMS is equal to 2M and thus is linear with the
number of tapsi.e. O(M). Since pu(i) exists in both update
terms of the AN-LMS algorithm, the AN-LMS a gorithm has
one additional multiplication. Therefore its complexity is
equal to 3M. Thus, the AN-LMS algorithm improves the
resistance to the stalling effect while keeping the complexity
linear with the number of tapsi.e.0(M).

E. Probability of Update with Additive Gaussian Noise

In order to calculate the probability of update in the AN-LMS
algorithm knowledge of the distribution of added noise is
necessary. Assume the added noise has a zero mean Gaussian
distribution with variance ¢2. We proved that if the noise

(2k-1)LSB e(i) < n(i) <

value falls within the interval -
2uu(i)

M for some integer k then AN-LMS updates the
2uu(i)
tapweights. Suppose thatl = |2iil(3i)|and e(i) ispositive. The

probability of update event can be written as:
. 0 (2k-1)1 (2k-1)-e
p=Ti_lo (F5F) —o () @)

where ¢(x)is the cumulative distribution function (CDF) of
the standard normal distribution. Now we evaluate the value
of P.Inthefirst scenario, we suppose that e(i) is constant and

o
@

o
»

o
B

o
[N

o

Probability of the update event (p)

Fig. 5. Probability of the update event as function of [ and o
when e(i) is constant.
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Probability of the update event (p)

Fig. 6. Probability of update as function of [ and ¢ when
e(i) =+.
[ and ¢ are variables. The result of smulation has been shown
inFig. 5.
As it is depicted in Fig. 5, the value of p decreases with the
increase of | and increases with the increase of 4. In the

. N L
second scenario we assume that e(i) = sad [ and o are

variable. The result has been shown in Fig. 6.

We can see from Fig. 6 that the value of p decreases with the
increase of [ and increases with the increase of o. Also it can
be seen that with increase of o the value of p closes to a

congtant value % which is equal to the probability of update

event when the added noise has the uniform distribution. This
result is expected because when o increases, the Gaussian
distribution closes to the uniform distribution. So we can
conclude that the uniform distribution has a faster rate of
convergence than the Gaussian distribution.

I11. SIMULATION RESULTS

In this section we present the simulation results for AN-LMS
algorithm.

Fig. 7 shows the mean absolute error for the system
corresponding to Fig. 4. The two used adaptive filter
algorithms are LM'S and AN-LMS. The noise generator block
in Fig. 2 generates the Gaussian noise. Fig. 7 shows the main
feature of AN-LMS. In fact, the infinite precision LM S has no
gtalling effect problem. As it can be seen the AN-LMS does
continue updating its tap weight vector. Also the rate of
convergence of our method is almost equal to that of infinite

precision LMS as it can be seen from the coincidence of the
two curves. Note that the distribution of the noise is Gaussian
but not uniform, thus the rates of convergence are not
completely equal in expected value sense. In Figs. 4 and 7 the
channel adds no noise to the input signa i.e. the channel
impulse responseis h(n) = §(n).

Now we present the simulation results for a noisy channel
which isareal case. Consider an AR signal described as:
u(i)=01u(i—1)+01lu(i—2)..+01u(i —11) +
w(i)(21)

where w (i) is awhite noise with variance 0.004. Again the
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Fig. 7. Stalling effect in finite precision LM S.
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Proposed method in for an AR signal; the proposed method
combats the stalling effect.
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Infinite Precision LMS

° Proposed Method

Mean Absolue Error

0 100 200 300 400 500
Iteration

Fig. 9. Equality of rates of convergence for two adaptive filter
algorithms.

number of bits used for representation of the decimal part is
12. Fig. 8 demonstrates that the AN-LMS attains lower
estimation errors than the conventional finite precision LMS
algorithm. Unlike the finite precision LMS the AN-LMS does
not stall.Finally Fig. 9 compares the rates of convergences of
the proposed method (AN-LMS) and the infinite LMS
algorithm. Again the system used in Fig. 8, is utilized. The
coincidence of the two learning curves suggests that the rates
of convergence of the AN-LMS and the infinite precision
LMS are equal in expected val ue sense.

IV. CONCLUSION

In this paper we presented an updated version of LMS
algorithm, called AN-LMS agorithm. The basic difference of
AN-LMS and LMS is that AN-LMS injects a noise to the
structure of LMS. This makes AN-LMS agorithm have two
update terms. We proved that in the situation that the stalling
effect happensin conventional LM S, AN-LMS still updatesits
tap weights. The simulation results confirm this analytical
proof. Another observation is that if the distribution of the
added noise tends to uniform then the rate of converge of AN-
LMS tends to that of infinite LMS. Again, thisis observed in
simulation results too. Note that despite increasing the
computational complexity, the AN-LMS agorithm has the
same linear complexity order as the conventional LMS
algorithm.
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