Volume 15, Issue 4 (2016)                   MJEE 2016, 15(4): 27-34 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari H, Poshtan J. Stator winding short-circuit fault diagnosis based on multi-sensor fuzzy data fusion. MJEE 2016; 15 (4) :27-34
URL: http://mjee.modares.ac.ir/article-17-2336-en.html
1- Iran university science and technology
2- Iran University science and technology
Abstract:   (5855 Views)
Abstract- This paper uses data fusion based on fuzzy measure and fuzzy integral theory for stator winding inter-turn short circuit fault diagnosis in induction motors. Data fusion be considered in two level: feature level and decision level. Three-phase current signals of induction motor are used for fault diagnosis. Time-domain features are extracted from current signals, and a technique based on fuzzy density is proposed to choose appropriate features. The fuzzy c-mean analysis method is employed to classify different modes. It is used to choose the membership values of each feature for each fault mode. Finally, different features are fused at feature-level using Sugeno fuzzy integral data fusion and at decision-level using Choquet fuzzy integral data fusion to produce diagnostic results. Results show that fuzzy data fusion method performs very well for fault diagnosis in a 4hp laboratory induction motor.

Key words: Fuzzy integral; Data fusion; Fault diagnosis; Induction motor; Stator three-phase current.
Full-Text [PDF 994 kb]   (1733 Downloads)    
Article Type: Full Research Paper | Subject: پروتکلهای امنیتی
Received: 2016/12/15 | Accepted: 2017/02/14 | Published: 2038/01/19

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.