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Abstract 

Performance of automatic speech recognition 

(ASR) systems degrades in noisy conditions 

due to mismatch between training and test 

environments. Many methods have been 

proposed for reducing this mismatch in ASR 

systems. In recent years, deep neural networks 

(DNNs) have been widely used in ASR systems 

and also robust speech recognition and feature 

extraction. In this paper, we propose to use 

deep belief network (DBN) as a post-

processing method for de-noising Mel 

frequency cepstral coefficients (MFCCs). In 

addition, we use deep belief network for 

extracting tandem features (posterior 

probability of phones occurrence) from de-

noised MFCCs (obtained from previous stage) 

to obtain more robust and discriminative 

features. The final robust feature vector 

consists of de-noised MFCCs concatenated to 

mentioned tandem features. Evaluation results 

on Aurora2 database show that the proposed 

feature vector performs better than similar 

and conventional techniques, where it 

increases recognition accuracy in average by 

28% in comparison to  MFCCs.  

 

Keywords: MFCC, Tandem feature, DBN, 

Robustness, Speech recognition 

 

1. Introduction  

Automatic speech recognition (ASR) , as defined 

in [1], is  : (( the process of converting the speech 

signal into its  corresponding sequence of words 

or other linguistic entities using algorithms 

implemented in a device, a computer or computer 

clusters)) [1]. ASR systems have a wide range of 

applications nowadays: voice command and 

control in home entertainment systems (e.g. 

                                                 
1 MSc in Artificial Intelligence from the School of Computer 

EngineeringK.N.Toosi University of Technology 

m.gholamipour@ee.kntu.ac.ir 
2Assistant Professor Department of Computer Engineering, 

K.N.Toosi University of Technology.bnasersharif@kntu.ac.ir 
 

Smart TVs), content based audio search, voice 

search and interacting using mobile devices ( such 

as Siri on iPhone)[1].  Due to extension of such 

real-world applications, robustness of ASR 

systems in noisy conditions is more important 

than before. The performance of ASR systems 

degrade rapidly when there is a mismatch 

between training and test conditions [1]. This 

mismatch can be created due to contamination of 

speech signal with noise, speaker variations and 

so environment effects on speech signal [1]. 

Generally, robustness methods can be divided 

into three main categories: methods which 

performs in the signal level for removing noise 

from the speech signal (speech enhancement 

methods [2]), methods in the feature level which 

compensate noise effects on speech features and 

finally model adaptation methods [1].  

Robustness methods in the feature level, generally 

are divided into two main groups. Methods of 

first group, change the feature extraction process 

to obtain more robust features such as Phase 

Auto-Correlation (PAC) features [3]. In the 

second group, a linear or non-linear 

transformation is applied to the feature vectors to 

compensate noise effects on them, such as: 

Cepstral mean and variance Normalization 

(CMVN) [2] and MVA processing [4]. 

One of the robust features extraction methods in 

noisy condition is tandem method [2, 5]. In this 

method, a multi-layer perceptron (MLP) is used 

to map traditional features to posterior probability 

features which have more discrimination 

property[5]. 

Recently, deep neural networks (DNNs) are 

widely used in speech recognition systems for 

acoustic modeling [6, 7] and also feature 

extraction and transformation [1, 8]. DNNs are 

artificial neural networks with multiple hidden 

layers between input and output layer [9]. DNNs 

can model complex structures and they have a 

high capability for modeling, learning and 

extracting features [10, 11, and 12].  

A DNN with several layers and nonlinear 

functions in each layer is capable to model 

complex structure and discover data dependency 

[13]. Thus, as mentioned before, plus to acoustic 

modeling [6, 7], DNNs have been used for speech 

enhancement [14, 15] and also for feature 

extraction and transformation in ASR. Two types 

of DNNs, Deep belief network (DBN) [8, 11] and 

auto-encoder [16, 17], have been used for 
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dimension reduction and feature extraction from 

raw data.  

In [14], a DNN has been used to directly learn a 

spectral mapping from the spectrogram of 

corrupted speech to desired clean speech where 

authors have been shown that their method leads 

to significant improvements of predicted speech 

intelligibility and quality in reverberation noisy 

conditions. In [15], authors used DNN for 

regression-based speech enhancement and they 

have shown that their method compared with 

logarithmic mean square error (MSE) achieves 

significant improvements for various objective 

quality measure. 

In [12], authors compared shallow and deep 

neural network in feature learning and 

representation for speech recognition. They 

demonstrated that DNNs can extract more 

invariant and discriminant features at higher level 

layers. This property enables DNNs to generalize 

better than shallow network in mismatched 

conditions. Also, authors in [12] have shown that 

these representations become insensitive to small 

perturbations when network depth is increased.  

 In this paper, we propose to use DBN in two 

manners. First, we use DBN to map noisy 

MFCCs to clean ones. After that, we use DBN to 

extract tandem features from mapped MFCCs. 

Finally, we concatenate mapped MFCCs to 

extracted tandems in order to obtain our proposed 

discriminative and robust speech feature vector. 

The remainder of this paper is organized as 

follows. Section 2 discusses DBN theory briefly. 

Section 3, introduces the tandem system 

framework for robust feature extraction. Section 

4, explains our method for extracting robust 

MFCCs. Section 5 includes our experimental 

setup conditions. In Section 6, we report our 

results. Finally, we give our conclusions in 

Section 7.  

 

 

 

 

2. Deep belief network (DBN) 

The DBN is a multi-layer neural network which 

has a large number of neurons in each layer. The 

basic problem of DBN is occurred on its training 

phase. When free parameters of network are 

randomly initialized, back propagation algorithm 

can be trapped in a local minimum. To avoid this 

problem in DBN, instead of random initializing, 

in a unsupervised pre-training step, each pair of 

network layers are greedy and separately trained 

using restricted Boltzmann machine (RBM) [18, 

19]. So, DBN is a generative model created by 

stacking RBMs. After pre-training step, in 

supervised step, back propagation algorithm is 

performed to train DBN for classification or 

estimation where an output layer is added to 

DBN.  

As mentioned earlier, DBN has been used in the 

feature extraction and mapping [8, 11]. In [8], 

authors used DBN to reduce mismatch between 

far-field and near-field speech where they used 

robust inputs for DBN for this purpose. In [11], 

authors used DBN to learn a de-noising Mel filter 

bank where its input is noisy spectral amplitude 

and its output is de-noised Mel filter bank 

energies. In [20], authors used DBN for speech 

enhancement and so robust speech recognition. In 

this case, DBN inputs includes a central frame 

and its neighbors where we expect that DBN 

removes noise from the central frame and 

reconstruct it. 

As mentioned previously, recently DBN was used 

instead of GMMs in combination with 

 Hidden Markov model (HMM) [6, 7]. In this 

case, four major techniques are used for DBN 

training to make it robust to noise [21]. These 

techniques includes: multi-condition training of 

speech, training with enhanced features, noise 

aware training and dropout training [21]. 
 

3. Tandem system 

Most successful ASR systems is based on hidden 

Markov model (HMM). In HMM based systems, 

we can use Gaussian mixture model (GMM) or 

 
Figure 1: Proposed method structure 
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Artificial neural network (ANN) to estimate the 

observation probability in HMM states.  A way 

for combining these two systems is the tandem  

method [5]. In this method, in the first step, 

conventional features such as perceptual linear 

prediction (PLP) coefficients) or MFCCs are 

extracted from speech signal.  Then, these 

features are mapped to posterior probabilities 

using a MLP where principle component analysis 

(PCA) is performed on mapped features for 

feature de-correlation [5].      

In tandem method, due to DBN capability in 

feature mapping, MLP can be replaced by DBN 

[22]. Results in [22] show that DBN perform 

better than MLP in extracting tandem features. 
 

4. Proposed method 

Due to mentioned properties of DBN such as 

good training and its power in feature 

representation and also function approximation,   

we propose to use DBN for noise reduction and 

also feature extraction. The overall proposed 

method has been shown in Figure 1. We describe 

detail and steps of proposed method in the 

following subsections. 
 

a) De-noising using DBN 

In this part, we propose to use DBN for mapping 

noisy MFCCs to clean ones in the frame level.  

Thus, we use DBN as an estimator in the feature 

level. Figure 2 shows our used structure for DBN. 

This network includes two hidden layers with 512 

neurons in each layer. We extract 12 MFCC and 

energy plus to their first and second derivatives 

from each frame. Then, feature vector dimension 

for each frame is equal to 39.  The network input 

includes a central frame and its neighbors. In 

Figure 2,   indicates the number of neighbor 

frames. If this parameter is equal to zero, only 

MFCCs of current noisy frame are input of the 

network. 
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Figure 2: Structure of DBN as noise reducer 

 : the radius of neighborhood for central frame 

 

If  is equal to 1, in addition to MFCCs in the 

current frame, MFCCs in one frames after and 

before the current frame (total: three frames) have 

been considered as inputs of the network. In the 

present work,  is a member of . In this 

DBN, the first RBM between first and second 

layer is a Gaussian RBM and the other RBM 

between second and third layer is a Bernoulli 

RBM. 
 

b) Feature extraction and mapping using DBN 

The role of the DBN as tandem features extractor 

is mapping speech features to posterior 

probabilities. In [22, 23], DBN has been used to 

extract tandem features from PLP coefficients. In 

[21], the combination of two DBNs have been 

used to extract tandem features for phone 

recognition. In this work, we use DBN by two 

hidden layers and 512 neurons in each layer to 

extract tandem features from MFCCs which can 

be noisy or mapped MFCCs obtained from DBN 

in Section 3.1. Figure 3 shows our proposed 

structure for DBN as tandem feature extractor. 

The network input is similar to mentioned feature 

vector in previous sub-section where  is member 

of {0,1,2,3}. The network outputs contain 18 

posterior probabilities corresponding to number 

of existed phones in Aurora2 dataset. 
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Figure 3: Structure of DBN as tandem extractor 

  : the radius of neighborhood for central frame 
 

c) The overall proposed system 

According to DBN power in reducing mismatch 

between training and test conditions and also its 

power in extracting robust tandem features, in the 

overall proposed system, mapped MFCCs 

obtained from de-nosing DBN (described in 

Section 3.1) have been fed as input to tandem 

extractor DBN in order to achieve posterior 

probabilities. After taking logarithm from 

posterior probabilities and performing principal 

component analysis (PCA) on them, we 

concatenate the obtained result to mapped 

MFCCs to construct final robust feature vector. 

We utilize stereo data to train DBN for MFCC 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n 
20

24
-1

2-
27

 ]
 

                               3 / 7

https://mjee.modares.ac.ir/article-17-3327-en.html


MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014 

 

27 

de-noising and to train another DBN for tandem 

feature extraction. So, two DBNs are separately 

trained. Figure 1 shows this overall process. 
 

5. Experimental setup 

We evaluate our proposed method using Aurora2 

dataset [24]. Frame length and frame shift are 25 

and 10 msec, respectively.The number of Mel 

filters is equal to 26. We used HMM with 16 

states and 3 Gaussian mixtures per states. We 

used clean train set for HMM training.  The 

number of features in case of MFCCs is equal to 

39 (12 MFCC plus to energy and their first and 

second derivations) ;in case of posterior 

probabilities is equal to 18 and in case of 

concatenating both mentioned features is equal to 

57.The DBN in both role of noise reducer and 

feature extractor has two hidden layers with 512 

neurons in each layer. The number of epochs in 

pre-training stage is 10 epochs and in fine-tune 

(back propagation) is 200 epochs. The multi-layer 

perceptron (MLP) has one hidden layer with 512 

neurons where has been trained with the same 

200 epochs. Both MLP and DBN are trained 

using clean and noisy speech (multi condition 

set).  
Table 1: Abbreviations for  used method in the reported 

results 

Number 

of 

features 

Description  Abbreviations 

39 
mean-variance normalized 

(MVN) MFCC 
NMFCC 

39 
De-noised  MFCC using 

MLP 
MLP-DMFCC 

39 
De-noised  MFCC  using 

DBN 
DBN-DMFCC 

39 

De-noised MFCC using 

MLP and normalized using 

MVN 

MLP-NDMFCC 

39 

De-noised MFCC using 

DBN and normalized using 

MVN 

DBN-NDMFCC 

18 
tandem features Extracted 

from MFCC using MLP 
MLP-TMFCC 

18 
tandem features Extracted 

from MFCC using DBN 
DBN-TMFCC 

18 
tandem features extracted  

from DBN-DMFCC 
DBN-TDMFCC 

57 

tandem features extracted 

by  MLP  concatenated to 

MFCC 

MLP-

TMFCC+MFCC 

57 

tandem features extracted 

by  DBN concatenated to 

MFCC 

DBN-

TMFCC+MFCC 

57 

DBN-TDMFCC 

concatenated to DBN-

DMFCC  

DBN-

TDMFCC+DBN-

DMFCC 

We used toolbox implemented in [25] for DBN.  

The used abbreviations in reporting result are 

defined in Table 1. 

 

6. Results 

a) DBN for noise reduction 

Table 2 reports average of recognition accuracy 

on all three Aurora 2 test sets. We used two types 

of neural networks for mapping noisy features: 

DBN and MLP. It can be shown from Table 2 that 

DBN has better results than MLP and so learns a 

better mapping and estimation in comparison to 

MLP. 

  

Table 2: Average of recognition accuracy 

on SNR 0 to 20 dB for  all test sets using 

MLP and DBN as noise reducer 

Average 

Accuracy 
Methods 

69.09 MLP-DMFCC 

71.67 MLP-NDMFCC 

76.95 DBN-DMFCC 

78.15 DBN-NDMFCC 

 

b) DBN for extracting tandem features 

Table 3 also shows average of recognition 

accuracy on test sets. Both DBN and MLP are 

trained to extract tandem features. As can be seen 

from table 3, DBN has a better performance in 

extracting tandem features comparing with MLP. 

Table 3 Average of recognition accuracy 

on SNR 0 to 20 dB for all test sets using 

MLP and DBN as tandem extractor 

Average 

Accuracy 
Methods 

73.07 MLP-TMFCC 

78.04 MLP-TMFCC+MFCC 

76.05 DBN-TMFCC 

78.38 DBN-TMFCC+MFCC 

 

c) Selecting number of neighbor frames 

Table 4 shows average of recognition accuracy 

for different numbers of neighbor frames. As 

shown in Table 4, the appropriate number of 

frames for DBN in the role of extracting tandem 

features is 3 frames ( ) and in the role of 

reducing noise is equal to 7 frames ( ).   is 

the radius of neighborhood for the central frame 

defined and shown in Figure 2. 
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Table 4: Average of recognition accuracy on 

SNR 0 to 20 dB for different neighborhood 

radius  frames for all test sets  

Average Accuracy 

 DBN-

DMFCC 
DBN-TMFCC 

76.95 76.05 0 

78.84 76.54 1 

79.09 75.54 2 

79.69 75.71 3 

 

d) DBN for feature extraction and noise 

reduction 

In this section, we evaluate the overall proposed 

system shown in Figure 1. Table 5 shows the 

average of recognition accuracy for each test set 

using this system. According to Table 4, for 

mapping DBN and tandem extractor DBN, we 

consider 7 and 3 subsequent frames in DBN 

inputs, respectively. 

As can be seen from table 5, mapped noisy 

MFCC using DBN (DBN-DMFCC) has better  
 

Table 5: Average of recognition accuracy on SNR 0 

to 20 dB  

Test sets 

Methods 

A
v

er
a

g
e

 

C
 

 

B
 

 

A
 

 

63.30 
60.1

8 

66.6

6 
63.06 MFCC 

75.67 
70.6

1 

79.8

8 
76.52 NMFCC 

79.69 
76.0

2 

82.3

6 
80.70 DBN-DMFCC 

80.39 
77.3

9 

82.4

0 
81.38 DBN-NDMFCC 

76.54 
73.7

6 

78.5

4 
77.45 DBN-TMFCC 

79.77 
76.4

2 

82.0

4 
80.86 

DBN-

TMFCC+MFCC 

76.85 
75.4

5 

77.6

3 
77.47 DBN-TDMFCC 

81.35 
78.2

8 

83.3

8 
82.38 

DBN-

TDMFCC+DBN-

DMFCC 

 

results than MFCC and NMFCC. This shows the 

capability of DBN in clean features estimation. 

Also, mean-variance normalization of DBN-

DMFCC (DBN-NDMFCC) increases its 

recognition accuracy. As shown in table 5, 

tandem features extracted by DBN (DBN-

TMFCC) has higher results in comparison to 

MFCC and NMFCC. However, the best results 

belong to the method in the last raw of table 5 

which is the same proposed method shown in 

Figure 1. 

 
a) strong noise 

 
b) medium noise 

 
c) weak noise 

Figure 4: Avrage of recognition accuracy for various 

SNRs 

Figure 4 shows the average of recognition 

accuracy on different noise levels for various 

SNRs. As shown in the figure, when noise level is 

high (SNR=-5), tandem features extracted from 

de-noised MFCC (DBN-TDMFCC) have the 

highest recognition accuracy. On the other hand, 

when noise level is low (SNR=15, SNR=20), 

DBN-TMFCC+MFCC method has the highest 

recognition accuracy..In the other conditions, the 

proposed method, shown in Figure 1, works 

better than the other methods 
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a) A set 

 
b) B set 

 

 
c) C set 

Figure 5: Avrage of recognition accuracy for 

different noise types 

 

Figure 5 shows the average of recognition 

accuracy for different noise types. According to 

Fig. 5, for all noise types, the proposed method 

has the highest results among other methods. 

7. Conclusions 

In this paper, we propose to use DBN for noisy 

MFCCs mapping to clean ones and also 

extracting tandem features from mapped MFCCs. 

Furthermore, we concatenated these two 

mentioned groups of features to obtain the 

proposed robust feature vector. Results show that 

DBN due to its capability in nonlinear mapping 

and estimation, has a good performance in 

extracting robust and discriminative features. 

Thus, our proposed feature vector performs better 

than traditional and other similar features in noisy 

conditions. 
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