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Abstract— In this paper, we introduce a new algorithm to deal 

with the stalling effect in the LMS algorithm used in adaptive 
filters. We modify the update rule of the tap weight vectors by 
adding noise, generated by a noise generator. The properties of 
the proposed method are investigated by two novel theorems. As 
it is shown, the resulting algorithm, called Added Noise LMS 
(AN-LMS), improves the resistance capability of the conventional 
LMS algorithm against the stalling effect. The probability of  
update with additive white Gaussian noise is calculated in the 
paper. Convergence of the proposed method is investigated and it 
is proved that the rate of convergence of the introduced method 
is equal to that of LMS algorithm in the expected value sense, 
provided that the distribution of the added noise is uniform. 
Finally, it is shown that the order of complexity of the proposed 
algorithm is linear as the conventional LMS algorithm. 
 

Index Adaptive filter; LMS algorithm; stalling effect; finite 
precision effect. 
 

I. BACKGROUND 
DAPTIVEfilter algorithms are widely used for channel 
estimation and equalization in digital communication 

systems and digital signal processing [1-2]. The performance 
analysis of these algorithms is usually done based on analog 
assumptions in infinite precision environments. In practice, 
digital signal processors are used to implement these 
algorithms. Using these processors updating the filter tap 
weights, calculation of the estimation error and data sampling 
are done in a finite precision environment. This finite 
precision assumption brings about some phenomena. One of 
these phenomena is the quantization error which takes place in 
converting analog data to digital ones.  In can be shown that it 
is possible to consider the quantization noise as an additive 
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independent source of white noise provided that the 
quantization is performed with high resolution (using 6 bits or 
larger) and also the signal spectra is sufficiently rich [3-4]. 
One of the challenges in the implementation of adaptive filter 
algorithms in finite precision environments is the stalling 
effect. In a finite precision environment e.g., a processor, 
whenever the correction term for a specific tap weight is 
smaller in magnitude than the half of the least significant bit ( 
LSB) of this tap weight, the corresponding tap weight in the 
algorithm is not updated (according to the rule of rounding to 
the nearest mode) and thus, this filter tap weight stalls [5]. In 
order to prevent the stalling effect in a finite precision 
environment from happening, the residual error should be 
made as small as possible. For this purpose, one of the 
following two methods is usually used [4]: 

1) Using a large number of bits for representing the filter 
tap weight and other data by which the LSB can be 
reduced.  
2) The step-size parameter may be made as large as 
possible in such a way that the convergence of the 
algorithm is still guaranteed. 

Another method for combating the stalling effect, is using 
dither in the quantizer input by which the tap weight 
accumulator is fed [6]. The authors in [7] modeled the 
coefficients of adaptive filter as a Markov chain and the 
matrix of transition probabilities of the chain was determined 
for the one-dimensional case in this model. In addition, the 
conditions in which stalling phenomenon occurs, was 
determined in [7].  In [8] a modification of the LMS algorithm 
was proposed that alleviates the effect of quantization at 
virtually no extra computational cost. In this algorithm, 
stalling situations are detected and a secondary adaptive filter 
is used to increase the precision in such situations. A method 
showing a performance that is comparable to that of full 
precision adaptive filters has been proposed in [9], which uses 
a companded delta modulation structure.  In [10] the 
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quantization effects on the steady-state performance of a 
fixed-point implementation of the LMS adaptive algorithm 
was studied, and the stall mode was reviewed. Furthermore, 
the value of step-size corresponding to the onset of the stall 
mode has been predicted in [10], such that one can avoid the 
stalling phenomenon by judiciously choosing the step size 
value.In this paper we propose a new method which is capable 
of preventing the stalling effect by using a limited number of 
bits. The main contribution of this paper is that the algorithm 
does not stop updating even when the correction term is 
smaller in magnitude than the half of the LSB. The proposed 
algorithm has a rate of convergence almost equal to that of 
LMS algorithm. The rest of the paper is organized as follows. 
In section II the proposed algorithm is presented in details. 
Also, we analyze the rate of convergence of the proposed 
algorithm in this section. Section III presents the simulation 
results and comparisons for the proposed method and 
conventional LMS algorithm in finite and infinite precision 
environments. Section IVconcludes the essay. 

II. PROPOSED ALGORITHM 
 

A. Preliminaries 
The conventional LMS algorithm updates the tap weights as: 
  ( + 1) =  ( ) +   ( ) ( )                           (1) 
where  ( ) = [ ( ), … , ( −  + 1)] and  ( ) =[  ( ), … ,    ( )]  are the input data vector and tap weight 
vector, respectively. Also  ( ) =  ( ) −   ( ) =  ( )  ( ) − ( ) is the estimation error. 
Fig. 1 shows the block diagram for a general adaptive filtering 
algorithm. In the above algorithm, if the values of each 
element of the vector   ( ) ( ) in the finite precision 
environment is less than 0.5    , the stalling effect happens 
and the value of  that element isconsidered as zero.Therefore, 
that tap weight is not updated. Assume that our 
 

 

 

 

 

 

 

 

 

algorithm rounds any number to the nearest LSB. We 

considerthe tap weight corresponding to the input  ( ). Define 

threshold error   ( )  as the minimum acceptable value of 

estimation error above which no stalling effect happens for the 

tap weight corresponding to input  ( ). We have   ( ) =      ( ). 
If  ( ) <   ( ) then   ( ) ( ) is considered as zero. For 
example suppose that 12 bits are allocated for data 
representation in the decimal part. In this case    = 2.44 ×10  . Assuming the normalized input data equals to 0.5 and  = 0.01, the threshold error isequal to   ( ) = 0.0244. So 
the value of estimation error cannot exceed this threshold 
value. 
Fig. 2 demonstrates how the stalling effect happens in this 
finite precision environment. The system model is an AR 
model described as ( ) = 0.1 ( − 1) + 0.1 ( − 2) … +0.1 ( − 10). The initial input data is considered as  (1: 10) =[0.2  0.3  0.28  0.26  0.4  0.24  0.46  0.6  0.56  0.48]. Also we 
set the initial tap weight elements as  0.01 .  As it can be seen 
from the figure, the finite precision LMS stops updating its tap 
weight vector when the value of error is less than 0.0244. This 
begins at iteration number 134. 
Is it possible to reach less error values with the same number 
of bits allocated for digital quantization? We answer this 
question in the following section. 
 

B. Algorithm Description 
In this section we present the proposed algorithm dealing with  

 
Fig.2: Stalling effect in finite precision LMS. 
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Fig. 1: Block diagram of an adaptive 
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the stalling effect. Fig. 3 depicts the structure of Adaptive 
weight-control mechanism in the AN-LMS 
algorithm.Specifically how new weights are calculated from 
previous ones. Function   is defined as  ( ) =   ( ) . The 
update equation for filter weights can be written as:  ( + 1) =  ( ) +   ( )  ( ) +  ( ) −   ( ) ( )(2) 
where  ( ) is a white noise in this formula.  The algorithm is 
composed of two update terms i.e.,    ( )  ( ) +  ( )  and   ( ) ( ). Note that if the environment is not a finite 
precision one, then this algorithm is exactly the same as the 
LMS algorithm. This simple algorithm has some interesting 
properties. As we prove later, this algorithm prevents the 
stalling effect from happening. If the error value is bigger than 
the threshold value, i.e.,   ( ) ≥   ( ),  then rates of 
convergence of this algorithm and the LMS algorithm are 
almost equal. This is true because the quantized version of 
modification terms   ( ) ( ) in the LMS algorithm and    ( )  ( ) +  ( ) −   ( ) ( )  in the proposed algorithm 
differ at most in  1     which 1     and −1     take place 
with equal probability. If  ( ) <   ( ) AN-LMS algorithm 
prevents the stalling effect. Assume that  ( ) <   ( ) =      ( ) in which the stalling occurs for the LMS algorithm. 

Suppose that the noise  ( ) has an arbitrary distribution (e.g. 
Gaussian). Also assume that the error value  ( ) and the input 
signal   ( ) are both positive. Since the value of error is less 

than 
      ( ) and error value is positive,       ( ) −  ( ) is 

positive. If the added noise value falls within the interval 
which is shown in Fig. 4, then   ( )  ( ) +  ( )  in AN-
LMS algorithm exceeds   ( ) ( ) by 1 LSBtherefore the 
weight will be updated by +1     in the true direction i.e., in  
 
 
 
 
 
 
 
 

Fig. 3: Details of the adaptive weight-control mechanism in 

the AN-LMS algorithm (  is a function defined as  ( ) =  ( ) ). 

the direction of sign LMS algorithm. This interval is not the 
only interval within which if noise value falls, the weight 
willbe updated. In fact if added noise falls within the 

intervals[(    )      ( ) −  ( ), (    )      ( ) ) for some integer   , 

the weights will be updated in the true direction. 
The following two theorems defined and proved by the 
authors, investigate the properties of the AN-LMS algorithm. 
Theorem 1:Consider the algorithm presented by equation (2). 

Suppose that in the time instant   we have   ( ) <      ( ) , i.e., 

the stalling phenomenon has happened in the finite precision 
environment for the LMS algorithm, then the tap weight   ( ) 
in the AN-LMS algorithm is updated in the true direction i.e., 
in the direction of the sign LMS algorithm. 
Proof- Assume the added noise  ( ) has an arbitrary 
distribution (e.g. Gaussian). Also assume that the error value 
and input signal   ( ) are positive. Since the value of error is 

less than       ( ) and it is also positive, one can conclude that       ( ) −  ( )is positive. If the noise value falls within the 

interval  (    )      ( ) −  ( ) ≤  ( ) < (    )      ( )    for some  

integer   then   ( )  ( ) +  ( ) −   ( ) ( ) will be equal 
to 1    . So, the tap weight   ( ) will be updated by 1     
in the true direction (like sign LMS algorithm). If the noise 
value does not fall in these intervals, then no updating in the 
tap weight will happen. We prove this in the following. 
Suppose that: (    )      ( ) −  ( ) ≤  ( ) < (    )      ( ) (3) 

then,  (    )      ( ) ≤  ( ) +  ( ) < (    )      ( ) +  ( )(4) 

and thus, (    )    ≤   ( )( ( ) +  ( )) < (    )    +  ( ) ( )    (5)                                                                 
Since   ( ) ( ) < 0.5     the value of   ( )( ( ) +  ( )) 
will be equal to     . 
Now we analyze the second update term of equation (2), i.e.,    ( ) ( ). We have  (    )      ( ) −  ( ) ≤  ( ) < (    )      ( )                   (6) 

which is equivalent to (    )    −   ( ) ( ) ≤   ( ) ( ) < (    )         (7) 

 ( ) 
Noise 
generator     ( ) 
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As it can be inferred from this equation, since   ( ) ( ) <0.5    the value of   ( ) ( ), when rounded to the nearest 
LSB, will be equal to ( − 1)    and thus the 
differencebetween two update terms is equal to 1    and the 
weight will be updated by +1     in the true direction ( ( ) 
and  ( ) are both positive). 
Now consider the case that the noise value does not fall within 
the previous interval but falls in the interval: (    )      ( ) ≤  ( ) < (    )      ( ) −  ( )                             (8) 

We show that in this case, the proposed algorithm does not 
update the tap weight. From (3) we have: (    )    +   ( ) ( ) ≤   ( )( ( ) +  ( )) <(    )      (9) 

Since    ( ) ( ) < 0.5    the value of   ( )( ( ) +  ( )), 
when rounded to the nearest LSB, will be equal to     . 
Moreover, from (3) we can write: (    )    ≤   ( ) ( ) < (    )    −   ( ) ( )(10) 

In similar way, the value of    ( ) ( ), when rounded to the 
nearest LSB, will be equal to     . Therefore, the difference 
between two update terms is equal to zero and the tap weight 
is not updated by the proposed algorithm. This result can be 
concluded by the similar expressions for other tap weights   ( ) to      ( ). In addition, the proof for other 3 possible 
states for signs of   ( ) and  ( ) is similar (the intervals 
changes according to signs of  ( ) and  ( )). The proof is 
completed here. 
 

 
 

Fig. 4: Interval in which AN-LMS updates. 

Theorem 2:Consider the algorithm proposed in (1) and also 
suppose that the distribution of the added noise  ( ) is 
uniform. Rate of convergence of the proposed algorithm and 
that of the LMS algorithm is identical in the expected value 
sense. 
Proof- In the LMS algorithm the update term is   ( ) ( ). If   ( ) ( ) ≥ 0.5    the probability that the update term in 
the AN-LMS algorithm exceeds that of the LMS algorithm by 1    is equal to the probability that the update term in the 
LMS algorithm exceeds that of the AN-LMS algorithm by 1   .  Therefore, the rates of convergence of AN-LMS and 
LMS are equal in a finite precision environment, provided that 
the  stalling phenomenon has not occurred and can be 
approximated by a single exponential curve. An average 
eigenvalue can be defined for the underlying correlation 
matrix   of the tap inputs as:    =   ∑       (11) 

The learning curve of the LMS algorithm can be approximated 
by a single exponential with time constant  . One can use 
equations which are developed for the method of steepest 
descent, to define average time constant for the LMS 
algorithm as the  following [4]:  =                                           (12) 

On the other hand, if   ( ) ( ) < 0.5    , as it is stated 
before, the algorithm always updates the tap weights in the 
true direction. Now, assume that the distribution of the added 
noise is uniform. We prove that in the case   ( ) ( ) <0.5  , the rates of convergence of the proposed method and 
the LMS algorithm are equal. Again assume that the error 
value  ( ) and input signal   ( ) may be negative or positive. 
  Define   as the event that the noise value falls within the 
intervals: [(    )      ( ) −  ( ), (    )      ( ) ) ∈ (−∞, +∞) (13) 

Suppose that Pr( ) =  . As it is proved in theorem 1, the AN-
LMS algorithm updates the tap weights if and only if   
happens. Then the expected value of the update term in the 
proposed method is equal to:     ( + 1) −  ( ) = × 1   ×       ( ) ( ) + (1 −  ) × 0(14) 

which   ( ) is tap weight corresponding to the input  ( ). 
Now we calculate   as:  =   ( )     ( )                      (15) 
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So the expected value of the update term in the proposed 
method is:     ( + 1) −  ( ) =   ( )     ( )  × 1   ×      ( ) ( ) =   ( ) ( )(16) 
which means that the algorithm has the same rate of 
convergence as the LMS algorithm in the expected value 
sense. So the approximation of learning curve with an 
exponential function is still valid when the stalling 
phenomenon occurs. This completes the proof. This equality 
in the expected value sense can be observed also in the 
simulation results which is presented in section III. 
 

C. Convergence of the AN-LMS algorithm 
As mentioned, this algorithm is the same as LMS algorithm in 
infinite precision environments. We have modified the LMS 
algorithm by adding and subtracting a noise produced by the 
noise generator (see equation (2)). So, the convergence of AN-
LMS algorithm is the same as that of LMS algorithm in an 
infinite precision environment. The transient component of the 
mean squared-error  ( ) dies out, which means that the LMS 
algorithm and AN-LMS algorithm are convergent in the mean 
square if and only if the step-size parameter   satisfies the 
following condition [11]: 0 <  <      (17) 

 
where      is the largest eigenvalue of the correlation matrix 
of input data, i.e.,  . 
The simplest consistent estimator for   can be obtained by 
using instantaneous estimates that are based on sample values 
of the tap input vector as the following:   =  ( ) ∗  ( ) (18) 
The condition for the LMS algorithm and AN-LMS algorithm 
to be convergent in the mean square, which is described in Eq. 
(17), needs a knowledge of the largest eigenvalue,     , of the 
described correlation matrix R. In the application of these 
algorithms, knowledge of      is not usually available. To 
deal with this practical difficulty, the trace of R may be 
considered as a conservative estimate for      . Therefore, the 
condition described in Eq. (17) can be reformulated as: 0 <  <    [ ](19) 

 

D. Complexity of the AN-LMS Algorithm 
We consider the complexity as the number of multiplications 
needed to calculate the updated tap weight vector from the 
previous one. The computational complexity for the 
conventional LMS is equal to 2M  and thus is linear with the 
number of taps i.e.  ( ). Since    ( ) exists in both update 
terms of the AN-LMS algorithm, the AN-LMS algorithm has 
one additional multiplication. Therefore its complexity is 
equal to 3M. Thus, the AN-LMS algorithm improves the 
resistance to the stalling effect while keeping the complexity 
linear with the number of taps i.e. ( ). 
 

E. Probability of  Update with Additive Gaussian Noise 
In order to calculate the probability of update in the AN-LMS 
algorithm knowledge of the distribution of added noise is 
necessary. Assume the added noise has a zero mean Gaussian 
distribution with variance   . We proved that if the noise 

value falls within the interval  (    )      ( ) −  ( ) ≤  ( ) <(    )      ( )    for some integer   then AN-LMS updates the 

tapweights. Suppose that =        ( ) and  ( )  is positive. The 

probability of update event can be written as: p = ∑ [φ  (    ) 
σ

 − φ  (    )  
σ

 ]∞   ∞     (20) 

where φ(x)is the cumulative distribution function (CDF) of 
the standard normal distribution. Now we evaluate the value 
of  P. In the first scenario, we suppose that  ( ) is constant and 
 
 

 

Fig. 5.  Probability of the update event as function of    and    
when  ( ) is constant. 
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Fig. 6.  Probability of update as function of    and   when  ( ) =    .   and   are variables. The result of simulation has been shown 
in Fig. 5. 
As it is depicted in Fig. 5, the value of   decreases with the 
increase of   and increases with the increase of  . In the 

second scenario we assume that  ( ) =    and   and   are 

variable. The result has been shown in Fig. 6. 
We can see from Fig. 6 that the value of   decreases with the 
increase of    and increases with the increase of  . Also it can 
be seen that with increase of   the value of    closes to a 

constant value 
  ∗   which is equal to the probability of update 

event when the added noise has the uniform distribution. This 
result is expected because when   increases, the Gaussian 
distribution closes to the uniform distribution. So we can 
conclude that the uniform distribution has a faster rate of 
convergence than the Gaussian distribution. 
 

III. SIMULATION RESULTS 
In this section we present the simulation results for AN-LMS 
algorithm. 
Fig. 7 shows the mean absolute error for the system 
corresponding to Fig. 4. The two used adaptive filter 
algorithms are LMS and AN-LMS. The noise generator block 
in Fig. 2 generates the Gaussian noise. Fig. 7 shows the main 
feature of AN-LMS. In fact, the infinite precision LMS has no 
stalling effect problem. As it can be seen the AN-LMS does 
continue updating its tap weight vector. Also the rate of 
convergence of our method is almost equal to that of infinite 

precision LMS as it can be seen from the coincidence of the 
two curves. Note that the distribution of the noise is Gaussian 
but not uniform, thus the rates of convergence are not 
completely equal in expected value sense. In Figs. 4 and 7 the 
channel adds no noise to the input signal i.e. the channel 
impulse response is ℎ( ) =  ( ). 
Now we present the simulation results for a noisy channel 
which is a real case. Consider an AR signal described as:  ( ) = 0.1 ( − 1) + 0.1 ( − 2) … + 0.1 ( − 11) + ( )(21) 
where  ( ) is a white noise with variance 0.004. Again the  
 

 

Fig. 7. Stalling effect in finite precision LMS. 

 

 
Fig. 8. Comparison between Finite Precision LMS and 

Proposed method in for an AR signal; the proposed method 

combats the stalling effect. 
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Fig. 9. Equality of rates of convergence for two adaptive filter 

algorithms. 

 
number of bits used for representation of the decimal part is 12. Fig. 8 demonstrates that the AN-LMS attains lower 
estimation errors than the conventional finite precision LMS 
algorithm. Unlike the finite precision LMS the AN-LMS  does 
not stall.Finally Fig. 9 compares the rates of convergences of 
the proposed method (AN-LMS) and the infinite LMS 
algorithm. Again the system used in Fig. 8, is utilized. The 
coincidence of the two learning curves suggests that the rates 
of convergence of the AN-LMS and the infinite precision 
LMS are equal in expected value sense. 
 

IV.  CONCLUSION 

In this paper we presented an updated version of LMS 
algorithm, called AN-LMS algorithm. The basic difference of 
AN-LMS and LMS is that AN-LMS injects a noise to the 
structure of LMS. This makes AN-LMS algorithm have two 
update terms. We proved that in the situation that the stalling 
effect happens in conventional LMS, AN-LMS still updates its 
tap weights. The simulation results confirm this analytical 
proof. Another observation is that if the distribution of the 
added noise tends to uniform then the rate of converge of AN-
LMS tends to that of infinite LMS. Again, this is observed in 
simulation results too. Note that despite increasing the 
computational complexity, the AN-LMS algorithm has the 
same linear complexity order as the conventional LMS 
algorithm. 
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