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Abstract 
This paper introduces a technique for controlling a 
class of uncertain chaotic systems using an 
adaptive fuzzy Proportional-Integrator-Derivative 
(PID) controller with H∞ tracking performance. 
The purpose of this work is to achieve optimal 
tracking performance of the controller using 
Backtracking Search Algorithm (BSA). BSA, 
which is a novel heuristic algorithm, has an easy 
structure with single control parameter. In BSA, 
three basic genetic operators (selection, mutation 
and crossover) are utilized to generate trial 
individuals. To this reason, the control problem in 
hand is considered as an optimization problem by 
defining an appropriate objective function. Stability 
analysis of the control scheme is provided based on 
Lyapunov theory and modified Riccati-like 
equation, where the robustness of the closed-loop 
system is guaranteed by H∞ tracking performance 
for any predefined level. To evaluate the 
performance of the proposed control method, it is 
employed for tracking control of Duffing 
uncertain chaotic system. Simulation results show 
the capability of the proposed controller. 
 
Keywords: Chaos Control, Adaptive Fuzzy PID, 
Stability, Optimization, Backtracking Search 
Algorithm 
 
1. Introduction 
Chaotic systems have complex dynamical 
behaviours that possess distinctive aspects like 
excessive sensitivity to initial conditions [1]. 
Since chaotic phenomenon exists in many 
engineering and scientific fields, controlling 
chaos has attracted much interest during the last 
decades. Different control methodologies have 
been introduced in the literature [2-12]. 
Proportional-Integrator-Derivative (PID) 
controllers are one of the most well-known 
control methods yet. They endeavour to minimize 
the error between a desired input and the output 
of the process by providing an appropriate signal 
that can control the process accordingly.  

PID controllers have been successfully applied for 
controlling of the processes because of interesting 
aspects such as simple realization, easy 
implementation and appropriate reliability [13]. 
In spite of the interest of PID controllers, there 
exist some reasons in chaos control which can 
deteriorate the performance of them: (1) the 
parameters of the system are not precisely known 
(or unknown) in which can be perturbed during 
the process, (2) the existence of the external 
disturbances which is unavoidable. This has led 
to an intense interest in the development of robust 
tracking control of chaotic systems.  

Since Fuzzy Logic (FL) is universal 
approximator [14], FL control systems offer an 
operational method to handle nonlinear systems, 
particularly against incomplete knowledge of the 
plant. Although many FL-based control schemes 
have been developed for unknown nonlinear 
systems, the key disadvantage of the FL control 
systems is the lack of any systematic approaches 
where stability analysis of such a system is not 
easy. In addition, the tuning of the parameter is 
usually a time-consuming process, because of the 
nonlinear and multi-parametric nature of fuzzy 
systems [15]. From the universal approximation 
aspect of the fuzzy systems, the adaptive control 
methods that incorporate the FL techniques are 
utilized to control the nonlinear dynamic system 
[16]. Recently, these systems with H∞ tracking 
performance have been introduced for nonlinear 
systems [17-22]. These techniques are thoroughly 
related to their robust stability and performance 
providing satisfactory results to the trajectory 
tracking problem using a small amount of the 
fuzzy inference mechanisms. 

Based on aforementioned, an adaptive fuzzy PID 
controller with H∞ tracking performance is 
introduced for controlling uncertain chaotic 
systems. By using Lyapunov stability theory, the 
proposed controller can assure the robust stability 
of the system with H∞ tracking performance for 
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any predefined level. While applying the control 
manner into the system, an error dynamic of 
closed-loop system can be achieved. The 
significant problem is to choose an arbitrary set of 
the poles of the error dynamic which are directly 
related to the controller performance. Trials–errors 
procedure is generally applied for tuning until a 
required behaviour of the system is achieved in 
which can be became more delicate and hard as the 
complexity of the controlled plant increases. To 
overcome this deficiency, the problem can be 
considered as an optimization problem by defining 
an appropriate objective function. Here, it is 
required to develop an optimal tuning methodology 
of the controller to determine a set of the poles 
simultaneously. Accordingly, different types of 
conventional techniques have been employed like 
Gradient Descents [23]. However, most of them 
have some fundamental drawbacks such as 
differentiability of the objective function. 
Evolutionary Algorithms (EAs) are also one of the 
most qualified methodologies for finding the 
optimal solution via cooperation and competition 
between the individuals of the population. These 
algorithms have been successfully applied in 
different areas such as clustering [24-27], 
Synchronization of bilateral teleoperation systems 
[28-30], Optimal setting of TCSCs in power 
systems [31], dynamic optimisation problems 
[32,33], system identification [34,35], design 
optimization [36], optimal controller design 
[37,38] and job shop scheduling problem [39]. In 
this paper, Backtracking Search optimization 
Algorithm (BSA) originally proposed by 
Civicioglu [40] is employed to calculate the proper 
location of the poles of the error dynamic. BSA has 
an easy structure with single control parameter 
which has three basic genetic operators (selection, 
mutation and crossover) to generate trial 
individuals. The preference of the BSA compared 
to other algorithms can be found in [40].  

The reminder of paper is organized as follows. 
The problem formulation is given in section 2. 
Section 3 presents an adaptive fuzzy PID control 
with H∞ tracking performance in details. Section 
4 demonstrates the corresponding optimal 
tracking performance problem. Simulation results 
are given in section 5 to show the efficiency of 
the proposed approach. Section 6 outlines the 
main conclusions. 

 
 

2. Problem Formulation 
In this paper, a dynamical equation of an nth 
order nonlinear system is given as 

(1) 

 
( ) ( 1) ( 1)( , ,..., ) ( , ,..., )n n nx f x x x g x x x u d

y x

− −= + +
=

& &
 

where  
( 1)

1 2[ , ,..., ] [ , ,..., ]n T T n
n= x x x x x x− = ∈ℜ&x  is a 

state vector, y ∈ℜ  is the system output,u ∈ℜ  is 
the control input, d is an external disturbance 
which is bounded, and ( )f x and ( )g x are the 
unknown but bounded nonlinear functions. Here, 
all state variables x are measurable and the input 
gain is strictly positive, i.e. 0 ( )Lg g< ≤ < ∞x .  
In chaos control problem, the output of the system 
must track the reference signal ry . Accordingly, 
the tracking error vector is defined as 

( 1)= - [ , ,..., ]n T ne e e −= ∈ℜr &e y y , where 
( 1)[ , ,..., ]n T n

r r ry y y −= ∈ℜ&ry  and 
( 1)[ , ,..., ]n T ny y y −= ∈ℜ&y  .  

If the nonlinear functions ( )f x  and ( )g x are 
entirely known, then we have  

(2) ( ) *( )( )n Te = g u u d+ − +k e x  
where 

(3) * ( )1 ( ( ) )
( )

n T
ru f y

g
−

= + −x k e
x

 

in which 2 1[ ,..., , ]T n
nk k k= ∈ℜk  is a Hurwitz 

polynomial. Consequently, the error dynamic can 
be described as 

(4) ( )( ) ∗=  
 + − +e Ae B& g u u dx  

where 
          

1 2

0 1 0 0 0
0 0 1 0 0

,
0
1

= =

   
   
   
   
   
   
     − − −

A B

L

L

M M M O M M

M M M L M

L L nk k k

 

  

In this case, the system is free of external 
disturbance d and *=u u . Afterward, we have 

=&e Ae and lim
→∞t

= 0e . However, ( )f x  

and ( )g x are commonly unknown and there exists 
the external disturbance d so that *u is unknown. 
To overcome this problem, an adaptive PID-type 
control law is given by 
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          PIDu u υ= +  (5)  

where  
          ( ) ( ) ( )PID P I Du k e t k e t dt k e t= + +∫ &  (6)  

performs as an approximator of *u in which 
, ,P Ik k  and Dk are the proportional, integral, and 

derivative parameters of the PID controller, 
respectively. Finally, υ  is an H∞ compensator is 
defined by   

          11 ( )T gυ
λ

−= − B Pe x  (7)  

where λ  is a positive constant to be determined 
namely learning rate and P is a positive definite 
matrix which is a solution of the Riccati-like 
equation as follows [41]. 

          

2
22 1 0, 2+ + − + = ≥T T T

λ ρ
ρ λA P PA Q PBB P PBB P  

(8)  

From Eq. (6), the PID-type controller can be 
represented in the matrix form as     

          ( ) ( )T
PIDu e=ζ θ θ ζ  (9)  

where [ , , ]TP I Dk k k=θ  and 

1 2 3[ , , ] [ , , ]T T
I De e e e e e= =ζ  in which 

( )I Ie k e t dt= ∫ and ( ).D De k e t= &   
The PID-type controller given in Eq. (9) can 
uniformly approximate the controller *u (Chang 
et al., 2002). Therefore, there is an optimal gain 
vector *θ  such that the approximation error 
between u  and *u can be bounded by a 
predefined constant level ,δ  i.e., 

* *( ) ( )PIDu u u δ= = +ζ θ ζ  where ( ) , .tδ δ≤ ∀ζ   
Define the following minimum approximation 
error 

          * *( )[ ( ) ]PIDg u u dω = − +x ζ θ  (10)  

which can be rewritten as 
          * *( )[ ( ) ]PIDd g u uω= − −x ζ θ  (11)  

Substituting Eqs. (5) and (11) into (4) yields  

          
* * *

*

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) )

( )( ( ) ( ) )

= + + − + − +

= + − + +

& PID PID

PID PID

g u g g u g u g u

g u u

υ ω

υ ω

e Ae B x x x x x

Ae B x B

ζ θ ζ θ

ζ θ ζ θ
 

(12)  

 
3. Adaptive fuzzy PID controller with H∞ 
tracking performance 
Because of the existing unknown parameters of 
the controlled plant given in Eq. (1), the goal is to 
design a fuzzy PID controller ( )PIDu ζ θ  using the 
update laws to adjust the adaptable parameter 
vector θ  such that the tracking performance is 
satisfied.  
The elementary structure of the fuzzy system 
contains a set of fuzzy rules and inference engine. 
The fuzzy inference engine utilized the fuzzy 
rules to execute a mapping from an input 
linguistic vector ζ  to an output linguistic 
variable ( ) .z ∈ℜξ  It is worth mentioning that 
there is no direction in fuzzy set theory to 
determine the best shapes of the fuzzy sets, thus 
different shapes need to be utilized to accomplish 
an optimum solution for various ranges of the 
system states. Here, the general shape of 
membership functions is considered for the inputs 

1 2 3, ,e e e as follows. 

          

2 2
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k k

k

e e
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e

 

 
 
 
 

(13) 

where P, Z and N are the linguistic meanings of 
the membership functions and 1,2,3k = . 
From [42], a fuzzy system is a multi-input single-

output (MISO) system including 
3

1
k

k

N N
=

= ∏ rules 

in the following form. 
( )

1 2 3 1 2 3 1 2 3

1 2 3
1 2 3:   e    e      ,i i i i i i i i iR e G G G z CIF  is  AND  is AND  is THEN  is  ξ

 
1 1 2 2 3 31,..., ,  1,..., ,  1,...,i N i N i N= = =   

where ,ke  1,2,3,k =  and ( )z ξ  stand for the 
linguistic variables associated with the inputs and  [
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output of the fuzzy system, respectively, and 
k

k
iG  

and 
1 2 3i i iC are linguistic values of linguistic 

variables ζ  and ( )z ζ  in the universes of 
discourse 3U ∈ℜ  and ,ℜ  respectively.  

The key components of a fuzzy logic controller 
are the fuzzifier, the inference engine and the 
defuzzifier. The fuzzifier transforms the numeric 
into fuzzy sets called fuzzification and the 
inference performs all of the logic manipulations in 
a fuzzy controller. Finally, the results of the 
inference process are transformed into a numeric 
value using the defuzzifier, so- called 
defuzzification. In designing the fuzzy controller, 
using singleton fuzzifier, product inference engine 
and the centre average defuzzifier, the following 
crisp output can be obtained. 

          

31 2

1 2 3
1 2 31 2 3

1 2 3

31 2

1 2 31 2 3
1 2 3

3

1
3

1 1 1
1 1 1

1

1 1 1

( )
( )

( )

( )

=

= = =
= = =

=

= = =

=

=

∏
∑∑∑

∑ ∑ ∑ ∏

∑∑∑ i i i

NN N k k
k

i i i
N N Ni i i

k ki i i
k

NN N

i i i
i i i

e
z c

e

a c

µ

µ
ζ

ζ

 

(14)  

where 
1 2 3i i ic ’s are the center of the thki  fuzzy set 

and 
1 2 3

( )
i i i

a ζ is the nonlinear mapping defined as  

          

1 2 3
1 2 3

1 2 3

3

1
3

1 1 1
1

( )
( ) ,

( )

k k
k

i i i
N N N

k ki i i
k

e
a

e

µ
ζ

µ

=

= = =
=

=
∏

∑ ∑ ∑ ∏
 

 
 

(15) 

In Eq. (15), we have 1 2 3

1 2 31 2 31 1 1
( ) 1

= = =
=∑ ∑ ∑N N N

i i ii i i
a ζ  

and 
1 2 3

( )i i ia ζ  can be considered as a weighting 
function. Thus, the above fuzzy inference can be 
written as   

          =θ Ξc  (16)  

where 
1 2 3i i ic ’s are adaptable parameters and 

{ }diag , ,T T Ta a aΞ =  with dimension 3 (3 )N×  
for which 

( )3 1 2 3111 112 11... ...=
T

N N N Na a a aa  is an 

1N ×  fuzzy basis function vector and 
1 2 3i i ia ’s are 

defined in Eq. (16), and 1 2 3(   )= Tc c c c  in which 

( )3 1 2 1 2 3111 112 11... 1... ... ... ,=
T

l l l N l N N N l N N N lc c c c cc  

1,2,3.l =  
Now, the fuzzy system is employed to 
approximate the controller *u given in Eq. (3) 
using the update control law for tuning the 
adaptable parameter vector .θ  To this reason, 
consider ˆ=θ Ξc  be the estimate of *θ  because of 
ĉ  and the vector of error given by 

*ˆ= −%c c c . 
From this, Eq. (3) can be rewritten as  

          ( ) T
PIDu = )ζ θ ζ Ξc  (17)  

Substituting Eq. (17) into Eq. (12) yields  
          ( )( )g υ ω= + + +& %e Ae B x Wc B  (18)  

where T= ζ ΞW . 
On the basis of the above discussion, the 
following theorem is given to demonstrate the 
stability of the control structure.     
Theorem 1: Consider the system Eq. (1) with 
unknown bounded nonlinear functions 

( )f x and ( )g x . If the adaptive fuzzy PID control 
law given in Eq. (5) is used with H ∞ tracking 
compensator given in Eq. (7) in which the weight 
vector is adaptively tuned according to 

          ( )T T= = gγ−)& &%c c W x B Pe  (19)  

Then, for any 0,t t≥  ( )te  and ( )t%c  are 
uniformly ultimately bounded (UUB) and the 
H ∞  tracking performance for the system satisfies 
the following relationship: 

 
2

0 0

1(0) (0) (0) (0)≤ + +∫ ∫% %
T TT T T Tdt dtρ ω ω

γ
e Qe e Pe c c

 

(20) 

Proof: Consider the following Lyapunov 
function.   

 
1 1
2 2

T TV
γ

= + % %e Pe c c  

(21) 

Differentiate Eq. (21) with respect to time along 
the trajectory (18), then 
 
 
 
 
 
 
  [

 D
ow

nl
oa

de
d 

fr
om

 m
je

e.
m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
7-

03
 ]

 

                             4 / 10

https://mjee.modares.ac.ir/article-17-9479-en.html


KHODABANDEH AND ALFI: AN APPLICATION OF BACKTRACKING SEARCH ALGORITTHM FOR… 

25 

(22) 
1 1 1
2 2
1 ( ( ) ( ) )
2

1 1( ( ) ( ) )
2

1 ( ( ) ( )
2

( )
1( )

1 [
2

= + +

= + + +

+ + + + +

= + +

+ + +

+ + +

= +

&& & & % %

%

&% % %

%

%

&% %

T T T

T T T T T T T T

T T

T T T T T T

T T T T

T T T

T T T

V

g g

g g

g g

g

g

γ

υ ω

υ ω
γ

υ

ω

υ ω
γ

e Pe e Pe c c

e A c W x B x B B Pe

e P Ae B x Wc B x B c c

e A Pe c W x B Pe x B Pe

B Pe e PAe e PB x Wc

e PB x e PB c c

e A Pe e PA 2 ( )

1 1] ( )
2

+ +

+ + + &% % %

T T T

T T T T T

g

g

υ ω

ω
γ

e e PB x B Pe

e PB c W x B Pe c c

      

 
 
 
 
 

(22)  

From Eqs. (19) and (7), Eq. (22) can be rewritten 
as 

11 1[ 2 ( )( ( ) )
2

1 2[
2

]

−= + + −

+ +

= + −

+ +

& T T T T T

T T T

T T
T T T

T T T

V g g
λ

ω ω

λ
ω ω

e A Pe e PAe e PB x x B Pe

B Pe e PB
e PBB Pee A Pe e PAe

B Pe e PB
 

          

1 2[ ]
2

1 [ ]
2

= + −

+ +

T T T

T T Te e

λ

ω ω

e A P PA PBB P e

B P PB
 

(23)  

Inserting (8) and (19) into (23), we have  
 

           

2

2

2 2

2

2

1 1 1( ) ( )
2 2
1 1 1(
2 2

1)
2

1 1 1 1( ) ( )
2 2

1
2

1 1
2 2

= + − − + +

− − − −

+ +

= − − − −

+

≤ − +

& T T T T T

T T T T T T

T T

T T T T

T

T T

V ω ω
ρ

ω ω
ρ

ρ ω ω ρ ω ω

ρω ρω
ρ ρ

ρ ω ω

ρ ω ω

e Q PBB P e B Pe e PB

e Qe e PBB Pe B Pe e PB

e Qe B Pe B Pe

e Qe

 

         
(24) 
 

Since ρ  is the constant prescribed attenuation 
level, from Eq. (24), it can be concluded that 

,  ,e c and θ  are UUB, for any 0≥t t . Also, by 
integrating both sides of Eq. (24), after some 
manipulation, it concludes 

2
0 0

1 1( ) (0) 2 2− ≤ − +∫ ∫e Qef ft tT
fV t V dt dtρ ω

ρ
  (25)

From there 
2 2

0 0
2 (0) 2 ( )≤ − +∫ ∫e Qef ft tT

fdt V V t dtρ ρ ρ ω   (26)

Since ( ) 0fV t ≥ , Eq. (26) can be rewritten as 
2 2

0 0
2 (0)≤ +∫ ∫e Qef ft tT dt V dtρ ρ ω   (27)

Substituting Eq. (28) into Eq. (27), the H ∞  
tracking performance given in Eq. (20) is 
satisfied. This completes the proof. 
 
4. Optimal Tracking Performance 
When applying the controller into the system, the 
closed-loop error dynamic given in Eqs. (18) is 
provided corresponding to vector 

1 2[ , ,..., ]= ∈ℜT n
nk k kk . The simplest method to 

choose the appropriate values for the vector k is 
trial and error technique, which is a time-
consuming procedure. This type of tuning method 
becomes difficult and delicate without a 
systematic design method. To overcome this 
problem, it can be considered as an optimization 
problem. Here, to achieve an optimal 
performance, BSA is employed to determine the 
appropriate poles location by choosing a proper 
vector k . In the following, first the BSA is 
explained briefly. Afterward, the optimization 
problem in hand is described. 
 
4.1. Overview of BSA 
BSA is a population-based iterative EA designed 
to be a global minimizer with five processes 
including selection-I, mutation, crossover and 
selection-II. Three basic genetic operators 
(initialization, selection, mutation, and crossover) 
are used to generate trial individuals. BSA has a 
random mutation strategy that utilizes only one 
direction individual for each target individual and 
randomly selects the direction individual from 
individuals of a randomly chosen previous 
generation. BSA utilizes a non-uniform crossover 
strategy that is much more complex than 
traditional crossover strategies. The procedure of 
BSA can be described briefly as follows. BSA 
initializes the population P as 

, ( , )≈i j j jP U low up  (28) 
for i = 1,2,3,. . .,N and j = 1,2,3,. . .,D, where 
N and D are the population size and the problem 
dimension, respectively, U is the uniform 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n 
20

25
-0

7-
03

 ]
 

                             5 / 10

https://mjee.modares.ac.ir/article-17-9479-en.html


MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL.11,NO.4, WINTER 20112 

26 

distribution and each Pi is a target individual in 
the population P. 
Selection-I stage evaluates the population and 
determines the historical population oldP 
according to the obtained fitness value 

: , (0,1)< = ≈if a b then oldP P a b U  (29) 
where := is the update operation.  
Eq. (29) insures that BSA designates a population 
belonging to a randomly selected previous 
generation as the historical population and 
remembers this historical population until it is 
changed. Therefore, BSA has a memory.  
During each generation, BSAs mutation process 
generates the initial form of the trial population 
using  

.( )Mutant P F oldP P= + −  (30) 
where F is the amplitude control factor that 
controls the amplitude of the search-direction 
matrix. Here, we use the 
value 3. , where (0,1)= ≈F rand rndn N ( N is the 
standard normal distribution).  
After oldP is determined, the following equation 
is utilized to randomly alter the order of the 
individuals in oldP: 

: ( )oldP permuting oldP=  (31) 
where the permuting function is a random 
shuffling function. 
Because the historical population is used in the 
calculation of the search direction matrix, the trial 
population is generated by taking partial 
advantage of its experiences from previous 
generations. After the new mutant operation is 
finished, the crossover process generates the final 
form of the trial population T .  

The initial value of the trial population is 
Mutant, which has been set in the mutation 
process. Individuals with better fitness values for 
the optimization problem are utilized to progress 
the target population. The first step of the 
crossover process calculates a binary integer-
valued matrix (map) of size .N D that indicates the 
individuals of T to be manipulated using the 
relevant individuals of P . Then T is updated 
with , ,:n m n mT P= if { }, 1, where 1, 2,3,...,n mmap n N= ∈ and 

{ }1,2,3,...,m D∈ . 
4.2. Procedure of poles location 
To handle the optimization problem, first of all, 
two significant subjects must be defined. The first 
one is how to define a suitable objective function. 
The objective function assesses the location of the 
poles and returns a fitness value by considering 

the performance requirements. Here, the Sum of 
Squared Errors (SSE) is considered as 

2 2

1 1
[ ( ) ( )] ( )

N N

d
k k

SSE y k y k e k
= =

= − =∑ ∑  (32) 

where e is the tracking error, N is the number of 
given sampling steps, ( )y k  and ( )dy k  are the 
system output and reference input signal, 
respectively.  
The second one is that how the pole locations 
should be represented as gens. As mentioned 
earlier, the poles are directly related to the 
elements of vector k . As each gen can be 
considered as a solution, the position of each gen 
can be described as an n-dimensional vector 
including a set of all closed-loop poles for the 
error dynamic.  
 
5. Simulations 
To evaluate the performance of proposed 
approach, simulation is performs for tracking 
control of the chaotic Duffing forced-oscillation 
system. The dynamic equation of such system is 
given by [43]: 

1 2
3

2 2 10.1 12cos( )

x x
x x x t u d

=

= − − + + +

&

&
 (34) 

This system is chaotic without control as shown 
in Fig. 1. The goal is to force the Duffing system 
to fulfil the H ∞ tracking performance with a 
desired output ( )dy t  in presence of external 
disturbance d and system uncertainty. To this 
end, it is assumed that the state of system 1x  

follow the desired output sin( )
10

( ) =d ty t
π  

asymptotically whereas the initial state is 
1 2( (0), (0)) (0.05,0)=x x . In all the simulations, a 

system uncertainty term is set to 10.01sin( )x and 
the external disturbance d  is considered a square 
wave with amplitude 0.5±  and period 2π . A 
Gaussian noise is also inserted at the system with 
mean zero and variance of 0.005. 

Simulation results are performed in two general 
parts. In the first part, to show the effect of poles 
location on the performance of the controller, three 
different scenarios are considered. In the second 
part, the BSA is employed to further improve the 
performance of the controller. In the first part, to 
show the different tracking related to the elements of 
vector k , an arbitrary set of stable poles are 
considered for each scenario as follows.  [
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( )1 5 5= − − Tk , ( )2 10 5= − − Tk  and 

( )3 2 2= − − Tk  for scenario 1, 2 and 3, 

respectively corresponding to 0 1
5 5

=
 
 
 − −1A , 

0 1
10 5

=
 
 
 − −2A  and 0 1

2 2
=

 
 
 − −3A  for scenario 1, 2 

and 3, respectively. To do a fair comparison, a 
positive definite matrix Q = diag [2, 2], the desired 
attenuation level 0.1=ρ , the learning rate 0.02=λ , 
and the tuning rate of the update law 130=γ  are 
used in all scenarios. From Eq. (8), the positive 

matrices are obtained as 1

2.2 0.2

0.2 0.24
=

 
 
 

P , 

2.7 0.1

0.1 0.22
=

 
 
 

2P  and 
2.5 0.5

0.5 0.75
=

 
 
 

3P  for scenario 

1, 2 and 3, respectively. Figs. 2–4 illustrate the 
trajectory of the reference input and output signals 
for scenario 1, 2 and 3, respectively. Fig. 5 shows 
the trajectory of errors for each scenario. The final 
controller parameters values are as    

1 1 1( , , ) (58.14,59.66,98.74)=p i dk k k ,   
2 2 2( , , ) (33.03,93.14,131.42)=p i dk k k and  

3 3 3( , , ) (71.50,49.62,56.12)=p i dk k k   for scenario 1, 
2 and 3, respectively. Referring to these figures, it 
is apparent that the tracking performance of the 
controller relays certainly on the poles location of 
error dynamics.  

In this point of view, to achieve the optimal 
tracking performance of the controller, BSA is 
employed to determine the appropriate pole 
locations of error dynamic as described in section 
4.2. In BSA, we set  0.03=Mixrate  [31]. The 
BSA is coded in Matlab 7.0 and the simulations 
are run on a laptop computer with Corei3 2.1 
GHz speed processor and 4 GB memory capacity. 
The population size is se to 20. The BSA runs 20 
times independently and we record the SSE 
defined as Eq. (32). The statistical results 
including the best, worse, mean and standard 
deviation (Std.) are listed in Table 1. This table 
demonstrates that the std. of the solutions 
obtained by BSA is small which indicates the 
robustness of the algorithm in solving these 
problems. Applying this method, we obtain 

( )0.1645 20= − −
Tk  and 

121.6628    6.0802
6.0802    0.3540

=
 
 
 

P . The corresponding 

results are shown in Figs. 6 and 7 for the best 
objective function value. Fig. 6 represents the 
trajectory of the output 1x . Fig. 7 depicts the 
control effort signal. The trajectories of the 
control parameter ( ,p ik k and dk ) are also shown 
in Fig. 8 where the initial value the PID 
parameters is [ , , ] [5,5,5].p i dk k k = As this figure 
shows, the steady-state values of the parameters 
are 26.44, 21.22= =p ik k and 18.6=dk . The 
corresponding cost function is also shown in Fig. 
9, respectively. Totally, it is obvious that the 
system has optimal performance with a 
continuous control effort while is robust in 
presence of the uncertainties and the external 
disturbance.  
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Fig. 1. Phase plane of the Duffing system. 
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Fig 1. The output trajectory 1x for scenario 1. 

 
 

 
 

 

Fig 3. The output trajectory 1x for scenario 2. 
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Fig. 4. The output trajectory 1x for scenario 3. 
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Fig. 5. The errors trajectory for all scenarios. 
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Fig. 6. The output trajectory 1x using BSA. 
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Fig. 7. The control effort signal using BSA. 
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Fig. 8. The controller parameters trajectories using BSA. 
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Fig. 9. The objective function using BSA. 

 
Table  1. Statistical results obtained by BSA 

 
 
7. Conclusions 
This paper proposed the optimal controller design 
for controlling a class of chaotic systems in 

presence of the uncertainties and external 
disturbance. To achieve optimal tracking 
performance, BSA was employed to determine 
the proper poles of the dynamic of the error. 
Stability of the proposed control method was 
provided using Lyapunov theorem and the 

∞H tracking performance was guaranteed for a 
prescribed attenuation level. The capability of the 
controller was demonstrated by applying on the 
Duffing-oscillator system.  
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